Pascal Giorgi
email: pascal.giorgi@lirmm.fr

Bruno Grenet
email: bruno.grenet@lirmm.fr

Daniel S Roche
email: roche@usna.edu

Fast in-place algorithms for polynomial operations: division, evaluation, interpolation

We consider space-saving versions of several important operations on univariate polynomials, namely power series inversion and division, division with remainder, multi-point evaluation, and interpolation. Now-classical results show that such problems can be solved in (nearly) the same asymptotic time as fast polynomial multiplication. However, these reductions, even when applied to an in-place variant of fast polynomial multiplication, yield algorithms which require at least a linear amount of extra space for intermediate results. We demonstrate new in-place algorithms for the aforementioned polynomial computations which require only constant extra space and achieve the same asymptotic running time as their out-of-place counterparts. We also provide a precise complexity analysis so that all constants are made explicit, parameterized by the space usage of the underlying multiplication algorithms.

Introduction

Computations with dense univariate polynomials or truncated power series over a finite ring are of central importance in computer algebra and symbolic computation. Since the discovery of subquadratic ("fast") multiplication algorithms [START_REF] Karatsuba | Multiplication of Multidigit Numbers on Automata[END_REF][START_REF] Cook | On the minimum computation time of functions[END_REF][START_REF] Schönhage | Schnelle Multiplikation großer Zahlen[END_REF][START_REF] Harvey | Polynomial multiplication over finite fields in time O(n log n)[END_REF][START_REF] Cantor | On fast multiplication of polynomials over arbitrary algebras[END_REF], a major research task was to reduce many other polynomial computations to the cost of polynomial multiplication.

This project has been largely successful, starting with symbolic Newton iteration for fast inversion and division with remainder [START_REF] Kung | On computing reciprocals of power series[END_REF], product tree algorithms for multi-point evaluation and interpolation [START_REF] Moenck | Fast modular transforms via division[END_REF], the "half-GCD" fast Euclidean algorithm [START_REF] Schönhage | Probabilistic computation of integer polynomial gcds[END_REF], and many more related important problems [START_REF] Bostan | Tellegen's principle into practice[END_REF][START_REF] Zur Gathen | Modern Computer Algebra[END_REF]. Not only are these problems important in their own right, but they also form the basis for many more, such as polynomial factorization, multivariate and/or sparse polynomial arithmetic, structured matrix computations, and further applications in areas such as coding theory and public-key cryptography.

But the use of fast arithmetic frequently comes at the expense of requiring extra temporary space to perform the computation. This can make a difference in practice, from the small scale where embedded systems engineers seek to minimize hardware circuitry, to the medium scale where a spaceinefficient algorithm can exceed the boundaries of (some level of) cache and cause expensive cache misses, to the large scale where main memory may simply not be sufficient to hold the intermediate values.

In a streaming model, where the output must be written only once, in order, explicit time-space tradeoffs prove that fast multiplication algorithms will always require up to linear extra space. And indeed, all sub-quadratic polynomial multiplication algorithms we are aware of -in their original formuation -require linear extra space [START_REF] Karatsuba | Multiplication of Multidigit Numbers on Automata[END_REF][START_REF] Cook | On the minimum computation time of functions[END_REF][START_REF] Schönhage | Schnelle Multiplikation großer Zahlen[END_REF][START_REF] Harvey | Polynomial multiplication over finite fields in time O(n log n)[END_REF][START_REF] Cantor | On fast multiplication of polynomials over arbitrary algebras[END_REF].

However, if we treat the output space as pre-allocated random-access memory, allowing values in output registers to be both read and written multiple times, then improvements are possible. In-place quadratic-time algorithms for polynomial arithmetic are described in [START_REF] Monagan | In-place arithmetic for polynomials over Zn[END_REF]. A series of recent results provide explicit algorithms and reductions from arbitrary fast multiplication routines which have the same asymptotic running time, but use only constant extra space [START_REF] Roche | Space-and time-efficient polynomial multiplication[END_REF][START_REF] Harvey | An in-place truncated Fourier transform and applications to polynomial multiplication[END_REF][START_REF] Giorgi | Generic reductions for in-place polynomial multiplication[END_REF]. That is, these algorithms trade a constant increase in the running time for a linear reduction in the amount of extra space. So far, these results are limited to multiplication routines and related computations such as middle and short product. Applying in-place multiplication algorithms directly to other problems, such as those considered in this paper, does not immediately yield an in-place algorithm for the desired application problem.

Our work

λ m M(n) log c m +2 c m +1 (n) O(1) Theorem 2.3 (λ m + 3 2 λ s)M(n) c m +1
2 n

[9, Alg. MP-div-KM]

Power series division

λ m M(n) log c m +3 c m +2 (n) O(1) Theorem 2.5 at precision n O(M(n)) αn, for any α > 0 Remark 2.7 λ m (c+1 2 + 1 c) + λ s (1 + 1 c) M(n) O(1) ‡ Corollary 2.6 Euclidean division (λ m + 3 2 λ s)M(m) + λ s M(n) max(c m +1 2 m -n, c s n) standard algorithm of polynomials 2λ s M(m) + (λ m + λ s)M(n) (1 + max(c m 2 , c s +1 2 , c s))n m n balanced div. (precomp) in sizes (m + n -1, n) λ m (c+1 2 + 1 c) + λ s (2 + 1 c) M(m) O(1) Theorem 2.8 multipoint evaluation 3 /2M(n) log(n) n log(n) [2] size-n polynomial on n points 7 /2M(n) log(n) n [7], Lemma 3.1 (4 + 2λ s / log(c s +3 c s +2))M(n) log(n) O(1) Theorem 3.4 interpolation 5 /2M(n) log(n) n log(n) [2] size-n polynomial on n points 5M(n) log(n) 2n [6, 7], Lemma 3.3 105M(n) log(n) O(1) Theorem 3.6
Table 1: Summary of complexity analyses, omitting non-dominant terms and assuming c f ≤ c s ≤ c m .

