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Repetition avoidance in products of factors

Pamela Fleischmann∗ Pascal Ochem† Kamellia Reshadi‡

Abstract

We consider a variation on a classical avoidance problem from com-
binatorics on words that has been introduced by Mousavi and Shallit
at DLT 2013. Let pexpi(w) be the supremum of the exponent over the
products of i factors of the word w. The repetition threshold RTi(k)
is then the infimum of pexpi(w) over all words w ∈ Σω

k . Moussavi and
Shallit obtained that RTi(2) = 2i and RT2(3) = 13

4
. We show that

RTi(3) =
3i
2
+ 1

4
if i is even and RTi(3) =

3i
2
+ 1

6
if i is odd and i > 3.
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1 Introduction

A repetition in a word w is a pair of words p and e such that pe is a factor of
w, p is non-empty, and e is a prefix of pe. If pe is a repetition, then its period
is |p| and its exponent is |pe|

|p|
. A word is α+-free (resp. α-free) if it contains

no repetition with exponent β such that β > α (resp. β > α).

Given k > 2, Dejean [2] defined the repetition threshold RT(k) for k
letters as the smallest α such that there exists an infinite α+-free word over
a k-letter alphabet. Dejean initiated the study of RT(k) in 1972 for k = 2
and k = 3. Her work was followed by a series of papers which determine the
exact value of RT(k) for any k > 2.
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• RT(2) = 2 [2];

• RT(3) = 7

4
[2];

• RT(4) = 7

5
[7];

• RT(k) = k
k−1

, for k > 5 [1, 4, 8].

Mousavi and Shallit [5] have considered two notions related to the repetition
threshold.

The first notion considers repetitions in conjugates of factors of the in-
finite word. A word is circularly r+-free if it does not contain a factor
pxs such that sp is a repetition of exponent strictly greater than r. Let
Σk = {0, 1, . . . , k − 1}. The smallest real number r such that w is circularly
r+-free is denoted by cexp(w). Let RTC(k) be the minimum of cexp(w)
over every w ∈ Σω

k .
The second notion considers repetitions in concatenations of a fixed num-

ber of factors of the infinite word. Let pexpi(w) be the smallest real number
r such that every product of i factors of w is r+-free. Let RTi(k) be the min-
imum of pexpi(w) over every w ∈ Σω

k . Notice that RTi(k) generalizes the
classical notion of repetition threshold which corresponds to the case i = 1,
that is, RT1(k) = RT(k) for every k > 2.

Our first result shows that the case i = 2 corresponds to the first notion
of repetition avoidance in conjugates.

Theorem 1. RT2(k) = RTC(k) for every k > 2.

Mousavi and Shallit [5] have considered the binary alphabet and obtained
that RTi(2) = 2i for every i > 1. Our second result considers the ternary
alphabet and gives the value of RTi(3) for every i > 1. This extends the
result of Dejean [2] that RT1(3) =

7

4
and the result of Mousavi and Shallit [5]

that RT2(3) =
13

4
.

Theorem 2.

• RTi(3) =
3i
2
+ 1

4
if i = 1 or i is even.

• RTi(3) =
3i
2
+ 1

6
if i is odd and i > 3.
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2 Proofs

Proof of Theorem 1.

The language of words in Σ∗
k avoiding circular repetitions of exponent at

least e (or strictly greater than e) is a factorial language. As it is well-
known [3], if a factorial language is infinite, then it contains a uniformly
recurrent word w. By Proposition 14 in [5], pexp

2
(w) = cexp(w). This

implies that RT2(k) = RTC(k). �

To obtain the two equalities of Theorem 2, we show the two lower bounds
and then the two upper bounds.

Proof of RTi(3) >
3i
2
+ 1

4
for every even i.

Mousavi and Shallit [5] have proved that RT2(3) = 13

4
, which settles the

case i = 2. We have double checked their computation of the lower bound
RT2(3) >

13

4
. Suppose that i is a fixed even integer and that w3 is an infinite

ternary word. The lower bound for i = 2 implies that there exists two factors
u and v such that uv = te with e > 13

4
. Thus, the prefix t3 of uv is also a

product of two factors of w3. So we can form the i-terms product (t3)i/2−1uv
which is a repetition of the form tx with exponent x = 3

(

i
2
− 1

)

+ e >

3
(

i
2
− 1

)

+ 13

4
= 3i

2
+ 1

4
. This is the desired lower bound. �

Proof of RTi(3) >
3i
2
+ 1

6
for every odd i > 3.

Suppose that i > 3 is a fixed odd integer, that is, i = 2j+1. Suppose that w3

is a recurrent ternary word such that the product of i factors of w3 is never
a repetition of exponent at least 3i

2
+ 1

6
= 3j + 5

3
. First, w3 is square-free

since otherwise there would exist an i-terms product of exponent 2i. Also,
w3 does not contain two factors u and v with the following properties:

• uv = t3,

• u = te with e > 5

3
.

Indeed, this would produce the i-terms product (uv)ju which is a repetition
of the form tx with exponent x = 3j + e > 3j + 5

3
.

So if a, b, and c are distinct letters, then w3 does not contain both u =
abcab and v = cabc and w3 does not contain both u = abcbabc and v = babcb.
A computer check shows that no infinite ternary square-free word satisfies
this property. This proves the desired lower bound. �
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Proof of RTi(3) 6
3i
2
+ 1

4
for every even i.

Let i be any even integer at least 2. To prove this upper bound, it is sufficient
to construct a ternary word w satisfying pexpi(w) 6 3i

2
+ 1

4
. The ternary

morphic word used in [5] to obtainRT2(3) 6
13

4
seems to satisfy the property.

