
HAL Id: lirmm-02541049
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02541049

Submitted on 12 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Proof of usage: user-centric consensus for data provision
and exchange

Samuel Masseport, Jorick Lartigau, Benoit Darties, Rodolphe Giroudeau

To cite this version:
Samuel Masseport, Jorick Lartigau, Benoit Darties, Rodolphe Giroudeau. Proof of usage: user-centric
consensus for data provision and exchange. Annals of Telecommunications - annales des télécommu-
nications, 2020, 75 (3-4), pp.153-162. �10.1007/s12243-020-00753-8�. �lirmm-02541049�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02541049
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Proof of Usage: User-centric consensus for data provision
and exchange

Samuel Masseport · Jorick Lartigau ·
Benoît Darties · Rodolphe Giroudeau

the date of receipt and acceptance should be inserted later

Abstract This paper presents a new consensus algorithm, Proof of Usage
(PoU), for the blockchain technology. This consensus is introduced for permis-
sioned (or private) blockchains and is designed for a user-centric personal data
market. This market is subject to specific regulations with which conventional
blockchains fail to comply. Proof of Usage aims to promote a new paradigm
dedicated to usage incentivization, valuation, and control of user data in vari-
ous sectors, such as banking and insurance. Other consensuses such as Proof of
Stake or historical Proof of Work do not encourage coin spending and usage (in
fact, Proof of Stake promotes the opposite). However, the value of the currency
mainly depends on its use. This paper first introduces a contextualization of
blockchain technology and decentralized consensus models. The motivation
is then discussed for a new model of personal data exchange in a decentral-
ized but supervised environment. The PoU protocol and its process flow are
defined in detail. Furthermore, the paper explores two different approaches
regarding the reward mechanism and the incentive model. Finally, the paper
focuses on security requirements and how PoU meets such requirements in a
permissioned-based blockchain system.

Samuel Masseport
Pikcio SAS, Montpellier, France
LIRMM, University of Montpellier, CNRS, Montpellier, France
E-mail: samuel.masseport@{lirmm.fr,pikcio.com}

Jorick Lartigau
Pikcio SAS, Montpellier, France
E-mail: samuel.masseport@pikcio.com

Benoît Darties
LIRMM, University of Montpellier, CNRS, Montpellier, France
E-mail: darties@lirmm.fr

Rodolphe Giroudeau
LIRMM, University of Montpellier, CNRS, Montpellier, France
E-mail: rgirou@lirmm.fr

1 Background

In November 2008, the first fully decentralized cryptocurrency, Bitcoin, was
introduced by an unidentified person or group acting under the pseudonym
of Satoshi Nakamoto [1]. To this day, Bitcoin is the most widely adopted
and reliable economic system built on a peer-to-peer network, enabling online
payments directly from one party to another without a sole fiduciary entity.
This paper was the starting point for Blockchain technology [2]. The Bitcoin
consensus is based on a Proof of Work (PoW) protocol [3, 4] that protects
the network from denial-of-service (DoS) attacks and double-spending. New
transactions are included by adding blocks to the blockchain. Each block is
added by a single node determined by the system. In a PoW protocol, nodes
(named “miner”) compete to add a block to the current chain by trying to solve
a hard asymmetric mathematical problem.1 The Bitcoin blockchain rewards
the miner when it adds a block to the current chain. Such an incentive model
encourages miners to use their computing power to improve the defence of
the network. However, PoW has two mains issues: the need for a significant
amount of computing power and its limited scalability in terms of transaction
processing (currently around seven per second on the Bitcoin network). Intu-
itively, a node with high computing power is most likely to be selected by the
system. The rise of Bitcoin has led to the emergence of new crypto-currencies
and the implementation of technologies to overcome the limitations of PoW.