We use c = c m +3. For O(1) ‡ space, the memory model is changed such that the input dividend can be overwritten. Here, and throughout the paper, the base of the logarithms is 2 if not otherwise stated.

In this paper, we present new in-place algorithms for power series inversion and division, polynomial division with remainder, multi-point evaluation, and interpolation. These algorithms are fast because their running time is only a constant time larger than the fastest known out-of-place algorithms, parameterized by the cost of dense polynomial multiplication.

Our space complexity model is the one of [START_REF] Roche | Space-and time-efficient polynomial multiplication[END_REF][START_REF] Harvey | An in-place truncated Fourier transform and applications to polynomial multiplication[END_REF][START_REF] Giorgi | Generic reductions for in-place polynomial multiplication[END_REF] where input space is read only while output space is pre-allocated and can be used to store intermediate results. In that model, the space complexity is measured by only counting the auxiliary space required during the computation, excluding input and output spaces. We shall mention that a single memory location or register may contain either an element of the coefficient ring, or a pointer to the input or output space. It follows that in-place algorithms are those that require only a constant number of extra memory locations.

For all five problems, we present in-place variants which have nearly the same asymptotic running time as their fastest out-of-place counterparts. The power series inversion and division algorithms incur an extra log(n) overhead when quasi-linear multiplication is used, while the polynomial division, evaluation, and interpolation algorithms keep the same asymptotic runtime as the fastest known algorithm. Our reductions essentially trade a small amount of extra runtime for a significant decrease in space usage.

Our motivation in this work is mainly theoretical. We address the existence of such fast in-place algorithms as we already did for polynomial multiplications [START_REF] Giorgi | Generic reductions for in-place polynomial multiplication[END_REF]. To further extend our result, we compare precisely the number of arithmetic operations in our algorithms with the best known theoretical bounds. These results are summarized in Table 1.

Of course further work is needed to determine the practicability of our approach. In particular cache misses play a predominant role when dealing with memory management. Studying the cache complexity of all these algorithms, for instance in the idealized cache model [START_REF] Frigo | Cache-oblivious algorithms[END_REF], would give more precise insights. However, the practicability will heavily depend on the underlying multiplication algorithms. Due to their diversity and the need for fine-tuned implementations, we leave this task to future work.

Notation

By a size-n polynomial, we mean a polynomial of degree ≤ n -1. As usual, we denote by M(n) a bound on the number of operations in to multiply two size-n polynomials, and we assume that αM(n) ≤ M(αn) for any constant α ≥ 1. All known multiplication algorithms have at most a linear space complexity. Nevertheless, several results reduce this space complexity at the expense of a slight increase in the time complexity [START_REF] Thomé | Karatsuba multiplication with temporary space of size ≤ n[END_REF][START_REF] Roche | Space-and time-efficient polynomial multiplication[END_REF][START_REF] Harvey | An in-place truncated Fourier transform and applications to polynomial multiplication[END_REF][START_REF] Giorgi | Generic reductions for in-place polynomial multiplication[END_REF]. To provide tight analyses, we consider multiplication algorithms with time complexity λ f M(n) and space complexity c f n for some constants λ f ≥ 1 and

c f ≥ 0.
Let us recall that the middle product of a size-(m + n -1) polynomial F ∈ [X] and a size-n polynomial G ∈ [X] is the size-m polynomial defined as MP(F, G) = (F G div X n-1) mod X m . We denote by λ m M(n) and c m n the time and space complexities of the middle product of size (2n -1, n).

Then, a middle product in size (m + n -1, n) where m < n can be computed with n m λ m M(m)

operations in and (c m + 1)m extra space. Similarly, the short product of two size-n polynomials F, G ∈ [X] is defined as SP(F, G) = F G mod X n and we denote by λ s M(n) and c s n its time and space complexities.

On the one hand, the most time-efficient algorithms achieve λ f = λ m = λ s = 1 while 2 ≤ c f , c m , c s ≤ 4, using the Transposition principle [START_REF] Hanrot | The middle product algorithm I[END_REF][START_REF] Bostan | Tellegen's principle into practice[END_REF] for λ m = λ f . On the other hand, the authors recently proposed new space-efficient algorithms reaching c f = 0, c m = 1 and c s = 0 while λ f , λ m and λ s remain constants [START_REF] Giorgi | Generic reductions for in-place polynomial multiplication[END_REF].

Writing F = d i=0 f i X i ∈ [X],
we will use rev(F) ∈ [X] to denote the reverse polynomial of F , that is, rev(F) = X d F (1/X), whose computation does not involve any operations in . Note that we will use abusively the notation F [a..b[to refer to the chunk of F that is the polynomial b-1 i=a f i X i , and the notation F [a] for the coefficient f a . Considering our storage, the notation F [a..b[will also serve to refer to some specific registers associated to F . When necessary, our algorithms indicate with WS the output registers used as work space.

Inversion and divisions

In this section, we present in-place algorithms for the inversion and the division of power series as well as the Euclidean division of polynomials. As a first step, we investigate the space complexity from the literature for these computations.

Space complexity of classical algorithms

Power series inversion Power series inversion is usually computed through Newton iteration: If G is the inverse of F at precision k then H = G + (1 -GF)G mod X 2k is the inverse of F at precision 2k. This allows one to compute F -1 at precision n using O(M(n)) operations in , see [START_REF] Zur Gathen | Modern Computer Algebra[END_REF]Chapter 9]. As noticed in [9, Alg. MP-inv] only the coefficients of degree k to 2k -1 of H are needed. Thus,

assuming that G [0..k[= F -1 mod X k , one step of Newton iteration computes k new coefficients of F -1 into G [k..2k] as G [k..2k[= -SP(MP(F [1..2k[, G [0..k[), G [0..k[). (1)
The time complexity is then (λ m + λ s)M(n) for an inversion at precision n. For space complexity, the most consuming part is the last iteration of size

Power series division Let F, G ∈ [[X]

], the fast approach to compute F /G mod X n is to first invert G at precision n and then to multiply the result by F . The complexity is given by one inversion and one short product at precision n. Actually, Karp and Markstein remarked in [START_REF] Karp | High-precision division and square root[END_REF] that F /G can be directly computed during the last iteration. Applying this trick, the complexity becomes (λ m + 3 2 λ s)M(n) [START_REF] Hanrot | The middle product algorithm I[END_REF], see also [START_REF] Bernstein | Fast multiplication and its applications[END_REF]. The main difference with inversion is the storage of the short product of size n 2 , yielding a space complexity of max(c m + 1, c s + 1) n 2 .

