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Abstract— The Internet of Things is a promise of smarter 

technologies, with devices working together in a distributed 
manner, to provide more quality of service in many domains, such 
as industry, transports, energy, health, etc. Fog/Edge computing is 
probably one of the most interesting concepts as it will be a means 
to optimize energy and performance. However, beyond the 
principle, few works have really demonstrated the real potential of 
it, as many challenges need to be addressed at different levels: 
hardware design, software APIs, communication protocols, radio 
technologies, and so on. In this context, there is a growing interest 
in reconfigurable devices,  as they bridge the gap between 
performance and energy with the advantage of the hardware 
flexibility. In this paper, we present a platform with sensor nodes 
and gateways relying on FPGAs, and showing that reconfigurable 
devices can be an enabling technology for edge-computing. 

Keywords—Internet of Things; Fog computing; Gateway; Data 
Distribution Service; M2M; FPGA 

I. INTRODUCTION  
The Internet of Things is a concept that extended 10 years ago 

the one of wireless sensor networks, where each node is a device 
able to interact with its environment, as a sensor or an actuator, 
and connected directly or indirectly to the Internet over TCP/IP. 
A further extent of the concept talks about Internet of 
Everything, which means that in the future, anything in this 
world, will be equipped with a piece of electronic that will 
connect it to the global network. Machine to machine (M2M) 
communication is strongly bound to IoT, which means that the 
devices are able to send/receive data and interact together 
autonomously. M2M and IoT can bring revolutionizing 
applications in many domains, such as the industry (process 
monitoring, predictive maintenance), transports (traffic 
optimization, emergency management), energy (production and 
consumption balance, resource optimization), health (patient 
monitoring), and many others. 

IoT is a promise for about ten years now, and despite many 
contributions and huge efforts in the research and industry 
communities, there are still big challenges to address before 
turning it into a reality. One of the reasons is that behind the 
concept that is very easy to understand, implementing the IoT 
rises many problems: interoperability, security, data storage 

management, acceptability, privacy, wireless networks maturity, 
scalability, energy, quality of service, etc., as highlighted in [1]. 
Today, there are successful demonstrations of the concept, but 
mostly limited to a very specific application, in a given context, 
with customized devices and protocols. But according to CISCO 
in 2017, 75% of IoT projects failed before completion, which 
shows that it is mandatory to build a strong scientific body to 
study, understand, design and optimize the Internet of Things, so 
that it fulfils its commitments. Many fundamental questions 
arise from a scientific perspective in the context of IoT: what is 
the “object” of study, what are the building blocks, how to 
model globally, how to model accurately, how to segment, how 
to compare centralized vs. distributed approaches, specific vs. 
generic, how to optimize the energy, how to address the security, 
how to measure the Quality of Service of a given application, 
etc.? Eventually, can IoT be apprehended as a whole, as it would 
be possibly the connection of everything?  

Our ambition is more modest but is an important milestone 
in addressing a number of the issues raised above: the objective 
is to provide a complete prototyping platform with a set of 
flexible and customizable hardware and software, in order to 
explore innovative approaches in the context of IoT, such as Fog 
computing, where storing and processing capabilities are 
decentralized to the edges of the network e.g. nodes or gateways. 
The motivation is to rationalize data exchanges, endowing 
processing capabilities into edge devices or even sink nodes, 
allowing only meaningful information to be communicated. This 
approach could enable near-sensor analytics, as the processing 
of data would be performed close to the source of information. 
There is clearly a growing interest in this concept, as evidenced 
by recent research papers [2][3][4]. However, devices like 
sensor nodes or gateways required to support this new paradigm, 
do not provide the necessary hardware, software and 
communication protocols to implement it efficiently, as their 
role is generally limited: sense/send/receive data for the nodes, 
or bridge the gap between sensors and an IP network for the 
gateways.  

We have developed an IoT platform composed of a set of 
reconfigurable sensors and gateways, which provides all the 
building blocks required to explore, design and implement the 
concept of Fog Computing. FlexNode is a prototyping board 



using an FPGA for design space exploration at the sensor level: 
the architecture relies on a generic MCU that can be customized 
on purpose, i.e. processor, dedicated blocks, accelerators, 
memory, etc. Reconfigurable Gateways are built on a Zynq 
FPGA, integrating a Processing System (with a dual core ARM) 
and Programmable Logic, that can be configured to offload time 
or power-consuming tasks. Gateways are designed to support 
M2M communications, to store and to process data in a 
distributed manner, allowing potentially more performance, 
reliability and scalability. Their design is generic: both software 
and hardware are flexible and customizable, so that they can be 
adapted to various requirements, easing the same way 
interoperability and reducing the costs. In this paper, we present 
the building blocks of the platform, and demonstrate with 
different use cases the advantages of reconfigurable hardware to 
explore the concept of Fog Computing. 

