
HAL Id: lirmm-02493066
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02493066v3

Submitted on 24 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast in-place algorithms for polynomial operations:
division, evaluation, interpolation
Bruno Grenet, Daniel S. Roche, Pascal Giorgi

To cite this version:
Bruno Grenet, Daniel S. Roche, Pascal Giorgi. Fast in-place algorithms for polynomial operations:
division, evaluation, interpolation. ISSAC 2020 - 45th International Symposium on Symbolic and
Algebraic Computation, Jul 2020, Kalamata, Greece. pp.210-217, �10.1145/3373207.3404061�. �lirmm-
02493066v3�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02493066v3
https://hal.archives-ouvertes.fr

Fast in-place algorithms for polynomial operations:
division, evaluation, interpolation

Pascal Giorgi
LIRMM, Univ. Montpellier, CNRS

Montpellier, France
pascal.giorgi@lirmm.fr

Bruno Grenet
LIRMM, Univ. Montpellier, CNRS

Montpellier, France
bruno.grenet@lirmm.fr

Daniel S. Roche
United States Naval Academy
Annapolis, Maryland, U.S.A.

roche@usna.edu

November 12, 2020

Abstract

We consider space-saving versions of several important operations on univariate polynomials,
namely power series inversion and division, division with remainder, multi-point evaluation, and
interpolation. Now-classical results show that such problems can be solved in (nearly) the same
asymptotic time as fast polynomial multiplication. However, these reductions, even when applied
to an in-place variant of fast polynomial multiplication, yield algorithms which require at least a
linear amount of extra space for intermediate results. We demonstrate new in-place algorithms for
the aforementioned polynomial computations which require only constant extra space and achieve
the same asymptotic running time as their out-of-place counterparts. We also provide a precise
complexity analysis so that all constants are made explicit, parameterized by the space usage of
the underlying multiplication algorithms.

1 Introduction

Computations with dense univariate polynomials or truncated power series over a finite ring are
of central importance in computer algebra and symbolic computation. Since the discovery of sub-
quadratic (“fast”) multiplication algorithms [12, 4, 19, 10, 3], a major research task was to reduce
many other polynomial computations to the cost of polynomial multiplication.

This project has been largely successful, starting with symbolic Newton iteration for fast inversion
and division with remainder [14], product tree algorithms for multi-point evaluation and interpola-
tion [15], the “half-GCD” fast Euclidean algorithm [18], and many more related important problems
[2, 6]. Not only are these problems important in their own right, but they also form the basis for many
more, such as polynomial factorization, multivariate and/or sparse polynomial arithmetic, structured
matrix computations, and further applications in areas such as coding theory and public-key cryptog-
raphy.

But the use of fast arithmetic frequently comes at the expense of requiring extra temporary space
to perform the computation. This can make a difference in practice, from the small scale where
embedded systems engineers seek to minimize hardware circuitry, to the medium scale where a space-
inefficient algorithm can exceed the boundaries of (some level of) cache and cause expensive cache
misses, to the large scale where main memory may simply not be sufficient to hold the intermediate
values.

In a streaming model, where the output must be written only once, in order, explicit time-space
tradeoffs prove that fast multiplication algorithms will always require up to linear extra space. And

1

indeed, all sub-quadratic polynomial multiplication algorithms we are aware of — in their original
formuation — require linear extra space [12, 4, 19, 10, 3].

However, if we treat the output space as pre-allocated random-access memory, allowing values in
output registers to be both read and written multiple times, then improvements are possible. In-place
quadratic-time algorithms for polynomial arithmetic are described in [16]. A series of recent results
provide explicit algorithms and reductions from arbitrary fast multiplication routines which have the
same asymptotic running time, but use only constant extra space [17, 11, 8]. That is, these algorithms
trade a constant increase in the running time for a linear reduction in the amount of extra space. So
far, these results are limited to multiplication routines and related computations such as middle and
short product. Applying in-place multiplication algorithms directly to other problems, such as those
considered in this paper, does not immediately yield an in-place algorithm for the desired application
problem.

1.1 Our work

Time Space Reference
Power series inversion (λm +λs)M(n)

1
2 max(cm, cs + 1)n [9, Alg. MP-inv]

at precision n λmM(n) log cm+2
cm+1
(n) O(1) Theorem 2.3

(λm +
3
2λs)M(n)

cm+1
2 n [9, Alg. MP-div-KM]

Power series division λmM(n) log cm+3
cm+2
(n) O(1) Theorem 2.5

at precision n O(M(n)) αn, for any α > 0 Remark 2.7
�

λm(
c+1

2 +
1
c) +λs(1+

1
c)
�

M(n) O(1)‡ Corollary 2.6
Euclidean division (λm +

3
2λs)M(m) +λsM(n) max(cm+1

2 m− n, csn) standard algorithm
of polynomials 2λsM(m) + (λm +λs)M(n) (1+max(cm

2 , cs+1
2 , cs))n

�

m
n

�

balanced div. (precomp)
in sizes (m+ n− 1, n)

�

λm(
c+1

2 +
1
c) +λs(2+

1
c)
�

M(m) O(1) Theorem 2.8
multipoint evaluation 3/2M(n) log(n) n log(n) [2]

size-n polynomial on n points 7/2M(n) log(n) n [7], Lemma 3.1
(4+ 2λs/ log(cs+3

cs+2))M(n) log(n) O(1) Theorem 3.4
interpolation 5/2M(n) log(n) n log(n) [2]

size-n polynomial on n points 5M(n) log(n) 2n [6, 7], Lemma 3.3
' 105M(n) log(n) O(1) Theorem 3.6

Table 1: Summary of complexity analyses, omitting non-dominant terms and assuming c f ≤ cs ≤ cm.
We use c = cm+3. For O(1)‡ space, the memory model is changed such that the input dividend can be
overwritten. Here, and throughout the paper, the base of the logarithms is 2 if not otherwise stated.

In this paper, we present new in-place algorithms for power series inversion and division, poly-
nomial division with remainder, multi-point evaluation, and interpolation. These algorithms are fast
because their running time is only a constant time larger than the fastest known out-of-place algo-
rithms, parameterized by the cost of dense polynomial multiplication.

Our space complexity model is the one of [17, 11, 8] where input space is read only while output
space is pre-allocated and can be used to store intermediate results. In that model, the space com-
plexity is measured by only counting the auxiliary space required during the computation, excluding
input and output spaces. We shall mention that a single memory location or register may contain
either an element of the coefficient ring, or a pointer to the input or output space. It follows that
in-place algorithms are those that require only a constant number of extra memory locations.