Euclidean division of polynomials

Given two polynomials A, B of respective size m + n -1 and n, the fast Euclidean division computes the quotient Adiv B as rev(rev(A)/ rev(B)) viewed as power series at precision m [6, Chapter 9]. The remainder R is retrieved with a size-n short product, yielding a total time complexity of (λ m + 3 2 λ s)M(m) + λ s M(n). Since the remainder size is not determined by the input size we assume that we are given a maximal output space of size n -1. As this space remains free when computing the quotient, this step requires 1 2 max(c m + 1, c s + 1)mn + 1 extra space, while computing the remainder needs c s n.

As a first result, when m ≤ n, using space-efficient multiplication is enough to obtain an in-place O(M(n)) Euclidean division. Indeed, the output space is enough to compute the small quotient, while the remainder can be computed in-place [START_REF] Giorgi | Generic reductions for in-place polynomial multiplication[END_REF].

When m > n, the space complexity becomes O(mn). In that case, the Euclidean division of A by B can also be computed by m n balanced Euclidean divisions of polynomials of size 2n -1 by B. It actually corresponds to a variation of the long division algorithm, in which each step computes n new coefficients of the quotient. To save some time, one can precompute the inverse of rev(B) at precision n, which gives a time complexity

(λ m + λ s)M(n) + m n 2λ s M(n) ≤ 2λ s M(m) + (λ m + λ s)M(n) and space complexity (1 + max(c m 2 , c s +1 2 , c s))n.
Finally, one may consider to only compute the quotient or the remainder. Computing quotient only is equivalent to power series division. For the computation of the remainder, it is not yet known how to compute it without the quotient. In that case, we shall consider space usage for the computation and the storage of the quotient. When m is large compared to n, one may notice that relying on balanced divisions does not require one to retain the whole quotient, but only its n latest computed coefficients. In that case the space complexity only increases by n. Since we can always perform a middle product via two short products, we obtain the following result .

Lemma 2.1. Given A ∈ [X] of size m and B ∈ [X], monic of size n, and provided n registers for the output, the remainder A mod B can be computed using 2λ

s M(m) + 3λ s M(n) + O(m + n) operations in and (c s + 2)n extra registers.

In-place power series inversion

We notice that during the first Newton iterations, only a few coefficients of the inverse have been already written. The output space thus contains lots of free registers, and the standard algorithm can use them as working space. In the last iterations, the number of free registers becomes too small to perform a standard iteration. Our idea is then to slow down the computation. Instead of still doubling the number of coefficients computed at each iteration, the algorithm computes less and less coefficients, in order to be able to use the free output space as working space. We denote these two phases as acceleration and deceleration phases.

The following easy lemma generalizes Newton iteration to compute only ≤ k new coefficients from an inverse at precision k.

Lemma 2.2. Let F be a power series and G

[0..k[contain its inverse at precision k. Then for 0 < ≤ k, if we compute G [k..k+ [= -SP MP F [1..k+ [, G [0..k[, G [0.. [(2) then G [0..k+ [contains the inverse of F at precision k + .
Algorithm 1 is an in-place fast inversion algorithm. Accelerating and decelerating phases correspond to = k and < k.

Algorithm 1 In-Place Fast Power Series Inversion (INPLACEINV) Input: F ∈ [X] of size n, such that F [0] is invertible; Output: G ∈ [X] of size n, such that F G = 1 mod X n .
Required: MP and SP alg. using extra space ≤ c m n and ≤ c s n.

1: G [0] ← F -1 [0] 2: k ← 1, ← 1 3: while > 0 do 4: G [n-..n[← MP(F [1..k+ [, G [0..k[) WS: G [k..n-[5: G [k..k+ [← SP(G [0.. [, -G [n-..n[) WS: G [k+ ..n-[6: k ← k + 7: ← min k, n-k c where c = 2 + max(c m , c s) 8: G [k..n[← SP(G [0..n-k[, -MP(F [1..n[, G [0..k[)) O(1) space Theorem 2.3. Algorithm 1 is correct. It uses O(1) space, and either λ m M(n) log c m +2 c m +1 (n) + O(M(n)) operations in when M(n) is quasi-linear, or O(M(n)) operations in when M(n) = n 1+γ , 0 < γ ≤ 1.
Proof. Steps 4 and 5, and Step 8, correspond to Equation (2). They compute new coefficients of G when k of them are already written in the output, whence Lemma 2.2 implies the correctness.

Step 4 needs (c m +2) free registers for its computation and its storage. Then

> n-k c+1 , that is, k > n c+2 . It costs log n c+2 i=0 M(2 i) = O(M(n)).
During the decelerating phase, each iteration computes a constant fraction of the remaining coefficients. Hence, this phase lasts for δ = log c c-1 n steps. Let i and k i denote the values of and k at the i-th iteration of the deceleration phase and t i = nk i . Then one iteration of the deceleration phase costs one middle product in sizes (nt i + t i c -1, nt i) and one short product in size t i c . The total cost of all the short products amounts to i M(t i) = O(M(n)) since i t i ≤ cn. The cost of the middle product at the i-th step is

λ m (n -t i)/ t i c M t i c = λ m M(n) + O(n).
Therefore, the total cost of all the middle products is at most

λ m M(n) log c c-1 (n) + O(M(n))
and is dominant in the complexity. We can choose the in-place short products of [START_REF] Giorgi | Generic reductions for in-place polynomial multiplication[END_REF] and get c = c m + 2. The complexity is then

λ m M(n) log c m +2 c m +1 (n) + O(M(n)). If M(n) = n 1+γ with 0 < γ ≤ 1, the cost of each iteration is O(n-t i i 1+γ i). Since 0 ≤ n, we have i < n(c-1 c) i + c, whence δ i=1 n -t i i 1+γ i ≤ n δ i=1 γ i ≤ n δ i=1 n c -1 c i + c γ .
Since 0 < γ ≤ 1, we have (α+β) γ ≤ α γ +β γ for any α, β > 0, and the complexity is

n 1+γ δ i=1 c-1 c iγ + O(n log n) = O(M(n)).