As Bitcoin was often criticized for its high energy consumption due to the
fierce competition to add a block, a new consensus protocol was proposed: the
Proof of Stake (PoS) algorithm. It was introduced by Sunny King and Scott
Nadal in 2012 [5]. Rather than using the computing power of miners to add
blocks to the current chain and secure the network, King and Nadal defined an
alternative method called “staking”, in which a deterministic algorithm chooses
a network participant (i.e., a node) to seal the current block. The selection is
based on the number of coins in each node’s possession or “stack”. For example,
if there are 100 coins on the network, a node holding 10 coins will have a 1-
in-10 chance of being selected as the block miner and earning the reward.
Nodes holding 10 coins are 10 times more likely to close and add blocks than
nodes with a current stack of one. Thus, the more a node stacks, the higher
the closing probability. This results in a model where nodes are encouraged to
stack their coins rather than spend them.

New consensus models have appeared over time, proposing new incentive
models and different objectives. For instance, the Proof of Activity (PoA)
algorithm by Bentov et al. [6] is a merging of the concepts of both PoW and
PoS with a redistribution of the gathered fees to a set of randomly selected
stakeholders. In the PoA consensus, miners use their computing power to try
to add blocks to the current chain state. However, the miner solving the PoW
will not earn the full pool of fees. A fixed number n of stakeholders are selected

1 An asymmetric mathematical problem is a mathematical problem that is hard to solve
but the solution of which is easy to verify.

using the follow-the-Satoshi (FTS) algorithm,2 using the hash of the previous
block concatenated with n fixed suffix values as input. All selected stakeholders
sign the block in a given timeframe, one after another, to prove their activity.
The selected stakeholders are registered within the block. The fees assimilated
as rewards are redistributed between the miner and the selected stakeholders.
The PoA model incentivizes nodes to be fully available (i.e., connected) to sign
new blocks and earn associated rewards.

An improvement of the PoA model could be to encourage spending over
stacking. This could be a fundamental criterion for the sustainability of the
currency. For instance, Proof of Importance aims to reward usage over stack-
ing. It is a consensus algorithm introduced by NEM [7] and based on PoS and a
scoring system. To be eligible to close a block, a node needs to have in its stack
a minimum of 10,000 coins. Additionally, each node has a score that increases
according to the number of coins in its stack and the number of transactions
initiated within the last 30 days. The larger and more frequent transactions
processed, the greater the impact on the Proof of Importance score. Thus, the
closing node will be selected according to its score, which will be reset upon
block submission.

Proof of Importance is a consensus algorithm that encourages nodes to
exchange their coins through public infrastructure (i.e., a public blockchain),
where any node has read and write access to the distributed ledger. Public
blockchains are fully decentralized, meaning no single person has control over
the network. Two examples of public blockchains are Bitcoin [1] and Ethereum
[8]. Usually in public blockchains users are pseudonymized, which does not
necessarily mean anonymity. Indeed, public blockchains record transactions in
a fully shared, decentralized ledger that by definition cannot offer privacy of
network operations [9, 10].

Permissioned blockchains (or private blockchains) work similarly but with
access controls that restrict those that can join the network. Permissioned
blockchains have a single or multiple entities who control the network, such
as third parties who regulate user transactions. A well-known example of a
permissioned blockchain is Hyperledger [11]. It should also be noted that con-
sortium blockchains exist. They represent an intermediate model, in which the
participating infrastructures are controlled by different entities, unlike private
blockchains, in which a single operator manages the platform.

In this paper, we propose the Proof of Usage (PoU) as a consensus that
encourages nodes (i.e., users or participants) to spend coins for service delivery.
By using their coins, they sustain the usage of a stable currency over time in
an environment that is both permissioned and distributed. This consensus is
introduced for PikcioChain [12, 13]. The paper is organized as follows. The next
section discusses the motivations and reasons to use a permissioned blockchain
environment. Section 3 describes the protocol of the consensus, and Section
4 discusses different approaches to the reward system. The security of PoU is

2 FTS is an algorithm that picks a coin and selects its owner as a leader. The more coins
a node has, the more likely it will be selected.

Fig. 1 Model of data exchange between bank, insurance, and user.

presented in Section 5, after which the conclusion provides a summary of what
has been accomplished and a discussion of future research directions.