2

For all five problems, we present in-place variants which have nearly the same asymptotic running
time as their fastest out-of-place counterparts. The power series inversion and division algorithms in-
cur an extra log(n) overhead when quasi-linear multiplication is used, while the polynomial division,
evaluation, and interpolation algorithms keep the same asymptotic runtime as the fastest known al-
gorithm. Our reductions essentially trade a small amount of extra runtime for a significant decrease
in space usage.

Our motivation in this work is mainly theoretical. We address the existence of such fast in-place
algorithms as we already did for polynomial multiplications [8]. To further extend our result, we com-
pare precisely the number of arithmetic operations in our algorithms with the best known theoretical
bounds. These results are summarized in Table 1.

Of course further work is needed to determine the practicability of our approach. In particular
cache misses play a predominant role when dealing with memory management. Studying the cache
complexity of all these algorithms, for instance in the idealized cache model [5], would give more
precise insights. However, the practicability will heavily depend on the underlying multiplication
algorithms. Due to their diversity and the need for fine-tuned implementations, we leave this task to
future work.

1.2 Notation

By a size-n polynomial, we mean a polynomial of degree ≤ n − 1. As usual, we denote by M(n) a
bound on the number of operations in K to multiply two size-n polynomials, and we assume that
αM(n) ≤M(αn) for any constant α ≥ 1. All known multiplication algorithms have at most a linear
space complexity. Nevertheless, several results reduce this space complexity at the expense of a slight
increase in the time complexity [20, 17, 11, 8]. To provide tight analyses, we consider multiplication
algorithms with time complexity λ f M(n) and space complexity c f n for some constants λ f ≥ 1 and
c f ≥ 0.

Let us recall that the middle product of a size-(m + n − 1) polynomial F ∈ K[X] and a size-n
polynomial G ∈ K[X] is the size-m polynomial defined as MP(F, G) = (FG div X n−1)mod X m. We
denote by λmM(n) and cmn the time and space complexities of the middle product of size (2n−1, n).
Then, a middle product in size (m + n − 1, n) where m < n can be computed with

�

n
m

�

λmM(m)
operations in K and (cm + 1)m extra space. Similarly, the short product of two size-n polynomials
F, G ∈K[X] is defined as SP(F, G) = FG mod X n and we denote by λsM(n) and csn its time and space
complexities.

On the one hand, the most time-efficient algorithms achieve λ f = λm = λs = 1 while 2 ≤ c f , cm,
cs ≤ 4, using the Transposition principle [9, 2] for λm = λ f . On the other hand, the authors recently
proposed new space-efficient algorithms reaching c f = 0, cm = 1 and cs = 0 while λ f , λm and λs
remain constants [8].

Writing F =
∑d

i=0 fiX
i ∈K[X], we will use rev(F) ∈K[X] to denote the reverse polynomial of F ,

that is, rev(F) = X d F(1/X), whose computation does not involve any operations in K. Note that we
will use abusively the notation F[a..b[to refer to the chunk of F that is the polynomial

∑b−1
i=a fiX

i , and
the notation F[a] for the coefficient fa. Considering our storage, the notation F[a..b[will also serve to
refer to some specific registers associated to F . When necessary, our algorithms indicate with WS the
output registers used as work space.

2 Inversion and divisions

In this section, we present in-place algorithms for the inversion and the division of power series as
well as the Euclidean division of polynomials. As a first step, we investigate the space complexity

3

from the literature for these computations.

2.1 Space complexity of classical algorithms

Power series inversion Power series inversion is usually computed through Newton iteration: If G
is the inverse of F at precision k then H = G + (1− GF)G mod X 2k is the inverse of F at precision
2k. This allows one to compute F−1 at precision n using O(M(n)) operations in K, see [6, Chapter
9]. As noticed in [9, Alg. MP-inv] only the coefficients of degree k to 2k−1 of H are needed. Thus,
assuming that G[0..k[= F−1 mod X k, one step of Newton iteration computes k new coefficients of F−1

into G[k..2k] as
G[k..2k[= −SP(MP(F[1..2k[, G[0..k[), G[0..k[). (1)

The time complexity is then (λm+λs)M(n) for an inversion at precision n. For space complexity, the
most consuming part is the last iteration of size n

2 . It needs max(cm, cs +1) n
2 extra registers: One can

compute the middle product in G[n
2 ..n[using cm

n
2 extra registers, then move it to n

2 extra registers and
compute the short product using cs

n
2 registers.

Power series division Let F, G ∈K[[X]], the fast approach to compute F/G mod X n is to first invert
G at precision n and then to multiply the result by F . The complexity is given by one inversion and one
short product at precision n. Actually, Karp and Markstein remarked in [13] that F/G can be directly
computed during the last iteration. Applying this trick, the complexity becomes (λm+

3
2λs)M(n) [9],

see also [1]. The main difference with inversion is the storage of the short product of size n
2 , yielding

a space complexity of max(cm + 1, cs + 1) n
2 .

Euclidean division of polynomials Given two polynomials A, B of respective size m + n − 1 and
n, the fast Euclidean division computes the quotient Adiv B as rev(rev(A)/ rev(B)) viewed as power
series at precision m [6, Chapter 9]. The remainder R is retrieved with a size-n short product, yielding
a total time complexity of (λm +

3
2λs)M(m) + λsM(n). Since the remainder size is not determined

by the input size we assume that we are given a maximal output space of size n− 1. As this space
remains free when computing the quotient, this step requires 1

2 max(cm + 1, cs + 1)m − n + 1 extra
space, while computing the remainder needs csn.

As a first result, when m≤ n, using space-efficient multiplication is enough to obtain an in-place
O(M(n)) Euclidean division. Indeed, the output space is enough to compute the small quotient, while
the remainder can be computed in-place [8].

When m > n, the space complexity becomes O(m − n). In that case, the Euclidean division of
A by B can also be computed by

�

m
n

�

balanced Euclidean divisions of polynomials of size 2n− 1 by
B. It actually corresponds to a variation of the long division algorithm, in which each step computes
n new coefficients of the quotient. To save some time, one can precompute the inverse of rev(B) at
precision n, which gives a time complexity (λm+λs)M(n)+

m
n 2λsM(n)≤ 2λsM(m)+ (λm+λs)M(n)

and space complexity (1+max(cm
2 , cs+1

2 , cs))n.
Finally, one may consider to only compute the quotient or the remainder. Computing quotient only

is equivalent to power series division. For the computation of the remainder, it is not yet known how
to compute it without the quotient. In that case, we shall consider space usage for the computation
and the storage of the quotient. When m is large compared to n, one may notice that relying on
balanced divisions does not require one to retain the whole quotient, but only its n latest computed
coefficients. In that case the space complexity only increases by n. Since we can always perform a
middle product via two short products, we obtain the following result .