The remainder of this article is organized as follows: part II 
is dedicated to related works; then we provide a description of 
the FlexNode in the third part. Section IV summarizes the 
characteristics of the gateway, hardware and software elements, 
and the communication protocol used to enable M2M 
interactions; case studies are reported in the next section, to 
demonstrate the relevance of such an approach, with some 
results showing the advantages provided by reconfigurable 
computing in the Fog. 

II. RELATED WORKS 
The utilization of FPGAs in sensor nodes has been 

investigated for several years. One approach is to use it directly 
in replacement or additionally to an MCU. Recently, [5] have 
shown a Zynq FPGA platform used to collect tri-axes vibration 
data and performs FFT computations in a high performance 
wireless sensor node. In [6] a Virtex-4 FPGA is used to design a 
wireless sensor node, with runtime configuration capabilities. 
An underwater acoustic module based on FPGA was 
demonstrated in [7]. The FPGA can also be used for specific 
tasks, like security services at the sensor level, as in [8] where 
Hyperchaos Encryption  is implemented in the sensor node 
within the FPGA. Reconfigurable devices have demonstrated 
strong abilities to perform signal and image processing, and are 
particularly well suited for vision sensor nodes, as it is shown in 
[9], where they integrate a Nios II soft-core processor, image 
acquisition and compression circuit on a single FPGA chip, 
which meets the design requirements of low-power 
consumption, flexibility, low-cost and in small size. A Zigbee 
image sensor node is presented in [10] where a tracking 
application is demonstrated with 2 sensor nodes. The advantage 
of dynamic reconfiguration in the sensor node to reduce 
redundant transmission, consumes less power and bandwidth in 
the context of a surveillance system was reported in [11]. 
Another approach is to use the FPGA as an emulator or as a 
prototyping platform for hardware/software evaluations. In [12], 
the prototyping boards based on an FPGA are used for fast 
implementation and verification. SUNSHINE [13] is  a 

hardware-software emulator allowing the simulation of flexible 
sensor nodes. 

Gateways have a key role in the context of IoT: they 
implement the networking protocols, distribute the storage 
resources, allow potentially edge analytics, and secure data from 
things to the cloud. In [2], authors discuss the need of extra 
functionality in gateways to perform processing on data before 
sending to the Internet: they clearly show that adding some 
intelligence at the edge would enable a better utilization of 
network resources, and improve the performance of applications. 
In [14], it is shown that efficient architectures are missing to 
provide access to the Internet for low-power devices: for this 
purpose, smartphones are suggested to support the gateway 
functionalities.   

Commercial dedicated gateways instance from Advantech, 
Multitech, Huawei, Dell, HPE, etc., feature radio (BLE, WiFi, 
GSM, 4G-LTE, 3G, LoRa, etc.) to Internet hardware and 
software resources, generally based on general purpose 
approaches like embedded PCs (ARM-based or Intel-based 
architectures) running Windows (10 IoT enterprise) or Linux 
(Ubuntu Snappy, Windriver). But it was shown that traditional 
software-based gateways are limited in terms of performance. 
The authors of [15] show that a Xilinx FPGA  gateway system 
was able to reduce up to 94.7% on execution time compared to 
related works. In [16], they propose to use an FPGA to perform 
protocol conversion and secure transmission between 4G and 
PROFIBUS-DP. In [17], the authors present a  configurable 
vehicular Ethernet gateway utilizing a hybrid FPGA, with 
interesting capabilities like run-time adaptability of the switch to 
address network security in connected vehicles. Reconfigurable 
gateways were also used in the context of Intelligent Home: [18] 
reports a hybrid ARM+FPGA system, which realizes the 
connection between home appliances and the Internet over 
ZigBee and Wi-Fi networks. A similar contribution [19] was 
sown over a cellular network. Security is also a big motivation 
of reconfigurable gateways, as highlighted in [20] to implement 
a VPN and secure data transfers over non-confidential network 
areas. 

Reconfigurable hardware is considered now for several years 
as a relevant approach in the context of WSN and IoT, and is 
gaining more and more interest both at the sensor and gateway 
levels, as demonstrated in this related works section. However, it 
can be noticed that the computations and tasks handled by 
reconfigurable devices do not really show the exploration or 
implementation of a Fog Computing approach, i.e. the ability of 
the building blocks to distribute computation / storage and 
communicate over the network in a collaborative manner. 

III. FLEXNODE ARCHITECTURE 
The FlexNode prototyping platform consists of an elec- tronic 

board with a controller slot, peripheral slots, power distribution 
and the necessary components to perform power characterization 
of each element composing the node. The peripheral slots can be 
used to connect sensors, actuators or communication modules. 