2 Motivations

Personal and identity data are the backbone of any service delivery, espe-
cially in the digital sphere. Each time a customer wants to take out a loan
(Fig. 1), he or she must provide a substantial amount of personal data to
the bank. Furthermore, banks usually require a complete identity evaluation
using the customer’s data (identity card, name, age, address, etc.). The data
are processed, crossed, and finally validated to establish the customer’s digital
identity. When this same customer applies for insurance cover, however, he or
she will be required to provide all the information again because in most cases
there is no direct communication link between the entities (bank and insurance
firm). As a result, both the bank and the insurance provider check the data
before validating the customer’s identity. This process is both time-consuming
and costly, with no particular return on investment for companies, which leads
to poor customer experience.

On the other hand, data, especially personal data, have become a vast mar-
ket powered by mass adoption of digital services. As a result, service providers
buy large amounts of data to try to attract new consumers. Generally, the
data are bought from third parties, such as social networks or email providers,
and the rightful owner (i.e., the user) is completely excluded from the trans-
action and cannot apply any sort of control. Since the user’s consent is not
required (Fig. 2) or drowned in over-complicated terms of use, current data
business models do not include users, despite them being the provider of the
value. Only data sellers or advertising agencies earn money from users’ data.
To develop a more user-centric model, giving users control over their data, two
directives can be proposed:

1. Data sellers, such as social networks, redistribute a part of their incomes
to their users, which means a reduction in their profits.

2. The data valuation costs payed by data buyers, such as advertising agen-
cies, are increased to reward their users.

Fig. 2 Model of data exchange between a social network, an advertising agency, and a user.

Such a model could be described as Utopian. If such a model can be proven
to be both a carrier of more qualitative data and user-controlled in accordance
with current regulations, such as the General Data Protection Regulation [14],
it could enable a more virtuous data-exchange process.

The model proposed in this paper (Fig. 3) is a user-centric model of data ex-
change between several entities (e.g., banks and insurance providers) in which
the user can control the sharing of his or her data. This model is an alternative
to the model given by Fig. 1 and is based on the model proposed in Fig. 2
and empowered by the user’s control of his or her own data. In this model, a
user still has to give his or her personal data to the bank to take out a loan,
and the bank still has to use the data to verify the customer’s digital identity.
However, when the same user applies for insurance cover, the insurance agency
can request the certified data from the bank in exchange for payment (upon
the user’s approval) that is redistributed directly to the user. In such a model,
companies (e.g., banks and insurance providers) can access certified data (af-
ter purchase), which involves less processing cost and more importantly saves
time, leading to a better user experience. The company that processed and cer-
tified the user’s data now receives a return on investment for their validation
work. Moreover, directly including the user in the authorization process and
giving the user control over the transactions with his or her personal data is a
strong trust marker in the customer-business relationship. Such processes can
be fully automated and decentralized in a consensus protocol. Hence, PoU is
introduced to both incentivize usage and create new benefits for data owners
(i.e., private individuals), enabling a more virtuous business model, a more
trust-based relationship, and increases the value of the data (i.e., through the
certification).

Note that this model is only viable in a permissioned blockchain, given
the holding of sensitive information within the distributed ledger technology.
The General Data Protection Regulation aims for more effective and more
virtuous data governance with which public blockchains cannot comply (see
the General Data Protection Regulation [14] for more details).

Fig. 3 Our model of data exchange between a bank, an insurance provider, and a user.
“Certified data” are the personal data of the user that have been verified by the bank.

3 Description of the protocol

Proof of Usage can be regarded as an extension of the work of Bentov et al.
[6] on PoA, where users are incentivized to exchange coins rather than simply
be connected. This section describes the PoU process flow. Proof of Usage is
based on the PoS selection principle. However, its scope does not extend to
the global supply and dispatch of coins to the stakeholders; rather, it concerns
the overall number of exchanges processed within the last block of the current
chain.

In a permissioned blockchain, joining the network requires access to be
granted by administrators, which significantly reduces the risk of external at-
tacks on the system but does not completely remove it. In fact, before becom-
ing a participant of the blockchain, a party must complete a full identification
process, regardless of whether the party is a private individual or a company.
Administrators can then accept or refuse the party based on the identifica-
tion process, which includes risk analysis. Indeed, in the case of PikcioChain,
the network relies on a know-your-customer (KYC) process [15] that enforces
the international anti-money-laundering laws [16]. Participant and validator
access is therefore restricted and controlled. A given entity cannot create mul-
tiple identities to take over the network governance.