In-place division of power series

Division of power series can be implemented easily as an inversion followed by a product. Yet, using in-place algorithms for these two steps is not enough to obtain an in-place division algorithm since the intermediate result must be stored. Karp and Markstein's trick, that includes the dividend in the last iteration of Newton iteration [START_REF] Karp | High-precision division and square root[END_REF], cannot be used directly in our case since we replace the very last iteration by several ones. We thus need to build our in-place algorithm on the following generalization of their method.

Lemma 2.4. Let F and G be two power series, G invertible, and Q [0..k[contain their quotient at precision k. Then for 0 < ≤ k, if we compute

Q [k..k+ [= SP G -1 [0.. [, F [k..k+ [-MP(G [1..k+ [, Q [0..k[) then Q [0..k+ [contains their quotient at precision k + . Proof. Let us write F /G = Q k +X k Q +O(X k+). We prove that Q = G -1 ×((F -GQ k) div X k) mod X . By definition, F ≡ G(Q k + X k Q) mod X k+ . Hence (F -GQ k) div X k = GQ mod X . Therefore, Q = (G -1 × ((F -GQ k) div X k)) mod X . Finally, since only the coefficients of degree k to k + -1 of GQ k are needed, they can be computed as MP(G [1..k+ [, Q [0..k[).
Algorithm 2 is an in-place power series division algorithm based on Lemma 2.4, choosing at each step the appropriate value of so that all computations can be performed in place.

Theorem 2.5. Algorithm 2 is correct. It uses O(1) space, and either λ

m M(n) log c m +3 c m +2 (n) + O(M(n)) op- erations in when M(n) is quasi-linear or O(M(n)) operations in when M(n) = O(n 1+γ), 0 < γ ≤ 1.

Algorithm 2 In-Place Power Series Division (INPLACEPSDIV)

Input: F, G ∈ [X] of size n, such that G [0] is invertible; Output: Q ∈ [X] of size n, such that F /G = Q mod X n .
Required: MP, SP, Inv alg. using extra space ≤ c m n, c s n, c i n.

1: k ← n/ max(c i + 1, c s + 2) 2: Q [n-k..n[← rev(Inv(G [0..k[)) WS: Q [0..n-k[3: Q [0..k[← SP(F [0..k[, rev(Q [n-k..n[)) WS: Q [k..n-k[4: ← (n -k)/(3 + max(c m , c s)) 5: while > 0 do 6: Q [n-2 ..n-[← MP(G [1..k+ [, Q [0..k[) WS: Q [k..n-2 [7: Q [n-2 ..n-[← F [k..k+ [-Q [n-2 ..n-[8: let us define Q * = rev(Q [n-..n[) Q [k..k+ [← SP(Q [n-2 ..n-[, Q *) WS: Q [k+ ..n-2 [9: k ← k + 10: ← (n -k)/(3 + max(c m , c s)) 11: t mp ← F [k..n[-MP(G [1..n[, Q [0..k[) constant space 12: Q [k..n[← SP(tmp, rev(Q [k..n[)) constant space
Proof. The correctness follows from Lemma 2.4. The inverse of G is computed once at Step 2, at precision n/ max(c i + 1, c s + 2) . Its coefficients are then progressively overwritten during the loop since Step 8 only requires coefficients of the inverse, and is decreasing. Since c i = 1 2 max(c m , c s +1), is always less than the initial precision. For simplicity of the presentation, we store the inverse in reversed order in

Q [n-k..n[.
Step 2 requires space c i k while the free space has size nk: Since k ≤ n c i +1 , the free space is large enough. Similarly, the next step requires space c s k while the free space has size n -2k, and k ≤ n c s +2 . Step 6 needs (c m +1) space and the free space has size n-k -2 , and Step 8 requires c s space while the free space has size nk -3 . Since ≤ n-k 3+max(c m ,c s) , these computations can also be performed in place.

The time complexity analysis is very similar to the one of Algorithm 1 given in Theorem 2.3. The main difference is Step 7 which adds a negligible term O(n log n) in the complexity. .k[can be used as working space in the other steps of the loop. The free space at Steps 6 and 8 becomes n -2 instead of nk -2 and n-k-3 respectively. Therefore, can always be chosen as large as n c where c = max(c m +3, c s +2). Since stays positive, we also modify the algorithm to stop when all the coefficients of Q have been computed.

Corollary 2.6. If it can erase its dividend, Algorithm 2 can be modified to improve its complexity to

λ m (c+1 2 + 1 c) + λ s (1 + 1 c) M(n) + O(n)
To simplify the complexity analysis, we further assume that k gets the same value n c at Step 1.

Step 2 requires (λ s +λ m)M(n c) operations in . The sum of the input sizes of all the short products in the algorithm is n. Their total complexity is thus λ s M(n). At the i-th iteration of the loop, k = (i +1) .

Therefore Step 6 has complexity i n c .

Step 7 requires n c operations in . Altogether, the complexity of the modified algorithm is

λ s M(n) + (λ s + λ m)M n c + c i=1 iλ m M n c + n c which is λ m (c+1 2 + 1 c) + λ s (1 + 1 c) M(n) + O(n).
Using similar techniques, we get the following variant.

Remark 2.7. Algorithm 2 can be easily modified to improve the complexity to O(M (n)) operations in when a linear amount of extra space is available, say αn registers for some α ∈ + .