This platform can be used primarily for the evaluation and 
comparison of multiple controller solutions, with different node 
architectures, peripherals, sensors, radios and applications. This 
node can be used directly as a WSN to perform evaluation while 
taking account of communication and network hazards.  

The Digilent CmodA7 was chosen as the central unit thanks 
to its small size, 48-pin DIP board built around a Xilinx Artix-7 
FPGA, the XC7A35T-1CPG236C, which has 20 800 LUTs, 41 
600 Flip- Flops, 225 kB of RAM and 1 MSPS ADC. It is 
possible to explore different architecture solutions by 
reproducing the desired behavior within the FPGA.  

 
Figure 1 : Generic architecture of FlexNode 

 

Typical microcontrollers include at least one processor, a 
non-volatile memory (usually Flash for code instructions and 
read-only data), a volatile memory (usually SRAM for 
application data), a power management unit, a clock management 
unit, input/output peripherals, communication modules (UART, 
SPI, I2C, USB, CAN. . . ) and timers. This typical architecture is 
depicted in Fig. 1. Some microcontrollers also include different 
types of non-volatile memories (ROM, EEPROM...) or have a 
multi-master system (multi-processors, Direct Memory Access 
(DMA)...). Depending on the application, this architecture can be 
customized, which implies a potential large design space to 
explore.  

 
Figure 2 : Customized Flexnode 

 

 

 
Figure 3 : One instance of FlexNode with a LoRa radio 

As a demonstration example (Fig. 2), we use the ARM 
Cortex-M0 r1p0. This is a 3-stage 32-bit RISC processor that 
implements the ARMv6-M ISA. It includes a single AHB-Lite 
interface, 32 interrupt lines, 1 Non-Maskable Interrupt and a 
single-cycle multiplier. The architecture  also includes a 2 kB 
ROM containing a bootloader code, a 128 kB RAM and a 16 kB 
RAM, peripherals for inputs/outputs control (44 I/O, PPS), serial 
communication (4x UART, 2x SPI, 2x I2C) and timing modules 
(4x 16-bit timers). All these elements are connected together 
thank to a single-master AMBA3 AHB-Lite system. A peripheral 
called Activity Monitor is also used to report events and 
characterize power consumption and performance. 

The complete board is depicted in Fig. 3. We use the 
ADT7420, a digital temperature sensor with I2C interface, which 
is the one used by Digilent on the PmodTMP2. The radio module 
is the SX1272 from SEMTECH, a LoRa transceiver with SPI 
interface. The SX1272 is configured in LoRa mode with a 
spreading factor of 12. This system has also been validated with 
the Pmod BLE (Bluetooth Low Energy), Pmod GPS receiver, 
Pmod ALS (Ambient Light Sensor) and Pmod HYGRO (Digital 
Humidity and Temperature sensors) modules from Digilent. 

FlexNode provides therefore a generic hardware architecture 
that can be customized, implemented in an FPGA hosted on a 
modular board. It is possible to explore the design of the MCU 
architecture (processor complexity, pipeline stages, custom 
computing units, memory architecture, memory size, peripherals, 
…) directly in the context of a WSN, i.e. taking into account the 
specificities of the application, sensors/actuators, radio 
environment. It enables the assessment in a real context, to 
measure/compare performance and energy, make design choices 
to choose an existing platform that fits the best tradeoff. 
Furthermore, the exploration includes the possibility to perform 
custom operations at the Sensor Node level, i.e. implement data 
processing (e.g. statistics), signal processing (e.g. filtering), 
before transmitting data, including thus edge computing 
capabilities at the sensor level thanks to the reconfigurable 
hardware. 

IV. RECONFIGURABLE HYBRID GATEWAY 
Nodes may potentially communicate together, through direct 

point to point connections, but in order to widen interaction 

Fig. 4. Typical microcontroller architecture

B. Controller architecture

The specifications of an application determine which micro-
controller to use. Manufacturers generally offer a large variety
of microcontrollers to answer to the large number of actual em-
bedded applications and their specific constraints, as it is not
possible to design one microcontroller architecture that will
fit all applications. There are microcontrollers with different
packages, number of input/output pins, processor, operating
frequencies, peripherals, communication interfaces, analogic
modules, low-power modes, memory technologies, memory
capacities, and dedicated to different kind of applications
(automotive for example). However, there are some similarities
between all these different devices. Typical microcontrollers
include at least one processor, a non-volatile memory (usually
Flash for code instructions and read-only data), a volatile
memory (usually SRAM for application data), a power man-
agement unit, a clock management unit, input/output peripher-
als, communication modules (UART, SPI, I²C, USB, CAN. . . )
and timers. This typical architecture is depicted in Fig. 4. Some
microcontrollers also include different types of non-volatile
memories (ROM, EEPROM...) or have a multi-master system
(multi-processors, Direct Memory Access (DMA)...).