4

Lemma 2.1. Given A∈K[X] of size m and B ∈K[X], monic of size n, and provided n registers for the
output, the remainder A mod B can be computed using 2λsM(m) + 3λsM(n) +O(m+ n) operations in
K and (cs + 2)n extra registers.

2.2 In-place power series inversion

We notice that during the first Newton iterations, only a few coefficients of the inverse have been
already written. The output space thus contains lots of free registers, and the standard algorithm
can use them as working space. In the last iterations, the number of free registers becomes too small
to perform a standard iteration. Our idea is then to slow down the computation. Instead of still
doubling the number of coefficients computed at each iteration, the algorithm computes less and less
coefficients, in order to be able to use the free output space as working space. We denote these two
phases as acceleration and deceleration phases.

The following easy lemma generalizes Newton iteration to compute only ` ≤ k new coefficients
from an inverse at precision k.

Lemma 2.2. Let F be a power series and G[0..k[contain its inverse at precision k. Then for 0< `≤ k, if
we compute

G[k..k+`[= −SP
�

MP
�

F[1..k+`[, G[0..k[

�

, G[0..`[

�

(2)

then G[0..k+`[contains the inverse of F at precision k+ `.

Algorithm 1 is an in-place fast inversion algorithm. Accelerating and decelerating phases corre-
spond to `= k and ` < k.

Algorithm 1 In-Place Fast Power Series Inversion (INPLACEINV)
Input: F ∈K[X] of size n, such that F[0] is invertible;
Output: G ∈K[X] of size n, such that FG = 1 mod X n.
Required: MP and SP alg. using extra space ≤ cmn and ≤ csn.

1: G[0]← F−1
[0]

2: k← 1, `← 1
3: while ` > 0 do
4: G[n−`..n[←MP(F[1..k+`[, G[0..k[) . WS: G[k..n−`[
5: G[k..k+`[← SP(G[0..`[,−G[n−`..n[) . WS: G[k+`..n−`[
6: k← k+ `
7: `←min

�

k,
�

n−k
c

��

where c = 2+max(cm, cs)

8: G[k..n[← SP(G[0..n−k[,−MP(F[1..n[, G[0..k[)) . O(1) space

Theorem 2.3. Algorithm 1 is correct. It uses O(1) space, and either λmM(n) log cm+2
cm+1
(n) + O(M(n))

operations in K when M(n) is quasi-linear, or O(M(n)) operations in K when M(n) = n1+γ, 0< γ≤ 1.

Proof. Steps 4 and 5, and Step 8, correspond to Equation (2). They compute ` new coefficients of G
when k of them are already written in the output, whence Lemma 2.2 implies the correctness.

Step 4 needs (cm+2)` free registers for its computation and its storage. Then (cs+2)` free registers
are needed to compute SP(G[0..`[, G[n−`..n[) using ` registers for G[n−`..n[and (cs+1)` registers for the
short product computation and its result. For this computation to be done in-place, we need c`≤ n−k.
Since at most k new coefficients can be computed, the maximal number of new coefficients in each
step is `=min

�

k,
�

n−k
c

��

.

5

Each iteration uses O(M(k)) operations in K: O(dk/`eM(`)) for the middle product at Step 4
and O(M(`)) for the short product at Step 5. The accelerating phase stops when k > n−k

c+1 , that is,

k > n
c+2 . It costs

∑blog n
c+2 c

i=0 M(2i) = O(M(n)). During the decelerating phase, each iteration computes
a constant fraction of the remaining coefficients. Hence, this phase lasts for δ = log c

c−1
n steps.

Let `i and ki denote the values of ` and k at the i-th iteration of the deceleration phase and
t i = n− ki . Then one iteration of the deceleration phase costs one middle product in sizes (n− t i +
� t i

c

�

−1, n− t i) and one short product in size
� t i

c

�

. The total cost of all the short products amounts to
∑

i M(t i) = O(M(n)) since
∑

i t i ≤ cn. The cost of the middle product at the i-th step is

λm

�

(n− t i)/
� t i

c

��

M
�� t i

c

��

= λmM(n) +O(n).

Therefore, the total cost of all the middle products is at most λmM(n) log c
c−1
(n) + O(M(n)) and is

dominant in the complexity. We can choose the in-place short products of [8] and get c = cm+2. The
complexity is then λmM(n) log cm+2

cm+1
(n) +O(M(n)).

If M(n) = n1+γ with 0< γ≤ 1, the cost of each iteration is O(

n−t i
`i

£

`
1+γ
i). Since `0 ≤ n, we have

`i < n(c−1
c)

i + c, whence

δ
∑

i=1

¡

n− t i

`i

¤

`
1+γ
i ≤ n

δ
∑

i=1

`
γ
i ≤ n

δ
∑

i=1

�

n
�

c − 1
c

�i

+ c

�γ

.

Since 0< γ≤ 1, we have (α+β)γ ≤ αγ+βγ for any α,β > 0, and the complexity is n1+γ
∑δ

i=1

�

c−1
c

�iγ
+

O(n log n) = O(M(n)).

2.3 In-place division of power series

Division of power series can be implemented easily as an inversion followed by a product. Yet, using
in-place algorithms for these two steps is not enough to obtain an in-place division algorithm since
the intermediate result must be stored. Karp and Markstein’s trick, that includes the dividend in
the last iteration of Newton iteration [13], cannot be used directly in our case since we replace the
very last iteration by several ones. We thus need to build our in-place algorithm on the following
generalization of their method.

Lemma 2.4. Let F and G be two power series, G invertible, and Q[0..k[contain their quotient at precision
k. Then for 0< `≤ k, if we compute

Q[k..k+`[= SP
�

G−1
[0..`[, F[k..k+`[−MP(G[1..k+`[,Q[0..k[)

�

then Q[0..k+`[contains their quotient at precision k+ `.

Proof. Let us write F/G =Qk+X kQ`+O(X k+`). We prove that Q` = G−1×((F−GQk)div X k)mod X `.
By definition, F ≡ G(Qk + X kQ`)mod X k+`. Hence (F − GQk)div X k = GQ` mod X `. Therefore,
Q` = (G−1 × ((F − GQk)div X k))mod X `. Finally, since only the coefficients of degree k to k+ `− 1
of GQk are needed, they can be computed as MP(G[1..k+`[,Q[0..k[).

Algorithm 2 is an in-place power series division algorithm based on Lemma 2.4, choosing at each
step the appropriate value of ` so that all computations can be performed in place.