On the network, there is only a fixed number of validators, called mas-
ternodes, which verify transactions and earn rewards for adding blocks to the
chain. Only masternodes share the ledger and are therefore the sole entities
with writing rights. Any node can become a masternode by making a request
to the administrators with an amount of coins to pawn. However, as there is a
fixed number k of masternodes, not everyone can be a masternode at the same
time, only the k nodes that proposed the most coins will become masternodes
(as in an auction). If a masternode tries to corrupt the network, administra-
tors can replace it with another, and its pawned coins will be removed. If a
masternode no longer wants to be a masternode, it must send a request to
the administrator to be replaced and retrieve its coins. Otherwise a mastern-
ode remains a masternode as long as it exhibits “good” behaviour towards the
network’s best interests (i.e., as long as it performs reliably). The number k
depends on what the administrators want to prioritize on the network. The

larger k is, the more decentralized and slower the network; the smaller k is,
the more centralized and faster the network. To initialize the network, the
administrators generate the k masternode addresses, each one corresponding
to a 256-bit number.

Consider a set M of masternodes (numbered by m0, . . . ,m|M |−1) as val-
idators and a set U of nodes. Additionally, connections between masternodes
form a complete graph (i.e. each masternode is connected to all the others).

Blockchain can be seen as a state transition system in which a state consists
of the ownership status of all existing tokens or coins and a state transition
function that inputs a state and a set of transactions and outputs a new state.
Let S be a state of the blockchain and changeState(S, T) = S′ a state transi-
tion function that takes as input S with a set of transactions T (numbered by
t0, . . . , t|T |−1) and outputs S′ as the new state. For example changeState({A:
25 tokens; B: 10 tokens},{A sends 20 tokens to B}) ={A: 5 tokens; B: 30
tokens}

In PoU, the changeState function is defined as follows:

1. Masternode selection: select ms ∈M , the selected masternode that will
add the next block B to the current chain.

2. Transactions selection:ms selects some transactions in its current pend-
ing transaction stack to build a set of validated transactions TB .

3. Lucky nodes selection: ms selects “lucky nodes” - the nodes (i.e., users)
that will earn the fees from the current block.

4. Block sharing: ms creates the block and adds it to the blockchain to
broadcast it over the network.

The changeState function is a cyclic function executed at regular intervals.
In the following parts, the SHA-256 hash function is used. This function returns
a 256-bit number.

The following sections describe the different protocol phases.

3.1 Masternode selection

Masternode selection is a process that consists of selecting the masternode ms

(∈M) that will create, sign, and add a new block to the blockchain. To select
ms, the hash of the previous block is compared to the set of masternode IDs
(Fig. 4). The masternode with the ID closest to the hash from the previous
block is selected to be the next validator (i.e., the masternode). Therefore, ms

seals and pushes the next block. Note that all masternodes select the same ms

without broadcasting it, as each of them knows the hash of the previous block
and the set of masternode IDs.

As shown in Fig. 4 masternodes do not have the same probability of being
selected even if the hash function is evenly distributed. For example, here, m1

is less likely than m0 or m2 to be selected. This should not be regarded as
an issue, since masternode governance is auctioned. The administrator gives
the address with the greatest chance of being selected to the masternode that

Fig. 4 Masternode selection. In this example, m|M|−2 is selected to seal and add the
current block. (0)256 and (1)256 respectively correspond to the lower and higher bounds of
the output of the SHA-256 hash function.

has pawned the most coins. As a result, masternodes that have pawned more
coins have a higher probability of being selected than masternodes that have
proposed fewer coins.

As mentioned previously, the changeState function is a cyclic function exe-
cuted at regular intervals. If the selected masternode ms does not share a valid
block after a fixed number of executions, the function will consider it unavail-
able. The masternode selection process will omit its ID in the next execution.
This condition prevents the network from inflating in a pending state where
ms is not available for any reason (disconnection, network latency, system
failure, etc.).

3.2 Transactions selection

In this work, we consider PoU as a supplier of two distinct types of transac-
tions: classic transactions Tx and data transactions Tx-data, as depicted in
Fig. 5.