C. Architecture overview

Here is an example of a controller implementation we use
in this work. The following system is used in the experiments
described in Section V.

ARM Cortex-M are widely used in commercial low-power
microcontrollers. We use the ARM Cortex-M0 r1p0 in our
evaluations. This is a 3-stage 32-bit RISC processor that
implements the ARMv6-M ISA, with a maximum frequency of
50 MHz. It includes a single AHB-Lite interface, 32 interrupt
lines, 1 Non-Maskable Interrupt and a single-cycle multiplier.
Existing products using this processor can be used as hardware
references for performance evaluation comparison.

The architecture used in this work, depicted in Fig. 5, is
composed of the ARM Cortex-M0 r1p0 processor, a 2 kB

Fig. 5. Architecture example

Fig. 6. Monitor block diagram

ROM containing a bootloader code, a 128 kB RAM and a 16
kB RAM, peripherals for inputs/outputs control (44 I/O, PPS),
serial communication (4x UART, 2x SPI, 2x I²C) and timing
modules (4x 16-bit timers). All these elements are connected
together thank to a single-master AMBA3 AHB-Lite system.
A peripheral called Activity Monitor is used to report events
and will serve as basis for the design evaluation flow described
in Section II.

IV. ACTIVITY MONITOR

A. Hardware

The activity monitor is a set of counters used to capture
events. Its architecture is based on the principle of PMU, as
described in Fig. 6.

In the work we present here, the activity monitor is designed
to capture the following events related to the memory:

• Number of cycles
• Number of executed instructions
• Number of instruction fetches
• Number of RAM read accesses
• Number of RAM write accesses
The activity monitor is connected to the AHB-Lite bus

system, and can be accessed by the processor as a peripheral.
By connecting it to the main bus, it is possible to start, stop
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ROM containing a bootloader code, a 128 kB RAM and a 16
kB RAM, peripherals for inputs/outputs control (44 I/O, PPS),
serial communication (4x UART, 2x SPI, 2x I²C) and timing
modules (4x 16-bit timers). All these elements are connected
together thank to a single-master AMBA3 AHB-Lite system.
A peripheral called Activity Monitor is used to report events
and will serve as basis for the design evaluation flow described
in Section II.

IV. ACTIVITY MONITOR

A. Hardware

The activity monitor is a set of counters used to capture
events. Its architecture is based on the principle of PMU, as
described in Fig. 6.

In the work we present here, the activity monitor is designed
to capture the following events related to the memory:

• Number of cycles
• Number of executed instructions
• Number of instruction fetches
• Number of RAM read accesses
• Number of RAM write accesses
The activity monitor is connected to the AHB-Lite bus

system, and can be accessed by the processor as a peripheral.
By connecting it to the main bus, it is possible to start, stop

Paul Leloup  Microélectronique et automatique 15/01/2019 

  Page 19 sur 54 

8. Résultats 
8.1. Flex Node 

Voici le résultat final du projet (Figure 25) : on voit le CMOD A7, les capteurs et le module radio. 

 
Figure 25 Photo du Smart Sensor 

8.2. Terminal 
Voici les données qu’affiche le terminal, cela permet de valider le bon fonctionnement des capteurs et 
de chaque étape. Juste après « PHASE SEND » on peut voir la trame envoyée puis les données capteurs 
affichés de manière plus lisible (Figure 26). 

 
Figure 26 Terminal qui affiche les données capteurs 

  



capabilities and services, giving access to the IP network is a 
great opportunity. It is the first role of the gateway, to connect 
“radio world” to the “TCP/IP world”: for this purpose, we present 
here a generic gateway architecture allowing M2M 
communications. It brings all the software and hardware building 
blocks to decentralize processing to the edges of the network. In 
[21], we were introducing this project combining local 
processing, with completely decentralized communications and 
configurability, so that a network can cooperate in the most 
efficient way. As a point of comparison, the Open IoT gateway in 
[22] is very configurable, but operates on a Cloud-based network, 
and the Smart Gateway presented in [23] uses Message Queuing 
Telemetry Transport as a communication protocol, while we 
chose Data Distribution Service as the communication protocol. 

The gateway is based on a Zybo board from Digilent (Figure 
4). This board integrates a Xilinx Zynq chip, which is a System 
on Chip composed of a processing system (PS) and 
programmable logic (PL). The PS is based on an ARM Cortex-
A9 dual-core, which runs at 650MHz. The board has several 
interfaces: USB, HDMI, VGA, Ethernet, audio, as well as six 12-
pin ports called Pmods. Some of the interfaces are directly linked 
to the ARM processor, while others need to be managed in 
hardware.  