Theorem 2.5. Algorithm 2 is correct. It uses O(1) space, and either λmM(n) log cm+3
cm+2
(n)+O(M(n)) op-

erations inK when M(n) is quasi-linear or O(M(n)) operations inK when M(n) = O(n1+γ), 0< γ≤ 1.

6

Algorithm 2 In-Place Power Series Division (INPLACEPSDIV)
Input: F, G ∈K[X] of size n, such that G[0] is invertible;
Output: Q ∈K[X] of size n, such that F/G =Q mod X n.
Required: MP, SP, Inv alg. using extra space ≤ cmn, csn, cin.

1: k← bn/max(ci + 1, cs + 2)c
2: Q[n−k..n[← rev(Inv(G[0..k[)) . WS: Q[0..n−k[
3: Q[0..k[← SP(F[0..k[, rev(Q[n−k..n[)) . WS: Q[k..n−k[
4: `← b(n− k)/(3+max(cm, cs))c
5: while ` > 0 do
6: Q[n−2`..n−`[←MP(G[1..k+`[,Q[0..k[) . WS: Q[k..n−2`[
7: Q[n−2`..n−`[← F[k..k+`[−Q[n−2`..n−`[
8: let us define Q∗

`
= rev(Q[n−`..n[)

Q[k..k+`[← SP(Q[n−2`..n−`[,Q
∗
`
) . WS: Q[k+`..n−2`[

9: k← k+ `
10: `← b(n− k)/(3+max(cm, cs))c
11: tmp← F[k..n[−MP(G[1..n[,Q[0..k[) . constant space
12: Q[k..n[← SP(tmp, rev(Q[k..n[)) . constant space

Proof. The correctness follows from Lemma 2.4. The inverse of G is computed once at Step 2, at
precision bn/max(ci + 1, cs + 2)c. Its coefficients are then progressively overwritten during the loop
since Step 8 only requires ` coefficients of the inverse, and ` is decreasing. Since ci =

1
2 max(cm, cs+1),

` is always less than the initial precision. For simplicity of the presentation, we store the inverse in
reversed order in Q[n−k..n[.

Step 2 requires space cik while the free space has size n−k: Since k ≤ n
ci+1 , the free space is large

enough. Similarly, the next step requires space csk while the free space has size n−2k, and k ≤ n
cs+2 .

Step 6 needs (cm+1)` space and the free space has size n−k−2`, and Step 8 requires cs` space while
the free space has size n− k−3`. Since `≤ n−k

3+max(cm,cs)
, these computations can also be performed in

place.
The time complexity analysis is very similar to the one of Algorithm 1 given in Theorem 2.3. The

main difference is Step 7 which adds a negligible term O(n log n) in the complexity.

Corollary 2.6. If it can erase its dividend, Algorithm 2 can be modified to improve its complexity to
�

λm(
c+1

2 +
1
c) +λs(1+

1
c)
�

M(n)+O(n) operations in K where c =max(cm+3, cs +2), still using O(1)
extra space.

Proof. Once k coefficients of Q have been computed, F[0..k[is not needed anymore. This means that
at Step 7, the result can be directly written in F[k..k+`[and that F[0..k[can be used as working space in
the other steps of the loop. The free space at Steps 6 and 8 becomes n−2` instead of n− k−2` and
n−k−3` respectively. Therefore, ` can always be chosen as large as

�

n
c

�

where c =max(cm+3, cs+2).
Since ` stays positive, we also modify the algorithm to stop when all the coefficients of Q have been
computed.

To simplify the complexity analysis, we further assume that k gets the same value
�

n
c

�

at Step 1.
Step 2 requires (λs+λm)M(

�

n
c

�

) operations inK. The sum of the input sizes of all the short products in
the algorithm is n. Their total complexity is thus λsM(n). At the i-th iteration of the loop, k = (i+1)`.
Therefore Step 6 has complexity i

�

n
c

�

. Step 7 requires
�

n
c

�

operations inK. Altogether, the complexity

7

of the modified algorithm is

λsM(n) + (λs +λm)M
��

n
c

��

+
c
∑

i=1

�

iλmM
��

n
c

��

+
�

n
c

��

which is
�

λm(
c+1

2 +
1
c) +λs(1+

1
c)
�

M(n) +O(n).

Using similar techniques, we get the following variant.

Remark 2.7. Algorithm 2 can be easily modified to improve the complexity to O(M(n)) operations in
K when a linear amount of extra space is available, say αn registers for some α ∈ R+.

2.4 In-place Euclidean division of polynomials

If A is a size-(m+n−1) polynomial and B a size-n polynomial, one can compute their size-m quotient Q
in place using Algorithm 2, in O((M(m) log m)) operations inK. When Q is known, the remainder R=
A−BQ, can be computed in-place using O(M(n)) operations in K as it requires a single short product
and some subtractions. As already mentioned, the exact size of the remainder is not determined by
the size of the inputs. Given any tighter bound r < n on deg(R), the same algorithm can compute R
in place, in time O(M(r)).

Altogether, we get in-place algorithms to either compute the quotient of two polynomials in time
O(M(m) log m), or the quotient and size-r remainder in time O(M(m) log m+M(r)). As suggested
in Section 2.1 and in Remark 2.7, this complexity becomes O(M(m) +M(r)) whenever m = O(r).
Indeed, in that case the remainder space can be used to speed-up the quotient computation. We shall
mention that computing only the remainder remains a harder problem as we cannot count on the
space of the quotient while it is required for the computation. As of today, only the classical quadratic
long division algorithm allows such an in-place computation.

We now provide a new in-place algorithm for computing both the quotient and the remainder
that achieves a complexity of O(M(m) +M(n)) operation in K when m ≥ n. Our algorithm requires
an output space of size n− 1 for the remainder since taking any smaller size r < n− 1 would rebind
to power series division.

Algorithm 3 In-Place Euclidean Division (INPLACEEUCLDIV)
Input: A, B ∈K[X] of sizes (m+ n, n), m≥ n, such that B[0] 6= 0;
Output: Q, R ∈K[X] of sizes (m+ 1, n− 1) such that A= BQ+ R;
Required: In-place DIVERASE(F, G, n) computing F/G mod X n while erasing F ; In-place SP;

For simplicity, H is a size-n polynomial such that H[0..n−1[is R and H[n−1] is an extra register
1: H ← A[m..m+n[
2: k← m+ 1
3: while k > n do
4: Q[k−n..k[← rev(DIVERASE(rev(H), rev(B), n))
5: H[0..n−1[← SP(Q[k−n..k−1[, B[0..n−1[)
6: H[1..n[← A[k−n..k−1[−H[0..n−1[
7: H[0]← A[k−n−1]
8: k← k− n
9: Q[0..k[← rev(DIVERASE(rev(H[n−k..n[), rev(B[n−k..n[)))

10: H[0..n−1[← SP(Q[0..n−1[, B[0..n−1[)
11: H[0..n−1[← A[0..n−1[−H[0..n−1[
12: return (Q, H[0..n−1[)

8

Theorem 2.8. Algorithm 3 is correct. It uses O(1) extra space and
�

λm(
c+1

2 +
1
c) +λs(2+

1
c)
�

M(m) +
O(m log n) operations in K where c =max(cm + 3, cs + 2).