In-place Euclidean division of polynomials

If A is a size-(m+n-1) polynomial and B a size-n polynomial, one can compute their size-m quotient Q in place using Algorithm 2, in O((M(m) log m)) operations in . When Q is known, the remainder R = A-BQ, can be computed in-place using O(M(n)) operations in as it requires a single short product and some subtractions. As already mentioned, the exact size of the remainder is not determined by the size of the inputs. Indeed, in that case the remainder space can be used to speed-up the quotient computation. We shall mention that computing only the remainder remains a harder problem as we cannot count on the space of the quotient while it is required for the computation. As of today, only the classical quadratic long division algorithm allows such an in-place computation.

We now provide a new in-place algorithm for computing both the quotient and the remainder that achieves a complexity of O(M(m) + M(n)) operation in when m ≥ n. Our algorithm requires an output space of size n -1 for the remainder since taking any smaller size r < n -1 would rebind to power series division.

Algorithm 3 In-Place Euclidean Division (INPLACEEUCLDIV)

Input: A, B ∈ [X] of sizes (m + n, n), m ≥ n, such that B [0] = 0; Output: Q, R ∈ [X] of sizes (m + 1, n -1) such that A = BQ + R; Required: In-place DIVERASE(F, G, n) computing F /G mod X n while erasing F ; In-place SP;
For simplicity, H is a size-n polynomial such that H

[0..n-1[is R and H [n-1] is an extra register 1: H ← A [m..m+n[2: k ← m + 1 3: while k > n do 4: Q [k-n..k[← rev(DIVERASE(rev(H), rev(B), n)) 5: H [0..n-1[← SP(Q [k-n..k-1[, B [0..n-1[) 6: H [1..n[← A [k-n..k-1[-H [0..n-1[7: H [0] ← A [k-n-1] 8: k ← k -n 9: Q [0..k[← rev(DIVERASE(rev(H [n-k..n[), rev(B [n-k..n[))) 10: H [0..n-1[← SP(Q [0..n-1[, B [0..n-1[) 11: H [0..n-1[← A [0..n-1[-H [0..n-1[12: return (Q, H [0..n-1[) Theorem 2.

Algorithm 3 is correct. It uses O(1) extra space and λ

m (c+1 2 + 1 c) + λ s (2 + 1 c) M(m) + O(m log n) operations in where c = max(c m + 3, c s + 2).
Proof. Algorithm 3 is an adaptation of the classical long division algorithm, recalled in Section 2.1, where chunks of the quotient are computed iteratively via Euclidean division of size (2n -1, n). The main difficulty is that the update of the dividend cannot be done on the input. Since we compute only chunks of size n from the quotient, the update of the dividend affects only n -1 coefficients. Therefore, it is possible to use the space of R for storing these new coefficients. As we need to consider n coefficients from the dividend to get a new chunk, we add the missing coefficient from A and consider the polynomial H as our new dividend. By Corollary 2.6, Step 4 can be done in-place while erasing H, which is not part of the original input. It is thus immediate that our algorithm is in-place. For the complexity, Steps 4 and 5 dominate the cost. Using the exact complexity for Step 4 given in Corollary 2.6, one can deduce easily that Algorithm 3 requires

λ m (c+1 2 + 1 c) + λ s (2 + 1 c) M(m) + O(m log n) operations in .
Using time-efficient products with λ m = λ s = 1, c m = 4 and c s = 3 yields a complexity 6.29M(m), which is roughly 6.29/4 = 1.57 times slower than the most time-efficient out-of-place algorithm.

Multipoint evaluation and interpolation

In this section, we present in-place algorithms for the two related problems of multipoint evaluation and interpolation. We first review both classical algorithms and their space-efficient variants.

Space complexity of classical algorithms

Multipoint evaluation Given n elements a 1 , . . . , a n of and a size-n polynomial F ∈ [X], multipoint evaluation aims to compute F (a 1), . . . , F (a n). While the naive approach using Horner scheme leads to a quadratic complexity, the fast approach of [START_REF] Moenck | Fast modular transforms via division[END_REF] reaches a quasi-linear complexity O(M(n) log(n)) using a divide-and-conquer approach and the fact that F (a i) = F mod (Xa i). As proposed in [START_REF] Bostan | Tellegen's principle into practice[END_REF] this complexity can be sharpened to

(λ m + 1 2 λ f)M(n) log(n) + O(M(n))
using the transposition principle.

The fast algorithms are based on building the so-called subproduct tree [6, Chapter 10] whose leaves contain the (Xa i)'s and whose root contains the polynomial n i=1 (Xa i). This tree contains 2 i degree-n/2 i monic polynomials at level i, and can be stored in exactly n log n registers if n is a power of two. The fast algorithms then require n log(n) + O(n) registers as work space. Here, because the space complexity constants c f , c m , c s do not appear in the leading term n log(n) of space usage, we can always choose the fastest underlying multiplication routines, so the computational cost for this approach is simply 3

2 M(n) log(n) + O(M(n)).
As remarked in [START_REF] Gathen | Computing frobenius maps and factoring polynomials[END_REF], one can easily derive a fast variant that uses only O(n) extra space. In particular, [7, Lemma 2.1] shows that the evaluation of a size-n polynomial F on k points a 1 , . . . ,

a k with k ≤ n can be done at a cost O(M(k)(n k + log(k)))
with O(k) extra space. We provide a tight analysis of this algorithm, starting with the balanced case k = n, i.e. the number of evaluation points is equal to the size of F . The idea of the algorithm is to group the points in log(n) groups of n/ log(n) points each, and to use standard multipoint evaluation on each group, by first reducing F modulo the root of the corresponding subproduct tree. The complexity analysis of this approach is given in the following lemma. Observe that here too, the constants λ s , c s , etc., do not enter in since we can always use the fastest out-of-place subroutines without affecting the O(n) term in the space usage.