1. A classic transaction is a transaction in which node A gives a certain
number of coins or tokens to node B.

2. A data transaction is a transaction of monetized data using the system
coins; for example, business A purchases in coins the certified data of user
C from another business B upon the user’s consent (i.e., A cannot initialize
the transaction until C signs it).

When a node initializes a transaction, it sends its request to all mastern-
odes. When a data transaction is initialized and accepted by the data owner,
it will remain pending until the node that paid the coins receives the certi-
fied data. This pending state prevents malicious nodes from trying to receive
payment without sending the data.

Each masternode stores locally a transaction stack that contains the trans-
actions waiting to be written on the chain. When masternodes receive a re-
quest, they make sure the transaction is valid by verifying the node signature
and the current balance in hold. If the transaction is validated, the masternode
adds it to its current transaction stack.

When the system selects a masternode ms to create a new block B, ms

adds transactions from its transaction stack to the set TB for the current

Fig. 5 The transactions model used in PoU. A classic transaction Tx (left) includes only a
sender, a receiver, and an amount; a data-transaction Tx-data includes a buyer, a seller, an
amount, and the identity of the owner of the data.

Fig. 6 Example of set of transactions of a block.

block (see example in Fig. 6). Ideally, ms must process transactions in the
order they are received by its stack (as in a queue). The inability of others to
verify this (because the communication is asynchronous) cannot be regarded
as an issue, as the order does not affect the system and transactions omitted by
the selected masternode ms can be included later by another masternode. For
various technical reasons and to limit the overall size of a block, the number
of transactions in a block is restricted.

3.3 Lucky nodes selection

As in the PoA protocol, PoU selects some nodes (i.e., users), called lucky
nodes, to be given a share of the adding block reward. In PoA, a selected node
needs to be online when the block is added to receive the reward. In PoU, the
user (or the data owner in the case of a data transaction) must be at the origin
of a transaction in the added block. Let us consider a set of n lucky nodes that
shares the reward of the block with the selected masternode ms. Selection of
the n lucky nodes is based on the FTS algorithm. To use the FTS algorithm,
consider that each coin of the network is signed and traceable. The FTS al-
gorithm in PoS is used to select a node by selecting a coin in the network
supply. The owner of the selected coin is the lucky node. In PoU, masternodes
generate n hashes from the hash of the previous block concatenated succes-

Fig. 7 Example of one lucky node selection in the block from Fig. 6 with transaction fees
of 1%. The first line corresponds to the transaction fees of the block from Fig. 6 added one
by one with the initiator of the corresponding transaction (or the data owner for a data
transaction). (0)256 and (1)256 respectively correspond to the lower and higher bounds of
the output of the SHA-256 hash function. Here, node E owns the coin determined by the
hash of the hash of previous block concatenated with a salt, and it receives the transactions
fees.

sively with n salts (known by all masternodes).3 These hashes are scaled to the
total transaction fees of the current block. The n hashes are compared to the
transaction fees to select n coins and then n transactions. The n nodes that
have initiated these transactions are the lucky nodes and earn a share of the
reward. Note that a transaction can be selected more than once, and the same
node can earn several shares. As the selection of lucky nodes is deterministic
and all masternodes know the hash of the previous block and the salts, each
masternode selects the same lucky nodes without communicating and clogging
the network.

Regarding the number n of nodes to be selected, in this particular case, PoU
selects a fixed number of nodes (one or more) or a number scaled according
to the block’s number of transactions or the total amount of exchanged coin
in it.

Let us consider the selection of one lucky node from the previous block
given by Fig. 6 and a transaction fees of 1% of the total amount in the trans-
action stack TB . The lucky node selection is performed as shown on Fig. 7.
The graduated line on the top represents the transaction fees of the block (i.e.,
1% of the amounts of each transaction of the block given by Fig. 6). The hash
of the hash of the previous block concatenated with a salt is scaled to the sum
of the transaction fees to select a transaction. The initiator of the selected
transaction (or the data owner in the case of a data transaction) is the lucky
node. In this particular case, node E is selected and receives the transaction
fees as a reward for using the service.