Proof. Algorithm 3 is an adaptation of the classical long division algorithm, recalled in Section 2.1,
where chunks of the quotient are computed iteratively via Euclidean division of size (2n− 1, n). The
main difficulty is that the update of the dividend cannot be done on the input. Since we compute
only chunks of size n from the quotient, the update of the dividend affects only n − 1 coefficients.
Therefore, it is possible to use the space of R for storing these new coefficients. As we need to
consider n coefficients from the dividend to get a new chunk, we add the missing coefficient from A
and consider the polynomial H as our new dividend.

By Corollary 2.6, Step 4 can be done in-place while erasing H, which is not part of the original
input. It is thus immediate that our algorithm is in-place. For the complexity, Steps 4 and 5 dominate
the cost. Using the exact complexity for Step 4 given in Corollary 2.6, one can deduce easily that
Algorithm 3 requires

�

λm(
c+1

2 +
1
c) +λs(2+

1
c)
�

M(m) +O(m log n) operations in K.

Using time-efficient products with λm = λs = 1, cm = 4 and cs = 3 yields a complexity '
6.29M(m), which is roughly 6.29/4 = 1.57 times slower than the most time-efficient out-of-place
algorithm.

3 Multipoint evaluation and interpolation

In this section, we present in-place algorithms for the two related problems of multipoint evaluation
and interpolation. We first review both classical algorithms and their space-efficient variants.

3.1 Space complexity of classical algorithms

Multipoint evaluation Given n elements a1, . . . , an of K and a size-n polynomial F ∈ K[X],
multipoint evaluation aims to compute F(a1), . . . , F(an). While the naive approach using Horner
scheme leads to a quadratic complexity, the fast approach of [15] reaches a quasi-linear complexity
O(M(n) log(n)) using a divide-and-conquer approach and the fact that F(ai) = F mod (X − ai). As
proposed in [2] this complexity can be sharpened to (λm +

1
2λ f)M(n) log(n) + O(M(n)) using the

transposition principle.
The fast algorithms are based on building the so-called subproduct tree [6, Chapter 10] whose

leaves contain the (X −ai)’s and whose root contains the polynomial
∏n

i=1(X −ai). This tree contains
2i degree-n/2i monic polynomials at level i, and can be stored in exactly n log n registers if n is a power
of two. The fast algorithms then require n log(n) +O(n) registers as work space. Here, because the
space complexity constants c f , cm, cs do not appear in the leading term n log(n) of space usage, we
can always choose the fastest underlying multiplication routines, so the computational cost for this
approach is simply 3

2M(n) log(n) +O(M(n)).
As remarked in [7], one can easily derive a fast variant that uses only O(n) extra space. In

particular, [7, Lemma 2.1] shows that the evaluation of a size-n polynomial F on k points a1, . . . , ak
with k ≤ n can be done at a cost O(M(k)(n

k + log(k))) with O(k) extra space.
We provide a tight analysis of this algorithm, starting with the balanced case k = n, i.e. the number

of evaluation points is equal to the size of F . The idea of the algorithm is to group the points in dlog(n)e
groups of bn/ log(n)c points each, and to use standard multipoint evaluation on each group, by first
reducing F modulo the root of the corresponding subproduct tree. The complexity analysis of this
approach is given in the following lemma. Observe that here too, the constants λs, cs, etc., do not
enter in since we can always use the fastest out-of-place subroutines without affecting the O(n) term
in the space usage.

9

Lemma 3.1. Given F ∈ K[X] of size n and a1, . . . , an ∈ K, one can compute F(a1), . . . , F(an) using
7
2M(n) log(n) +O(M(n)) operations in K and n+O(n

log(n)) extra registers.

Proof. Computing each subproduct tree on O(n/ log(n)) points can be done in time
1
2M(n/ log(n)) log(n) ≤ 1

2M(n) and space n + O(n/ log(n)). The root of this tree is a polyno-
mial of degree at most n/ log(n). Each reduction of F modulo such a polynomial takes time
2M(n) +O(n/ log(n)) and space O(n/ log(n)) using the balanced Euclidean division algorithm from
Section 2.1. Each multi-point evaluation of the reduced polynomial on n/ log(n) points, using the
pre-computed subproduct tree, takes M(n/ log(n)) log(n) + O(M(n/ log(n))) operations in K and
O(n/ log(n)) extra space [2].

All information except the evaluations from the last step — which are written directly to the
output space — may be discarded before the next iteration begins. Therefore the total time and
space complexity are as stated.

When the number of evaluation points k is large compared to the size n of the polynomial F , we
can simply repeat the approach of Lemma 3.1 dk/ne times. The situation is more complicated when
k ≤ n, because the output space is smaller. The idea is to compute the degree-k polynomial M at the
root of the product tree, reduce F modulo M and perform balanced k-point evaluation of F mod M .

Lemma 3.2. Given F ∈ K[X] of size n and a1, . . . , ak ∈ K, one can compute F(a1), . . . , F(ak) using
2λsM(n) + 4M(k) log(k) +O(n+M(k) loglog(k)) operations in K and (cs + 2)k +O(k/ log(k)) extra
registers.

Proof. Computing the root M of a product tree proceeds in two phases. For the bottom levels of the
tree, we use the fastest out-of-place full multiplication algorithm that computes the product of two
size-t polynomials in time M(t) and space O(t). Then, only for the top loglog(n) levels, do we switch
to an in-place full product algorithm from [8], which has time O(M(t)) but only O(1) extra space.
The result is that M can be computed using 1

2M(k) log(k) +O(M(k) loglog(k)) operations in K and
k+O(k/ log(k)) registers.

Then, we reduce F modulo M . By Lemma 2.1, this is accomplished in time 2λsM(n)+O(n+M(k))
and space (cs+2)k. Adding the cost of the k-point evaluation of Lemma 3.1 completes the proof.

Interpolation Interpolation is the inverse operation of multipoint evaluation, that is, to reconstruct
a size-n polynomial F from its evaluations on n distinct points F(a1), . . . , F(an). The classic ap-
proach using Lagrange’s interpolation formula has a quadratic complexity [6, Chapter 5] while the
fast approach of [15] has quasi-linear time complexity O(M(n) log(n)). We first briefly recall this fast
algorithm.