A more space-efficient approach can be derived using linear-space multipoint evaluation. Since the subproduct must be essentially recomputed on the first and last steps, the total running time is

(2λ f + 7 2)M(n) log(n) + O(M(n)), using (2 + 1 2 c f)n + O(n/ log(n))
registers. This approach can be improved in two ways: first by again grouping the interpolation points and re-using the smaller subproduct trees for each group, and secondly by using an in-place full multiplication algorithm from [START_REF] Giorgi | Generic reductions for in-place polynomial multiplication[END_REF] to combine the results of each group in the rational function summation. A detailed description of the resulting algorithm, along with a proof of the following lemma, can be found in Appendix A. Lemma 3.3. Given a 1 , . . . , a n ∈ and y 1 , . . . , y n ∈ , one can compute F ∈ [X] of size n such that F (a i) = y i for 1 ≤ i ≤ n using 5M(n) log(n)+O(M(n) loglog(n)) operations in and 2n+O(n/ log(n)) extra registers.

In-place multipoint evaluation

In order to derive an in-place algorithm we make repeated use of the unbalanced multi-point evaluation with linear space to compute only k evaluations of the polynomial F among the n original points. The strategy is to set k as a fraction of n to ensure that nk is large enough to serve as extra space. Applying this strategy on smaller and smaller values of k leads to Algorithm 4, which is an in-place algorithm with the same asymptotic time complexity O(M(n) log(n)) as out-of-place fast multipoint evaluation.

c s +3 c s +2) M(n) log(n) + O(M(n) loglog n) operations in .
Proof. The correctness is obvious as soon as EVAL is correct. By the choice of k and from the extra space bound of EVAL from Lemma 3.2, Step 3 has sufficient work space, and therefore the entire algorithm is in-place. The sequence

k i = (c s +2) i-1
(c s +3) i n, for i = 1, 2, . . ., gives the values of k in each iteration. Then i k i ≤ n and the loop terminates after at most log(n) iterations, where ≤ 1/ log(

c s +3 c s +2
). Applying Lemma 3.2, the cost of the entire algorithm is therefore dominated by

1≤i≤ (2λ s M(n) + 4M(k i) log(k i)), which is at most (2λ s + 4)M(n) log(n).
Using a time-efficient short product with λ s = 1 and c s = 3 yields a complexity 11.61M(n) log n, which is roughly 11.61/1.5 = 7.74 times slower than the most time-efficient out-of-place algorithm.

In-place interpolation

Let (a 1 , y 1), . . . , (a n , y n) be n pairs of evaluations, with the a i 's pairwise distinct. Our goal is to compute the unique size-n polynomial F ∈ [X] such that F (a i) = y i for 1 ≤ i ≤ n, with an in-place algorithm. Our first aim is to provide a variant of polynomial interpolation that computes F mod X k using O(k) extra space. Without loss of generality, we assume that k divides n. For i = 1 to n/k, let T i = ki j=1+k(i-1) (Xa j) and S i = M /T i where M = n i=1 (Xa i). Note that S i = j =i T j . One can rewrite Equation (3) as

F (X) = M (X) n/k i=1 ki j=1+k(i-1) F (a j) M (a j) 1 (X -a j) = M (X) n/k i=1 N i (X) T i (X) = n/k i=1 N i (X)S i (X) (4)
for some size-k polynomials N 1 , . . . , N n/k . One may remark that the latter equality can also be viewed as an instance of the chinese remainder theorem where N i = F /S i mod T i (see [START_REF] Zur Gathen | Modern Computer Algebra[END_REF]Chapter 5]). To get the first k terms of the polynomial F , we only need to compute

F mod X k = n/k i=1 N i (S i mod X k) mod X k . (5
)
One can observe that M (a j) = (S i mod T i)(a j)T i (a j) for k(i -1) < j ≤ ki. Therefore, Equation (4) implies that N i is the unique size-k polynomial satisfying N i (a j) = (F /S i mod T i)(a j) and can be computed using interpolation. One first computes S i mod T i , evaluates it at the a j 's, performs k divisions in to get each N i (a j) and finally interpolates N i .

Our second aim is to generalize the previous approach when some initial coefficients of F are known. Writing F = G + X s H where G is known, we want to compute H mod X k from some evaluations of F . Since H has size at most (ns), only (ns) evaluation points are needed. Therefore, using Equation (4) with M = n-s i=1 (Xa i), we can write

H(X) = M (X) (n-s)/k i=1 ki j=1+k(i-1) F (a j) -G(a j) a s j M (a j) 1 (X -a j) . (6)
This implies that H mod X k can be computed using the same approach described above by replacing F (a j) with H(a j) = (F (a j) -G(a j))/a s j . We shall remark that the H(a j)'s can be computed using multipoint evaluation and fast exponentation. Algorithm 5 fully describes this approach.

(n-s k) 2 + 23 2 n-s k M(k) log(k) + (n -s) log(s) + O((n-s k) 2 M(k) loglog k) operations in .
Proof. The correctness follows from the above discussion. In particular, note that the polynomials S k i and S T i at Steps 6 and 7 equal S i mod X k and S i mod T i respectively. Furthermore, z j = G(a j+k(i-1)) since G(a j+k(i-1)) = (G mod T i)(a j+k(i-1)). Hence, Step 12 correctly computes the polynomial N i and the result follows from Equations (5) and [START_REF] Zur Gathen | Modern Computer Algebra[END_REF].

From the discussion in Section 3.1, we can compute each

T i in 1/2M(k) log(k)+O(M (k) loglog k) operations in
and k extra space.