3.4 Block sharing

At this stage, ms has validated the transactions in its stack to create the TB

set to include in block B. Now, ms builds the header of the block, containing
3 In cryptography, a salt is data that are used as an additional input to a one-way function

that hashes data. Salts are used to safeguard passwords in storage, but here it is used to
generate multiple hashes from a single input.

Fig. 8 Construction of the Merkle root of TB . The function H() corresponds to any hash
function.

the hash of the previous block (i.e., Hash(B − 1)), the Merkle root [17] of TB

(Fig. 8), the ID list of selected lucky nodes, and the timestamp of B. Finally,
ms signs the header with its private key to lock and secure the header. Note
that the hash of a block B corresponds to the hash of its header concatenated
with TB and with the hash of the previous block B − 1.

At this point, ms has successfully sealed the block B and added it to its
chain (Fig. 9). It then broadcasts the new block to all other masternodes. When
a masternode receives a block from another, it must validate its header and
its content before adding it to its chain. A receiving masternode mr considers
a block B as valid if and only if the following conditions hold:

1. the previous hash in block B corresponds to the hash from the last block
of the current chain of mr,

2. the ID of the selected masternode ms is indeed the closest ID from the
previous block hash (i.e., ms is the rightful validator),

3. all transactions within B (i.e., all transactions of TB) are valid (there is a
signature and sufficient funds), and

4. the selection of lucky nodes is not biased (i.e., ms rewards the rightful
nodes).

After receiving a valid block, mr adds it to its chain and deletes processed
transactions from its transaction stack. Condition (1) cannot be fulfilled in the
following two cases: (i) ms tries to share a block with false information and
(ii) mr is not up-to-date and its last block is an older block in the chain of ms.
Case (ii) can occur if mr did not receive previous block(s) or if it reconnects
to the network after some inactivity or failure. If condition (1) is not met, mr

proceeds to a recovery protocol. Let us consider the hash h of the last block
B of mr. The recovery protocol proceeds as follows:

1. mr requests the hash of the current block from all masternodes.
2. All masternodes send the hash of their current block to mr.
3. mr selects the hash with the most occurrences h′ and compares it with

h. If h = h′ the masternode in recovery is up-to-date and the protocol

Fig. 9 Structure of the blockchain.

is terminated (corresponding to case (i)). Otherwise, the recovery process
continues as follows.

4. mr requests all the missing blocks starting from its B from any masternode
with rightful last sealed block (i.e., any masternode that has sent h′). The
blocks are numbered, and mr can request the blocks between block B and
the last block (corresponding to the hash h′).

5. mr validates block by block from B to the last block, as described previ-
ously.

This protocol allows mr to rebuild the missing parts of the ledger from its
last-known block to the current block of the chain. Note that the blockchain is
up-to-date when at least most of the masternodes are up-to-date. This safety
properties is a direct consequence of the recovery protocol. When masternodes
that are not up-to-date execute the recovery protocol, they will request the
hash of the current block and they will be updated according to the hash that
appears the most often.

4 Transaction fees

This section explores the reward and incentive model; that is, how to incen-
tivize masternodes to process transactions and blocks and reward lucky nodes
selected within the current block. Rewards are issued directly from the selected
masternode to the lucky nodes.

4.1 Model with transaction fees

Common reward systems rely on transaction fees. When a node spends coins
for a given transaction, a percentage of the transaction amount is extracted as
a reward. Thus, every time the selected masternode ms adds a block, it earns a
percentage of the total reward of the current block and equitably redistributes

the rest to the lucky nodes. Such a system usually works with a deflationary
currency, but it can be adapted to an inflationary currency by generating or
minting new coins for rewards.

The main problem with systems based on transaction fees concerns “classic
nodes” and private individuals, who are not necessarily familiar with such
models and crypto-currency ecosystems in general. In the common fiduciary
bank model, when a user spends 10 coins, the recipient receives the whole sum
and therefore does not expect to pay additional fees for the service.

4.2 Model without transaction fees

Another reward system involves creating the reward. In this system, fees are
calculated as described in the previous approach as a percentage of the trans-
action amount. Note that such a system is inevitably inflationary, but when a
node A exchanges 10 coins to another B, A pays 10 coins and B receives 10
coins.