Let M(X) =
∏n

i=1(X − ai) and M ′ its derivative. Noting that M
X−ai
(ai) = M ′(ai) for 1 ≤ i ≤ n, we

have

F(X) = M(X)
n
∑

i=1

F(ai)/M ′(ai)
X − ai

. (3)

Hence the fast algorithm of [15] consists in computing M ′(X) and its evaluation on each ai through
multipoint evaluation, and then to sum the n fractions using a divide-and-conquer strategy. The
numerator of the result is then F by Equation (3).

If the subproduct tree over the ai ’s is already computed, this gives all the denominators in the
rational fraction sum. Using the same subproduct tree for evaluating M ′ and for the rational fraction
sum gives the fastest interpolation algorithm, combining the textbook method [6] with the multi-
point evaluation of [2]. The total computational cost is only 5

2M(n) log(n) + O(M(n)), while the
space is dominated by the size of this subproduct tree, n log(n) +O(n).

10

A more space-efficient approach can be derived using linear-space multipoint evaluation. Since
the subproduct must be essentially recomputed on the first and last steps, the total running time
is (2λ f +

7
2)M(n) log(n) + O(M(n)), using (2 + 1

2 c f)n + O(n/ log(n)) registers. This approach can
be improved in two ways: first by again grouping the interpolation points and re-using the smaller
subproduct trees for each group, and secondly by using an in-place full multiplication algorithm from
[8] to combine the results of each group in the rational function summation. A detailed description
of the resulting algorithm, along with a proof of the following lemma, can be found in Appendix A.

Lemma 3.3. Given a1, . . . , an ∈ K and y1, . . . , yn ∈ K, one can compute F ∈ K[X] of size n such that
F(ai) = yi for 1≤ i ≤ n using 5M(n) log(n)+O(M(n) loglog(n)) operations inK and 2n+O(n/ log(n))
extra registers.

3.2 In-place multipoint evaluation

In order to derive an in-place algorithm we make repeated use of the unbalanced multi-point evalua-
tion with linear space to compute only k evaluations of the polynomial F among the n original points.
The strategy is to set k as a fraction of n to ensure that n− k is large enough to serve as extra space.
Applying this strategy on smaller and smaller values of k leads to Algorithm 4, which is an in-place
algorithm with the same asymptotic time complexity O(M(n) log(n)) as out-of-place fast multipoint
evaluation.

Algorithm 4 In-Place Multipoint Evaluation (INPLACEEVAL)
Input: F ∈K[X] of size n and (a1, . . . , an) ∈Kn;
Output: R= (F(a1), . . . , F(an))
Required: EVAL of space complexity ≤ (cs + 2)k as in Lemma 3.2

1: s← 0, k← bn/(cs + 3)c
2: while k > 0 do
3: R[s..s+k[← EVAL(F, as, . . . , as+k) . WS: R[s+k..n[
4: s← s+ k
5: k←

�

n−s
cs+3

�

6: R[s..n[← EVAL(F, as, . . . , an) . constant space

Theorem 3.4. Algorithm 4 is correct. It uses O(1) extra space and
�

4+ 2λs/ log(cs+3
cs+2)

�

M(n) log(n) +
O(M(n) loglog n) operations in K.

Proof. The correctness is obvious as soon as EVAL is correct. By the choice of k and from the ex-
tra space bound of EVAL from Lemma 3.2, Step 3 has sufficient work space, and therefore the en-

tire algorithm is in-place. The sequence ki =
(cs+2)i−1

(cs+3)i n, for i = 1,2, . . ., gives the values of k in
each iteration. Then

∑

i ki ≤ n and the loop terminates after at most ` log(n) iterations, where
` ≤ 1/ log(cs+3

cs+2). Applying Lemma 3.2, the cost of the entire algorithm is therefore dominated by
∑

1≤i≤` (2λsM(n) + 4M(ki) log(ki)), which is at most (2λs`+ 4)M(n) log(n).

Using a time-efficient short product with λs = 1 and cs = 3 yields a complexity' 11.61M(n) log n,
which is roughly 11.61/1.5= 7.74 times slower than the most time-efficient out-of-place algorithm.

3.3 In-place interpolation

Let (a1, y1), . . . , (an, yn) be n pairs of evaluations, with the ai ’s pairwise distinct. Our goal is to com-
pute the unique size-n polynomial F ∈ K[X] such that F(ai) = yi for 1 ≤ i ≤ n, with an in-place

11

algorithm. Our first aim is to provide a variant of polynomial interpolation that computes F mod X k

using O(k) extra space. Without loss of generality, we assume that k divides n. For i = 1 to n/k, let
Ti =

∏ki
j=1+k(i−1)(X − a j) and Si = M/Ti where M =

∏n
i=1(X − ai). Note that Si =

∏

j 6=i T j . One can
rewrite Equation (3) as

F(X) = M(X)
n/k
∑

i=1

ki
∑

j=1+k(i−1)

F(a j)

M ′(a j)
1

(X − a j)
= M(X)

n/k
∑

i=1

Ni(X)
Ti(X)

=
n/k
∑

i=1

Ni(X)Si(X) (4)

for some size-k polynomials N1, . . . , Nn/k. One may remark that the latter equality can also be viewed
as an instance of the chinese remainder theorem where Ni = F/Si mod Ti (see [6, Chapter 5]). To
get the first k terms of the polynomial F , we only need to compute

F mod X k =
n/k
∑

i=1

Ni(Si mod X k)mod X k. (5)

One can observe that M ′(a j) = (Si mod Ti)(a j)T ′i (a j) for k(i − 1) < j ≤ ki. Therefore, Equation (4)
implies that Ni is the unique size-k polynomial satisfying Ni(a j) = (F/Si mod Ti)(a j) and can be
computed using interpolation. One first computes Si mod Ti , evaluates it at the a j ’s, performs k
divisions in K to get each Ni(a j) and finally interpolates Ni .

Our second aim is to generalize the previous approach when some initial coefficients of F are
known. Writing F = G + X sH where G is known, we want to compute H mod X k from some evalu-
ations of F . Since H has size at most (n− s), only (n− s) evaluation points are needed. Therefore,
using Equation (4) with M =

∏n−s
i=1(X − ai), we can write

H(X) = M(X)
(n−s)/k
∑

i=1

ki
∑

j=1+k(i−1)

F(a j)− G(a j)

as
j M
′(a j)

1
(X − a j)

. (6)

This implies that H mod X k can be computed using the same approach described above by replacing
F(a j) with H(a j) = (F(a j) − G(a j))/as

j . We shall remark that the H(a j)’s can be computed using
multipoint evaluation and fast exponentation. Algorithm 5 fully describes this approach.