Step 9 requires some care as we can share some computation among the two equal-size evaluations. Indeed, the subproduct trees induced by this computation are identical and thus can be computed only once. Using Lemma 3.1, this amounts to 13 2 M(k

) log(k) + O(M(k)) operations in using k + O(k/ log k) extra space. Step 12 can be done in 5M(k) log(k) + O(M (k) loglog k)
F = G + X s H ∈ [X] is the unique size-n polynomial s.t. F (a i) = y i for 1 ≤ i ≤ n -s 1: for i = 1 to (n -s)/k do 2: S k i ← 1, S T i ← 1 3: T i ← ki j=1+k(i-1) (X -a j)
Fast divide-and-conquer 4:

for j = 1 to (ns)/k, j = i do 5:

T j ← k j t=1+k(j-1) (X -a t)
Fast divide-and-conquer 6:

S k i ← S k i × T j mod X k S k i = S i mod X k 7: S T i ← S T i × T j mod T i S T i = S i mod T i 8:
G T ← G mod T i 9:

(b 1 , . . . , b k) ← EVAL(S T i , a 1+k(i-1) , . . . , a ki) (z 1 , . . . , z k) ← EVAL(G T , a 1+k(i-1) , . . . , a ki) 13:

H [0..k[← H [0..k[+ N i S k i mod X k
We show that 6k + O(k/ log k) extra registers are enough to implement this algorithm. At Step 7, the polynomials T i , T j , S k i , S T i must be stored in memory. The computation involved at this step requires only 2k extra registers as S T i × T j mod T i can be computed with an in-place full product (stored in the extra registers) followed by an in-place division with remainder using the registers of S T i and T j for the quotient and remainder storage. We can now provide our in-place variant for fast interpolation. Proof. The correctness is clear from the correctness of Algorithm PARTINTERPOL. To ensure that the algorithm uses O(1) extra space we notice that at Step 6,F [s+k..n[can be used as work space. Therefore, as soon as c pi k ≤ nsk, that is, k ≤ n-s c pi +1 , this free space is enough to run PARTINTERPOL. Note that when k = 0, ns < c pi + 1 is a constant, which means that the final computation can be done with O(1) extra space. Let k 1 , k 2 , . . . , k t and s 1 , s 2 , . . . , s t be the values of k and s taken during the course of the algorithm. Since s i = i j=1 k j ≤ n with s 0 = 0, we have k i ≤ λn(1 -λ) i-1 , and s i ≥ n(1 -(1 -λ) i) where λ = 1 c pi +1 . The time complexity T (n) of the algorithm satisfies This concludes the proof. Since c pi < 6 + ε for any ε > 0, the complexity can be approximated to 105M(n) log(n), which is 42 times slower than the fastest interpolation algorithm (see Table 1).

T (n) ≤

 (c s +2) free registers are needed to compute SP(G [0.. [, G [n-..n[) using registers for G [n-..n[and (c s + 1) registers for the short product computation and its result. For this computation to be done in-place, we need c ≤ n-k. Since at most k new coefficients can be computed, the maximal number of new coefficients in each step is = min k, n-k c . Each iteration uses O(M(k)) operations in : O(k/ M()) for the middle product at Step 4 and O(M()) for the short product at Step 5. The accelerating phase stops when k

 Given any tighter bound r < n on deg(R), the same algorithm can compute R in place, in time O(M(r)). Altogether, we get in-place algorithms to either compute the quotient of two polynomials in time O(M(m) log m), or the quotient and size-r remainder in time O(M(m) log m + M(r)). As suggested in Section 2.1 and in Remark 2.7, this complexity becomes O(M(m) + M(r)) whenever m = O(r).

Algorithm 4 2 : while k > 0 do 3 : 6 :Theorem 3 . 4 .

 423634 In-Place Multipoint Evaluation (INPLACEEVAL)Input: F ∈ [X] of size n and (a 1 , . . . , a n) ∈ n ; Output: R = (F (a 1), . . . , F (a n)) Required: EVAL of space complexity ≤ (c s + 2)k as in Lemma 3.2 1: s ← 0, k ← n/(c s + 3) R [s..s+k[← EVAL(F,a s , . . . , a s+k) WS: R [s+k..n[R [s..n[← EVAL(F, a s , . . . , a n) constant space Algorithm 4 is correct. It uses O(1) extra space and 4 + 2λ s / log(

Lemma 3 . 5 .

 35 Algorithm 5 is correct. It requires 6k + O(k/ log k) extra space and it uses 1 2

10 :

 10 for j = 1 to k do 11: b j ← (y j+k(i-1) -z j)/(a s j+k(i-1) b j) 12: N i ← INTERPOL((z 1 , . . . , z k), (b 1 , . . . , b k))

 Using the same technique Step 8 requires only k extra space as for Steps 2 to 6. At Step 9, we need 3k registers to store G T , S T i , S k i and 2k registers to store (b 1 , . . . , b k) and (z 1 , . . . , z k), plus k + O(k/ log k) extra register for the computation. At Step 12 we re-use the space of G T , S T i for N i and the extra space of the computation which implies the claim.

Algorithm 6 if k = 0 then k ← n -s 5 : 6 :F 7 :s ← s + k Theorem 3 . 6 .

 656736 In-Place Interpolation (INPLACEINTERPOL)Input: (y 1 , . . . , y n) and (a 1 , . . . , a n) of size n such that a i ,y i ∈ ; Output: F ∈ [X] of size n, such that F (a i) = y i for 0 ≤ i ≤ n. Required: PARTINTERPOL with space complexity ≤ c pi k 1: s ← 0 2: while s < n do Y, A ← (y 1 , . . . , y n-s), (a 1 , . . . , a n-s) [s..s+k[← PARTINTERPOL(F [0..s[, Y, A, k) Algorithm 6 is correct. It uses O(1) extra space and at most 1 2 (c 2 + 23c)M(n) log n + O(M(n) loglog n) operations in , where c = 1 + c pi .

2 M(1

 21 (k i) log(k i) + t i=1 (ns i-1) log(s i-1) + O(c 2 M(k i) loglog k i) since n-s i-1 k i ≤ c = c pi +1 by definition of k i . Moreover, we have t i=1 M(k i) log(k i) ≤ M(i k i) log n ≤ M(n) log(n). By definition of s i , we have ns i ≤ n(1 -λ) i which gives t i=1 (ns i-1) log(s i-1) ≤ n log(n) t i=1 -λ) i ≤ (c pi + 1)n log n.

 n 2 . It needs max(c m , c s + 1) n 2 extra registers: One can compute the middle product in G [n

	2 ..n[using c m compute the short product using c s n 2 registers.	n 2 extra registers, then move it to n 2 extra registers and

 G ∈ [X] of size s and (y 1 , . . . , y n-s), (a 1 , . . . , a n-s) in n-s ; an integer k ≤ ns Output: H mod X k where

	Algorithm 5 Partial Interpolation (PARTINTERPOL)			
	Input:									
		operations in	and 2k + O(k/ log k) extra space using Lemma 3.3. Taking into
	account the n -s exponentations a s j , and that other steps have a complexity in O(M(k)), the cost of
	the algorithm is								
	1 2	n -s k	2	+	23 2	n -s k	M(k) log(k) + (n -s) log(s) + O	n -s k	2	M(k) loglog k .