 
Figure 4: The Gateway based on Zybo board 

The USB port and the different Pmod ports can be used to 
attach controllers to manage sensors through different radios. The 
gateway supports currently Bluetooth Low Energy, ZWAVE and 
LoRa. Since the PL is reconfigurable hardware, it can be 
customized on purpose, for hardware acceleration, including 
statistical analysis, cryptographic primitives, video processing, 
etc. The idea is to allow locally extracting information from 
heavy data (a video stream for instance), thus reducing the 
bandwidth required. PL is also important to keep the gateway 
generic: it can be adapted for many use cases. The SoC is built in 
a way that makes the exchange of information between PS and 
PL efficient.  

On top of the Linux system based on Yocto Project [24], the 
software architecture that is running on the gateway is depicted in 
fig. 5. This architecture is composed of processes that control 

different peripherals (Bluetooth, Zigbee, ZWAVE, LoRa, etc.), 
enabling sensor data to be collected. In terms of communication 
protocol, in the context of IoT especially for edge-computing 
purposes, the publish-subscribe pattern is more appropriate than 
server-client. It has been demonstrated in [21] that Data 
Distribution Service (DDS) outperforms Message Queuing 
Telemetry Transport (MQTT) when comparing latencies, which 
emphasizes its real-time capabilities, despite that bandwidth 
requirements are larger for DDS. However, the fact that data are 
potentially processed locally in the gateway decreases bandwidth 
needs. An open-source solution has been chosen, namely 
OpenDDS, in order to keep our project generic [25]. A DDS 
topic consists in a structure of several data fields. These topics 
are made by the user, so they are entirely application-specific. 
For instance, a temperature topic can be created to transport the 
temperature, the node ID and a timestamp. This is how gateways 
communicate with one another. The processing unit is 
responsible of multiple tasks. It can process data to extract useful 
information, store in a database, and transmit data to the sender 
(these data will have been pre-computed). Finally, the receiver is 
the process that reads data from the TCP/IP network and that 
forwards them to the processing unit. These data come from 
other gateways in the network. They can be for example data 
from distant sensors that can be useful for the local gateway. In 
order to store data in a generic, compact and flexible manner, the 
SQLite database [26] is used to build a relational database. The 
entire database is stored in only one file, and can be managed 
either by issuing requests in command-line or directly in a C 
code. 

 

 Figure 5: Software architecture of the Gateway 

As FlexNode, the Reconfigurable Gateway provides a generic 
hardware architecture that can be easily customized. Based on a 
SoC FPGA hosted on a modular board,  it is possible to generate 
a Linux distribution adapted to the implemented hardware, to 
customize software in the PS and the design in the PL, adding for 
instance dedicated interfaces, or accelerators. It enables gateway 
prototyping in a real context to assess performances on a given 
application with real wireless sensors. The reconfigurable logic is 
a strong advantage in the context of IoT, as it gives the possibility 
to implement complex processing at the Gateway level.  

 

Figure 1 : Overview of TrustNet 

III. GATEWAY ARCHITECTURE 
We present a generic gateway architecture allowing M2M 

communications, which brings all the software and hardware 
building blocks to decentralize processing to the edges of the 
network. This gateway is generic, that is, built with open 
software and including reconfigurable hardware that can be 
used for specific applications. To the best of our knowledge, it 
is the first project that combines all the above-mentioned 
features: local processing, completely decentralized 
communications and configurability, so that a network can 
cooperate in the most efficient way. As a point of comparison, 
the Open IoT gateway in [8] is very configurable, but operates 
on a Cloud-based network, and the Smart Gateway presented in 
[7] uses Message Queuing Telemetry Transport as a 
communication protocol, while the Reconfigurable Gateway 
uses Data Distribution Service. This choice of communication 
protocol is discussed at length in section III-C. 

The proposed gateway has three major roles, which are 
summarized in fig. 1. The first one is to communicate with 
different kinds of sensors. These sensors can be enabled with 
multiple radio technologies: short-range technologies can be 
used (for example Bluetooth and Zigbee), as well as long-range 
technologies such as Low Power Wide Area Networks (like 
LoRaWAN, Sigfox, etc). The second role of the gateway is to 
store and process data. Useful information will be extracted 
from all sensor data. This is done locally, contrary to most 
gateways where all data are transmitted to datacenters, and then 
processed. Local processing is supposed to increase reactivity 
and reduce the amount of messages sent, thus improving 
bandwidth utilization, power consumption and security. 
Finally, the third attribution of the gateway is to communicate 
with a network of gateways. This communication works both 
ways: it can send information that can be either raw sensor 
data, or data that would have already been processed; and it can 
also receive information from other gateways in the network. 
This information that is managed in a distributed fashion can 
be used to improve local decisions.  