Lemma 3.5. Algorithm 5 is correct. It requires 6k + O(k/ log k) extra space and it uses
�

1
2 (

n−s
k)

2 + 23
2

n−s
k

�

M(k) log(k) + (n− s) log(s) +O((n−s
k)

2M(k) loglog k) operations in K.

Proof. The correctness follows from the above discussion. In particular, note that the polynomials Sk
i

and ST
i at Steps 6 and 7 equal Si mod X k and Si mod Ti respectively. Furthermore, z j = G(a j+k(i−1))

since G(a j+k(i−1)) = (G mod Ti)(a j+k(i−1)). Hence, Step 12 correctly computes the polynomial Ni and
the result follows from Equations (5) and (6).

From the discussion in Section 3.1, we can compute each Ti in 1/2M(k) log(k)+O(M(k) loglog k)
operations in K and k extra space. Step 9 requires some care as we can share some computation
among the two equal-size evaluations. Indeed, the subproduct trees induced by this computation are
identical and thus can be computed only once. Using Lemma 3.1, this amounts to 13

2 M(k) log(k) +
O(M(k)) operations in K using k +O(k/ log k) extra space. Step 12 can be done in 5M(k) log(k) +
O(M(k) loglog k) operations in K and 2k + O(k/ log k) extra space using Lemma 3.3. Taking into
account the n− s exponentations as

j , and that other steps have a complexity in O(M(k)), the cost of
the algorithm is

�

1
2

�n− s
k

�2
+

23
2

n− s
k

�

M(k) log(k) + (n− s) log(s) +O
�

�n− s
k

�2
M(k) loglog k

�

.

12

Algorithm 5 Partial Interpolation (PARTINTERPOL)

Input: G ∈K[X] of size s and (y1, . . . , yn−s), (a1, . . . , an−s) in Kn−s ; an integer k ≤ n− s
Output: H mod X k where F = G + X sH ∈ K[X] is the unique size-n polynomial s.t. F(ai) = yi for

1≤ i ≤ n− s
1: for i = 1 to (n− s)/k do
2: Sk

i ← 1, ST
i ← 1

3: Ti ←
∏ki

j=1+k(i−1)(X − a j) . Fast divide-and-conquer
4: for j = 1 to (n− s)/k, j 6= i do
5: T j ←

∏k j
t=1+k(j−1)(X − at) . Fast divide-and-conquer

6: Sk
i ← Sk

i × T j mod X k . Sk
i = Si mod X k

7: ST
i ← ST

i × T j mod Ti . ST
i = Si mod Ti

8: GT ← G mod Ti
9: (b1, . . . , bk)← EVAL(ST

i , a1+k(i−1), . . . , aki)
(z1, . . . , zk)← EVAL(GT , a1+k(i−1), . . . , aki)

10: for j = 1 to k do
11: b j ← (y j+k(i−1) − z j)/(as

j+k(i−1)b j)

12: Ni ← INTERPOL((z1, . . . , zk), (b1, . . . , bk))
13: H[0..k[← H[0..k[+ NiS

k
i mod X k

We show that 6k+O(k/ log k) extra registers are enough to implement this algorithm. At Step 7,
the polynomials Ti , T j , Sk

i , ST
i must be stored in memory. The computation involved at this step re-

quires only 2k extra registers as ST
i ×T j mod Ti can be computed with an in-place full product (stored

in the extra registers) followed by an in-place division with remainder using the registers of ST
i and

T j for the quotient and remainder storage. Using the same technique Step 8 requires only k extra
space as for Steps 2 to 6. At Step 9, we need 3k registers to store GT , ST

i , Sk
i and 2k registers to store

(b1, . . . , bk) and (z1, . . . , zk), plus k + O(k/ log k) extra register for the computation. At Step 12 we
re-use the space of GT , ST

i for Ni and the extra space of the computation which implies the claim.

We can now provide our in-place variant for fast interpolation.

Algorithm 6 In-Place Interpolation (INPLACEINTERPOL)
Input: (y1, . . . , yn) and (a1, . . . , an) of size n such that ai , yi ∈K;
Output: F ∈K[X] of size n, such that F(ai) = yi for 0≤ i ≤ n.
Required: PARTINTERPOL with space complexity ≤ cpik

1: s← 0
2: while s < n do
3: k←

�

n−s
cpi+1

�

4: if k = 0 then k← n− s
5: Y, A← (y1, . . . , yn−s), (a1, . . . , an−s)
6: F[s..s+k[← PARTINTERPOL(F[0..s[, Y, A, k)
7: s← s+ k

Theorem 3.6. Algorithm 6 is correct. It uses O(1) extra space and at most 1
2 (c

2 + 23c)M(n) log n +
O(M(n) loglog n) operations in K, where c = 1+ cpi .

Proof. The correctness is clear from the correctness of Algorithm PARTINTERPOL. To ensure that the

13

algorithm uses O(1) extra space we notice that at Step 6, F[s+k..n[can be used as work space. There-
fore, as soon as cpik ≤ n− s − k, that is, k ≤ n−s

cpi+1 , this free space is enough to run PARTINTERPOL.
Note that when k = 0, n− s < cpi + 1 is a constant, which means that the final computation can be
done with O(1) extra space. Let k1, k2, . . . , kt and s1, s2, . . . , st be the values of k and s taken during
the course of the algorithm. Since si =

∑i
j=1 k j ≤ n with s0 = 0, we have ki ≤ λn(1 − λ)i−1, and

si ≥ n(1− (1−λ)i) where λ= 1
cpi+1 . The time complexity T (n) of the algorithm satisfies

T (n)≤
t
∑

i=1

�

c2

2
+

23c
2

�

M(ki) log(ki) +
t
∑

i=1

(n− si−1) log(si−1) +O(c2M(ki) loglog ki)

since n−si−1
ki
≤ c = cpi+1 by definition of ki . Moreover, we have

∑t
i=1 M(ki) log(ki)≤M(

∑

i ki) log n≤
M(n) log(n). By definition of si , we have n− si ≤ n(1−λ)i which gives

t
∑

i=1

(n− si−1) log(si−1)≤ n log(n)
t
∑

i=1

(1−λ)i ≤ (cpi + 1)n log n.

This concludes the proof.

Since cpi < 6+ ε for any ε > 0, the complexity can be approximated to 105M(n) log(n), which is
42 times slower than the fastest interpolation algorithm (see Table 1).

Acknowledgments

We thank Grégoire Lecerf, Alin Bostan and Michael Monagan for pointing out the references [7, 16].