M(n) log(n) + O(M(n)) operations in and n + O(n log(n)) extra registers.

M(n) log(n) + O(M(n)), while the space is dominated by the size of this subproduct tree, n log(n) + O(n).

Acknowledgments

We thank Grégoire Lecerf, Alin Bostan and Michael Monagan for pointing out the references [7,16].

Proof. Computing each subproduct tree on O(n/ log(n)) points can be done in time 1 2 M(n/ log(n)) log(n) ≤ 1 2 M(n) and space n + O(n/ log(n)). The root of this tree is a polynomial of degree at most n/ log(n). Each reduction of F modulo such a polynomial takes time 2M(n) + O(n/ log(n)) and space O(n/ log(n)) using the balanced Euclidean division algorithm from Section 2.1. Each multi-point evaluation of the reduced polynomial on n/ log(n) points, using the pre-computed subproduct tree, takes M(n/ log(n)) log(n) + O(M(n/ log(n))) operations in and O(n/ log(n)) extra space [START_REF] Bostan | Tellegen's principle into practice[END_REF].

All information except the evaluations from the last step -which are written directly to the output space -may be discarded before the next iteration begins. Therefore the total time and space complexity are as stated.

When the number of evaluation points k is large compared to the size n of the polynomial F , we can simply repeat the approach of Lemma 3.1 k/n times. The situation is more complicated when k ≤ n, because the output space is smaller. The idea is to compute the degree-k polynomial M at the root of the product tree, reduce F modulo M and perform balanced k-point evaluation of F mod M . Lemma 3.2. Given F ∈ [X] of size n and a 1 , . . . , a k ∈ , one can compute F (a 1), . . . , F (a k) using

Proof. Computing the root M of a product tree proceeds in two phases. For the bottom levels of the tree, we use the fastest out-of-place full multiplication algorithm that computes the product of two size-t polynomials in time M(t) and space O(t). Then, only for the top loglog(n) levels, do we switch to an in-place full product algorithm from [START_REF] Giorgi | Generic reductions for in-place polynomial multiplication[END_REF], which has time O(M(t)) but only O(1) extra space. The result is that M can be computed using

Then, we reduce F modulo M . By Lemma 2.1, this is accomplished in time 2λ s M(n)+O(n+M(k))

and space (c s + 2)k. Adding the cost of the k-point evaluation of Lemma 3.1 completes the proof.

Interpolation Interpolation is the inverse operation of multipoint evaluation, that is, to reconstruct a size-n polynomial F from its evaluations on n distinct points F (a 1), . . . , F (a n). The classic approach using Lagrange's interpolation formula has a quadratic complexity [6, Chapter 5] while the fast approach of [START_REF] Moenck | Fast modular transforms via division[END_REF] has quasi-linear time complexity O(M(n) log(n)). We first briefly recall this fast algorithm.

Let

Hence the fast algorithm of [START_REF] Moenck | Fast modular transforms via division[END_REF] consists in computing M (X) and its evaluation on each a i through multipoint evaluation, and then to sum the n fractions using a divide-and-conquer strategy. The numerator of the result is then F by Equation (3). If the subproduct tree over the a i 's is already computed, this gives all the denominators in the rational fraction sum. Using the same subproduct tree for evaluating M and for the rational fraction sum gives the fastest interpolation algorithm, combining the textbook method [START_REF] Zur Gathen | Modern Computer Algebra[END_REF] with the multipoint evaluation of [START_REF] Bostan | Tellegen's principle into practice[END_REF]. The total computational cost is only 5

A Interpolation with linear space

The algorithm proceeds as:

1. Run the subproduct tree algorithm for each group of n/ log(n) interpolation points, saving only the roots of each subtree M 1 , . . . , M log(n) , using fast out-of-place full multiplications.

2. Run the subproduct tree algorithm over these M i 's to compute the root M , using in-place full multiplications from [START_REF] Giorgi | Generic reductions for in-place polynomial multiplication[END_REF], discarding other nodes in the tree.

3. Compute the derivative M in place.

4. Compute the remainders M mod M i for 1 ≤ i ≤ log(n) , using the balanced (with precomputation) algorithm described in Section 2.1. The size-n polynomial M may now be discarded.

5.

For each group i, compute the full subproduct tree over its n/ log(n) points. Use this to perform multi-point evaluation of M mod M i over the n/ log(n) points of that group only, and then compute the partial sum of (3) for that group's points. Discard the subproduct tree but save the rational function partial sum for each group.

6. Combine the rational functions for the log(n) groups using a divide-and-conquer strategy, employing again the in-place full multiplications from [START_REF] Giorgi | Generic reductions for in-place polynomial multiplication[END_REF].

The following lemma gives the complexity of this linear-space interpolation algorithm.

Lemma 3.3. Given a 1 , . . . , a n ∈ and y 1 , . . . ,

Proof. Steps (1) and (5) collectively involve, for each group, two subproduct tree computations, one multi-point evaluation, and one rational function summation over each group, for a total of 3M(n) log(n) + O(M(n)) time.

Step (4) also dominates the time complexity, contributing another 2M(n) log(n) + O(M(n)) operations in .

In steps (2) and (5), the expensive in-place multiplications are used only for the top loglog(n) levels of the entire subproduct tree, so this contributes only O(M(n) loglog(n)).

For the space, note that the size-n output space may be used during all steps until the last to store intermediate results.