A. Hardware 
The gateway relies on reconfigurable hardware, such as 

FPGAs, enabling both performance and flexibility. The first 
prototype of the gateway has been realized with a Zybo board 
from Digilent (Figure 2). This board integrates a Xilinx Zynq 
chip, which is a System on Chip composed of a processing 
system (PS) and programmable logic (PL). The PS is based on 
an ARM Cortex-A9 dual-core, which runs at 650MHz. The 
board has several interfaces: USB, HDMI, VGA, Ethernet, 
audio, as well as six 12-pin ports called Pmods. Some of the 
interfaces are directly linked to the ARM processor, while 
others need to be managed in hardware.  

  
Figure 2: The first prototype of the Gateway based on Zybo board 

Figure 3: Architecture of the reconfigurable hardware 

The USB port and the different Pmod ports can be used to 
attach controllers to manage sensors. Since the PL is 
reconfigurable hardware, it can be customized on purpose, for 
hardware acceleration, including statistical analysis, 
cryptographic primitives, video processing, etc. The idea is to 
allow locally extracting information from heavy data (a video 
stream for instance), thus reducing the bandwidth required. PL 
is also important to keep the gateway generic: it can be adapted 
for many use cases. The SoC is built in a way that makes the 
exchange of information between PS and PL efficient.  

B. Software 
In the aim of keeping the gateway as flexible and generic 

as possible, the Yocto Project [10] has been chosen to create a 
Linux distribution. The distribution is divided into layers, 
which contain recipes. Each recipe can enable a feature, 
activate a driver, install packages, etc. There are already many 
layers available. After choosing which layers and recipes to 
use, and adding customized recipes, the Bitbake tool creates a 
Linux image that can be used in the gateway. 

On top of the Linux system, the software architecture that is 
running on the gateway is depicted in fig. 4. This architecture is 
composed of several components. First there are processes that 
control different peripherals (Bluetooth, Zigbee, etc.), enabling 
sensor data to be collected. These data are then handed to two 
processes: the sender and the processing unit. The role of the 
sender is simply to send data to the gateway on a TCP/IP 
network, via a communication API that will be explained in 
part C.  This is how gateways communicate with one another. 
The processing unit is responsible of multiple tasks. It can 
process data to extract useful information, store in a database, 
and transmit data to the sender (these data will have been pre-
computed). Finally, the receiver is the process that reads data 
from the TCP/IP network and that forwards them to the 
processing unit. These data come from other gateways in the 
network. They can be for example data from distant sensors 
that can be useful for the local gateway. 

Six Pmod ports (1 processor-dedicated, 1 dual analog/digital) 
GPIO: 6 pushbuttons, 4 slide switches, 5 LEDs

Trimode (1Gbit/100Mbit/10Mbit) Ethernet PHY 

128 microSD slot (supports Linux file system) 

Dual-role (Source/Sink) 
HDMI port 

OTG USB 2.0 
PHY (supports 

host and device)

Zybo Zynq-7000 ARM/FPGA SoC

16-bits per pixel VGA 
output port



 
Figure 7: Block design of the smart camera architecture 

 

 
Figure 6: Hybrid Gateway 

As an example, we explored the possibility to use the design 
of the reconfigurable gateway as a Smart Camera. The prototype 
called “Hybrid Gateway” is depicted on figure 6. This system 
running a custom Linux distribution includes a LoRa pmod 
module (designed in our lab), an Ethernet connection, and a 
Pcam 5C (5 MP Fixed Focus Color Camera Module), connected 
to the ZYBO Z7 board (based on a Zynq Z-7020) with a Pcam 
MIPI CSI-2 connector. A simple motion detection accelerator 
was designed with VIVADO HLS. This hardware block, which is 
mapped in the PL and communicates with PS through AXI 
VDMA, handles the video input stream from the camera, the 
video output stream (optional) and the detection block that 
compares successive images to identify right to left, or left to 
right motions. The block design in VIVADO is depicted on 
figure 7. Processing the video stream on board enables 
opportunities like communicating visual information through 
bandwidth limited networks like LoRa, or simply drastically 

reduce the bandwidth utilization on a TCP/IP network. This is 
also an interesting means to avoid the transport of 
private/sensitive data over different networks, by extracting only 
the necessary required information. 