References

[1] D. Bernstein. Fast multiplication and its applications. In Algorithmic Number Theory, volume 44
of MSRI Pub., pages 325–384. Cambridge University Press, 2008.

[2] A. Bostan, G. Lecerf, and E. Schost. Tellegen’s principle into practice. In ISSAC’03, pages 37–44.
ACM, 2003. doi:10.1145/860854.860870.

[3] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras.
Acta Inform., 28(7):693–701, 1991. doi:10.1007/BF01178683.

[4] S. A. Cook. On the minimum computation time of functions. PhD thesis, Harvard University, May
1966.

[5] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. In
FOCS’99, pages 285–297. IEEE, 1999. doi:10.1109/SFFCS.1999.814600.

[6] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 3rd
edition, 2013.

[7] J. von zur Gathen and V. Shoup. Computing frobenius maps and factoring polynomials. Comput.
Complex., 2(3):187–224, 1992. doi:10.1007/BF01272074.

[8] P. Giorgi, B. Grenet, and D. S. Roche. Generic reductions for in-place polynomial multiplication.
In ISSAC’19, pages 187–194. ACM, 2019. doi:10.1145/3326229.3326249.

14

http://dx.doi.org/10.1145/860854.860870
http://dx.doi.org/10.1007/BF01178683
http://dx.doi.org/10.1109/SFFCS.1999.814600
http://dx.doi.org/10.1007/BF01272074
http://dx.doi.org/10.1145/3326229.3326249

[9] G. Hanrot, M. Quercia, and P. Zimmermann. The middle product algorithm I. Appl. Algebr. Eng.
Comm., 14(6):415–438, 2004. doi:10.1007/s00200-003-0144-2.

[10] D. Harvey and J. van der Hoeven. Polynomial multiplication over finite fields in time O(n log
n). 2019. URL: https://hal.archives-ouvertes.fr/hal-02070816/.

[11] D. Harvey and D. S. Roche. An in-place truncated Fourier transform and applications to poly-
nomial multiplication. In ISSAC’10, pages 325–329. ACM, 2010. doi:10.1145/1837934.
1837996.

[12] A. Karatsuba and Y. Ofman. Multiplication of Multidigit Numbers on Automata. Sov. Phys. -
Dok., 7:595–596, 1963.

[13] A. H. Karp and P. Markstein. High-precision division and square root. ACM Transactions on
Mathematical Software, 23(4):561–589, 1997. doi:10.1145/279232.279237.

[14] H. T. Kung. On computing reciprocals of power series. Numerische Mathematik, 22(5):341–348,
1974. doi:10.1007/BF01436917.

[15] R. Moenck and A. Borodin. Fast modular transforms via division. In SWAT’72, pages 90–96.
IEEE, 1972. doi:10.1109/SWAT.1972.5.

[16] M. Monagan. In-place arithmetic for polynomials over Zn. In DISCO’93, volume 721, pages
22–34. Springer, 1993. doi:10.1007/3-540-57272-4_21.

[17] D. S. Roche. Space- and time-efficient polynomial multiplication. In ISSAC’09, pages 295–302.
ACM, 2009. doi:10.1145/1576702.1576743.

[18] A. Schönhage. Probabilistic computation of integer polynomial gcds. J. Algorithms, 9(3):365–
371, 1988. doi:10.1016/0196-6774(88)90027-2.

[19] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7(3):281–
292, 1971. doi:10.1007/BF02242355.

[20] E. Thomé. Karatsuba multiplication with temporary space of size ≤ n. 2002. URL: https:
//hal.archives-ouvertes.fr/hal-02396734.

15

http://dx.doi.org/10.1007/s00200-003-0144-2
https://hal.archives-ouvertes.fr/hal-02070816/
http://dx.doi.org/10.1145/1837934.1837996
http://dx.doi.org/10.1145/1837934.1837996
http://dx.doi.org/10.1145/279232.279237
http://dx.doi.org/10.1007/BF01436917
http://dx.doi.org/10.1109/SWAT.1972.5
http://dx.doi.org/10.1007/3-540-57272-4_21
http://dx.doi.org/10.1145/1576702.1576743
http://dx.doi.org/10.1016/0196-6774(88)90027-2
http://dx.doi.org/10.1007/BF02242355
https://hal.archives-ouvertes.fr/hal-02396734
https://hal.archives-ouvertes.fr/hal-02396734

A Interpolation with linear space

The algorithm proceeds as:

1. Run the subproduct tree algorithm for each group of n/ log(n) interpolation points, saving only
the roots of each subtree M1, . . . , Mdlog(n)e, using fast out-of-place full multiplications.

2. Run the subproduct tree algorithm over these Mi ’s to compute the root M , using in-place full
multiplications from [8], discarding other nodes in the tree.

3. Compute the derivative M ′ in place.

4. Compute the remainders M ′ mod Mi for 1≤ i ≤ dlog(n)e, using the balanced (with precompu-
tation) algorithm described in Section 2.1. The size-n polynomial M ′ may now be discarded.

5. For each group i, compute the full subproduct tree over its n/ log(n) points. Use this to perform
multi-point evaluation of M ′ mod Mi over the n/ log(n) points of that group only, and then
compute the partial sum of (3) for that group’s points. Discard the subproduct tree but save
the rational function partial sum for each group.

6. Combine the rational functions for the dlog(n)e groups using a divide-and-conquer strategy,
employing again the in-place full multiplications from [8].

The following lemma gives the complexity of this linear-space interpolation algorithm.

Lemma 3.3. Given a1, . . . , an ∈ K and y1, . . . , yn ∈ K, one can compute F ∈ K[X] of size n such that
F(ai) = yi for 1≤ i ≤ n using 5M(n) log(n)+O(M(n) loglog(n)) operations inK and 2n+O(n/ log(n))
extra registers.

Proof. Steps (1) and (5) collectively involve, for each group, two subproduct tree computations,
one multi-point evaluation, and one rational function summation over each group, for a total of
3M(n) log(n) +O(M(n)) time.

Step (4) also dominates the time complexity, contributing another 2M(n) log(n)+O(M(n)) oper-
ations in K.

In steps (2) and (5), the expensive in-place multiplications are used only for the top dloglog(n)e
levels of the entire subproduct tree, so this contributes only O(M(n) loglog(n)).

For the space, note that the size-n output space may be used during all steps until the last to store
intermediate results.

16

	Introduction
	Our work
	Notation

	Inversion and divisions
	Space complexity of classical algorithms
	In-place power series inversion
	In-place division of power series
	In-place Euclidean division of polynomials

	Multipoint evaluation and interpolation
	Space complexity of classical algorithms
	In-place multipoint evaluation
	In-place interpolation

	Interpolation with linear space