However, it is easier for us to consider another construction. Let us show
that the image of every 7/5+-free word over Σ4 by the following 45-uniform
morphism satisfies pexpi 6

3i
2
+ 1

4
.

0 7→ 010201210212021012102010212012101202101210212

1 7→ 010201210212012101202101210201021202101210212

2 7→ 010201210120212012102120210121021201210120212

3 7→ 010201210120210121021201210120212012102010212

Recall that a word is (β+, n)-free if it does not contain a repetition with
period at least n and exponent strictly greater than β. First, we check

that such ternary images are
(

202

135

+
, 36

)

-free using the method in [6]. By

Lemma 2.1 in [6], it is sufficient to check this freeness property for the image

of every 7/5+-free word over Σ4 of length smaller than
2×

202

135
202

135
−
7

5

< 32. Since

202

135
< 3

2
, the period of every repetition formed from i pieces and with exponent

at least 3i
2
must be at most 35. Then we check exhaustively by computer

that the ternary images do not contain two factors u and v such that

• uv = te,

• e > 3,

• 9 6 |t| 6 35.

Thus, the period of every repetition formed from i pieces and with exponent
strictly greater than 3i

2
must be at most 8. So we only need to check that

pexpi 6
3i
2
+ 1

4
for i-terms products that are repetitions of period at most 8.

Now the period is bounded, but i can still be arbitrarily large, a priori. For
every factor t of length at most 8, we define pexpi,t as the length of a largest
factor of tω that is a i-terms product, divided by |t|. We actually consider
conjugacy classes, since if t′ is a conjugate of t, then pexpi,t′ = pexpi,t. Let t
be such a factor. If, for some even j, we have pexpj+2,t = pexpj,t + 3, then
it means that by appending a 2-terms product to a j-terms product that
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corresponds to a maximum factor of tω, that can only add a cube of period
|t|. This implies that for every k, pexpj+2k,t = pexpj,t + 3k.

We have checked by computer that for every conjugacy class of words
t of length at most 8, there exists a (small) even j such that pexpj+2,t =

pexpj,t + 3. Thus we have pexpi 6
3i
2
+ 1

4
in all cases. �

Proof of RTi(3) 6
3i
2
+ 1

6
for every odd i > 3.

Let us show that the image of every 7/5+-free word over Σ4 by the following
514-uniform morphism satisfies pexpi 6

3i
2
+ 1

6
for every odd i > 3.

0 7→ 01020120210120102120210201210120102012021020121021201020121012

02102012102120210120102012102120102012021020121012010212021020

12102120102012021012010212021020121021202101201020121021201020

12101202102012102120210120102120210201210120102012021020121012

01021202102012102120102012101202102012102120102012021012010212

02102012101201020120210201210212021012010201210120210201210212

01020120210201210120102120210201210212010201210120210201210212

02101201021202102012101201020120210201210120102120210201210212

021012010201210212

1 7→ 01020120210120102120210201210120102012021020121021201020121012

02102012102120102012021020121012010212021020121021201020120210

12010212021020121021202101201020121021201020121012021020121021

20210120102120210201210120102012021020121021201020121012021020

12101201021202102012102120210120102012102120102012021012010212

02102012101201020120210201210120102120210201210212010201210120

21020121021202101201021202102012101201020120210201210212021012

01020121012021020121021201020120210201210120102120210201210212

021012010201210212

2 7→ 01020120210120102120210201210120102012021020121021201020121012

02102012101201021202102012102120102012021012010212021020121021

20210120102012102120102012101202102012102120210120102120210201

21012010201202102012101201021202102012102120102012101202102012

10212010201202101201021202102012102120210120102012102120102012

02102012101201021202102012102120102012021012010212021020121012

01020120210201210212021012010201210212010201210120210201210212

02101201021202102012101201020120210201210120102120210201210212

021012010201210212
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3 7→ 01020120210120102120210201210120102012021020121021201020121012

02102012101201021202102012102120102012021012010212021020121021

20210120102012101202102012102120102012021020121012010212021020

12102120102012101202102012102120210120102012102120102012021012

01021202102012101201020120210201210212010201210120210201210212

01020120210201210120102120210201210212021012010201210212010201

20210120102120210201210212010201210120210201210212021012010212

02102012101201020120210201210120102120210201210212021012010201

210120210201210212

First, we check that such ternary images are
(

3

2

+
, 45

)

-free using the

method in [6]. By Lemma 2.1 in [6], it is sufficient to check this freeness
property for the image of every 7/5+-free word over Σ4 of length smaller

than
2×

3

2
3

2
−
7

5

= 30. Thus, the period of every repetition formed from i pieces

and with exponent strictly greater than 3i
2
must be at most 44. Using the

same argument as in the previous proof, we have checked by computer that
for every conjugacy class of words t of length at most 44, there exists a (small)
odd j such that pexpj+2,t = pexpj,t + 3. Thus we have pexpi 6

3i
2
+ 1

6
in all

cases. �

3 Concluding remarks

The next step would be to consider the 4-letter alphabet. Obviously, RTi+1(k) >
RTi(k) + 1 for every i > 1 and k > 2. Mousavi and Shallit [5] verified that
RT2(4) >

5

2
, so that RTi(4) > i+ 1

2
for every i > 2. We conjecture that this

is best possible, i.e., that RTi(4) = i+ 1

2
for every i > 2. However, a proof of

an upper bound of the form RTi(4) 6 i+ c cannot be similar to the proof of
the upper bounds of Theorem 2. The multiplicative factor of i, which drops
from 3

2
when k = 3 to 1 when k = 4, forbids that the constructed word is

the morphic image of any (unspecified) Dejean word over a given alphabet.
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