V. CASE STUDIES 
The first purpose of the Flexnode is prototyping, performance 

and power consumption assessment. The board was designed in 
order to measure easily the power consumed by each subsystem 
of the sensor node (FPGA board, sensors, radios, etc.). Four 
external peripherals were used in this case study: Pmod ALS, 
Pmod HYGRO, Pmod LoRa, Pmod GPS. In figure 8, we observe 
4 periods of 5 seconds each (SENSE phase, PROCESS phase, 
SEND phase). There is a peak power of 650 mW while during 
SLEEP mode the average consumption is 570mW (obviously we 
are far from the numbers of general purpose MCUs, but these 
numbers can be considered relatively for comparison purposes). 
The consumption of the sensors is relatively low (≈130mW) 
compared to the one of the CMOD A7 (≈470mW). The 
architecture inside the FPGA is instrumented so that we are able 
to relate logical events obtained with performance counters, to 
the power that is consumed, and estimate the power that would 
be consumed on a given technology node. More details on the 
methodology can be found in [27] 

 

 

 

 



 
Figure 8: Power consumption evaluations in Flexnode 

A prototype of the whole network has been then developed 
for demonstration, which uses three sensor networks: Bluetooth 
Low Energy, LoRa and Z-Wave (proprietary protocol developed 
by Sigma Designs working on the 868MHz ISM band in 
Europe). The main claim is to demonstrate the utilization of 
reconfigurable hardware in the context of IoT, to process and 
communicate data in a decentralized network, from different 
radios over a TCP/IP network. The prototype, shown in fig. 9, 

validates and demonstrates the potential of the network of sensors 
and gateways in a smart office application. The gateways collect 
information from the three sensor networks, and publish them on 
different DDS topics. The information shared over the network 
are: temperature, humidity, ambient light, door sensors, presence 
sensors and video-related data (motions). For each one, a topic is 
created; publishers and subscribers are manually configured. 
Each sensed data is timestamped and geo-localized when 
available. 

Another interesting approach in IoT is the capability to access 
and aggregate data from different sources. In order to study this 
aspect, we developed special programs on the gateways that are 
able to collect information from external sources. For  
demonstration purposes, we use the data available from the 
https://data.montpellier3m.fr/. It is possible to download xml files 
that are periodically updated, for instance the number of available 
parking spaces in each parking of the city. This opens the 
possibility of merging data from different sources in the gateway 
databases, which can be used to manage efficiently the network. 

The shared information in the network can be visualized at 
publication time in the terminals of the gateways, or accessed in 
the local databases. In order to provide a user-friendly interface 
for visualization, we developed a website hosting Grafana, which 
is a platform allowing the monitoring of data. The PC running the 
website subscribes to all the topics in the network, and stores all 
the timestamped collected data in an infuxDB database. Then, it 
is possible to generate a custom dashboard with widgets allowing 
to visualize collected data (histograms, charts, etc.). Screenshots 
from Grafana are depicted in figure 10 and 11: they show data 
from a temperature sensor, a door sensor, a motion sensor, the 
number of available parking spaces in the “Comédie parking” in 
Montpellier, and its evolution from 10:00 AM to 4:00 PM the 
same day. 

 

 
Figure 9: Demonstrator with 4 gateways and 8 sensors 
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Figure 10: Visualization of internal data with Grafana 

 
Figure 11: Visualization of external data with Grafana 

 

 
 Figure 12: Sample latency compared to data payload 

 

Several performance tests have been realized to show the 
capabilities of the developed network. A very important metric 
to measure performance is the latency, as it impacts the 
reactivity of the network for a given application. We made an 
experiment to characterize the latency, computed as the total 
time of the experience divided by the number of samples 
transmitted, with different payload sizes. DDS was configured to 
use the RTPS-UDP transport setting. For each data payload, 
between 10,000 and 100,000 samples have been used. In the 

figure 12, we can notice that for small payloads (less than 2 kB), 
sample latency remains approximately the same. However, after 
that point, sample latency begins to increase rapidly. At 8 kB, 
latency is doubled, and at 16 kB it is again doubled. The goal 
here is to observe latency in an absolute way. What this figure 
shows is that sending smaller payloads helps achieving better 
latencies. Decreasing the order of magnitude of data payload by 
processing them locally can bring a significant decrease in 
latency. The goal of local processing is to extract useful 
information to reduce the payload to its minimum. All 
information that would be deemed useless would not be 
transmitted. This introduces adaptive capabilities to the whole 
network that will be able to tune its behavior according to the 
context, which is a big requirement for IoT applications.  

 

 
Figure 13: Terminal view from the Flexnode showing that the node received 
an information of a left to right motion (Mvt droite) from the smart camera 

 

 
Figure 14: Terminal view from the Gateway showing the publication on the 

“Video” topic of a right to left motion (Mvt gauche) event 
 

Another test was realized with the smart camera, a Flexnode 
and the whole network of gateways. In this scenario, the smart 
camera is able to communicate information with LoRa to the 
LoRa Flexnode (Figure 13), and to publish information on the 
network about detected motions (Figure 14). This simple 
application illustrates the drastic reduction of required 
bandwidth: the initial video stream is about 250MB/s. It is in 
this case impossible to transmit this over a LoRa network, and it 
potentially consumes a lot of the available bandwidth in a 
TCP/IP network (25% if Gigabit Ethernet). After video 
processing, the data to be transmitted is only 1 Byte on event. It 
is a drastic reduction, but as mentioned above, small payloads 
are mandatory both for sparing bandwidth and reducing latency, 
as it impacts directly the reactivity of the network. 

 
Figure 5: Demonstrator with two Open-Gateways 

B. Results 
Several performance tests have been realized to show the 

capabilities of the developed gateway. The one that is 
presented in this paper is a test about the impact of data 
payload on latency.  

This experience has been realized in the following way: a 
sample is published on a particular topic. When the sample is 
received by the subscriber, another sample can be written in 
the topic. The latency is computed as the total time of the 
experience divided by the number of samples transmitted. 
DDS is configured to use the RTPS-UDP transport setting. For 
each data payload, between 10,000 and 100,000 samples have 
been used. Results are shown in fig. 6. Data payloads are 
relatively small but common in an IoT scenario. For instance, 
a sample about room temperature requires only about 20 bytes 
(temperature value, a few identifiers and a timestamp for 
example). Furthermore, the role of the gateway is to process 
data to reduce it to its useful part.  

In this figure, we can notice that for small payloads (less 
than 2 kB), sample latency remains approximately the same. 
However, after that point, sample latency begins to increase 
rapidly. At 8 kB, latency is doubled, and at 16 kB it is again 
doubled. The figure should not be misinterpreted though: the 
goal is not to compare the ratio latency/payload, but to observe 
latency in an absolute way. What this figure shows is that 
sending smaller payloads helps achieving better latencies. 
Decreasing the order of magnitude of data payload by 
processing them locally can bring a significant decrease in 
latency. The goal of local processing is to extract useful 
information to reduce the payload to its minimum. All 
information that would be deemed useless would not be 
transmitted. This introduces adaptive capabilities to the whole 
network that will be able to tune its behavior according to the 
context, which is a big requirement for IoT applications.  

V. CONCLUSION AND PERSPECTIVES 
The concept of a reconfigurable gateway has been 

presented in this article. The available local processing 
resources can respond to the challenges of current IoT 
networks by reducing the volume of information that transits 
through the IP network, thus enabling the promises of Fog 
Computing. Our approach is fully distributed, allowing 
potentially more performance, reliability and scalability. It 
relies on technologies that can be adapted to various 

requirements, easing interoperability and costs reduction. 
Future works will be focused on developments including the 
design and integration of hardware IPs for cryptographic and 
statistical analysis for applications in the fog.  

Figure 6: Sample latency compared to data payload 
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La figure (21) illustre le résultat final de notre travail, dans cet exemple on a effectué                
un mouvement vers la gauche que la caméra PCAM a capturé, sur l'écran du PC, un                
message est affiché disant qu’un mouvement vers la gauche est détecté. 
 

2. Les performances: 

 
La figure en dessus représente les ressources de la carte FPGA exploitées pour la              
réalisation de cette caméra intelligente, en analysant les résultats obtenus, on           
constate que notre système à consommer 50% des ressources MMCM (Mixed Mode            
Clock Manager) existant sur la Zybo, Le MMCM génère les multiples fréquences            
d’horloge utilisée par le système, 30% des ports d’entrées/sorties ont été utilisé… 
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VI. CONCLUSION AND PERSPECTIVES 
We presented a complete platform with sensor nodes, 

gateways and smart cameras relying on FPGAs, and a 
visualization tool based on Grafana, showing that reconfigurable 
devices can be an enabling technology for edge-computing. 
They primarily provide a prototyping environment that can help 
exploring hardware and software at a very fine grain, allowing 
thus to define the best trade-offs for a given application that can 
be evaluated in a real context. Moreover, FPGAs offer local 
processing resources that can be customized, reconfigured and 
adapted, which opens great opportunities to respond to the 
challenges of current IoT networks by reducing the volume of 
information that transits through the IP network, thus enabling 
the promises of Edge Computing. We demonstrated that our 
approach has many advantages as it is fully distributed, allowing 
potentially more performance, reliability and scalability. It relies 
on technologies that can be adapted to various requirements, 
easing interoperability and costs reduction. Future works will be 
focused on developments including the design and integration of 
hardware IPs for applications in the fog.  
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