However, this approach cannot prevent nodes from spamming large amounts
of transactions across multiple accounts. Hence, such malicious nodes will not
spend any fees and could try to participate in the lottery during each block’s
sealing process.

A solution is to limit transactions for each node over time, as in any con-
ventional banking system. This limit can be defined according to the number
of transactions and the total amount allowed of transactions within a given
timeframe. If a node spends more than the authorized limit, transaction fees
will be withdrawn. This limit prevents malicious nodes because they will start
to spend fees that they may never retrieve.

From our point of view, minting new coins based on a transaction-fee sys-
tem with limit control is an approach that can improve the usage and under-
standing of private individuals. This system is a balanced compromise between
accommodating “common users” who do not want to pay fees despite their low
usage and tackling nodes that are trying to corrupt the system.

5 How PoU deals with security threats

This section describes how PoU prevents attacks from malicious nodes to build
a resilient and reliable consensus. Each of the following four subsections de-
scribes one type of attack.

Note that attacks from masternodes are not beyond the scope of this paper:
such nodes are normally trusted, and the risk of an attack from them is reduced
by several mechanisms (KYC; i.e., the administrator knows the real identity of
masternodes, pawned coins, etc.). Moreover, PoU is designed for permissioned
blockchains only and has strong user authentication to engender trust (users
cannot hide behind pseudonyms). As a result, a given entity cannot create
multiple identities on the blockchain.

5.1 Denial-of-service attack

A denial-of-service (DoS) attack, or flooding attack, involves rendering a ma-
chine or network resource unavailable to its intended nodes by flooding it with
superfluous requests. Distributed DoS (DDoS) attacks are an extension of DoS
attacks in which the targeted resource is flooded from many different sources,
making it impossible to stop the attack simply by blocking a single source.
Both DoS and DDoS attacks have become one of the main Internet security
issues [18] and represent a serious cost to the online industry.

Such attacks to a blockchain ecosystem mainly involve flooding the network
with dummy transactions to increase the verification time of transactions and
blocks. The KYC system, however, prevents a user from creating multiple
identities (and hence nodes) and prevents a DDoS attack (unless a group of
nodes choose to unite). Moreover, the KYC system enables the administrator
to know the identities of all real users and block the malicious nodes from
performing DoS attacks (masternodes can easily spot and blacklist the node).
In this case, the node is excluded from the network and loses its coins.

5.2 The problem of double-spending

Double-spending is a problem in which the same digital coins can be spent
more than once. Double-spending is closely related to the 51% attack, in which
a malicious node can rewrite the ledger if it has enough power on the network.
If a node (or a set of nodes) gathers more than 50% of the writing capacity of
the network, it can write on the blockchain faster than all other nodes of the
network and thus rewrite the chain from a past block to a new current block.
In this case, all transactions between this past block and the new current block
are invalidated.

In PoU, the writing power is possessed by masternodes. They are the only
ones that can launch a double-spending attack. In this section, we assume
that masternodes can be trusted. However, what happens if one (or a small
number) of them is malicious? Masternodes earn coins by adding valid blocks
to the chain, and they can be banished and replaced if they fail to fulfil their
goal. Indeed, a masternode loses coins by not adding blocks, leading to it
being banned from the masternode pool. As long as more than 50% of the
masternodes are trusted (and up-to-date), a double-spending attack cannot
occur.

5.3 Power of the users pool

Generally, distributed systems suffer from groups of nodes (called a “pool of
nodes”) that join forces to increase their power over the blockchain, depending
on the type of consensus in place. For example, in PoW, the power of a node is
its computing capacity. As in PoS, the power of a node depends on the number

of coins in each node’s balance. In PoU, nodes that have the power are nodes
that exchange coins. Indeed, to increase their chances to being selected as
lucky nodes, nodes need to increase the total amount of their transactions.
Thus, if nodes of a pool want to be profitable and not pay fees, they need to
stack coins on a given account and move them from one account to another
to generate large transactions without exceeding the transaction limit. Let us
look at what happens if a pool of nodes is malicious towards other participants.
Malicious nodes can wait for the moment when they have all the pool coins on
their public key and therefore retain them. Nodes of the pool cannot prevent
this kind of behaviour, which creates a high-risk environment. Pools of nodes
are still possible, but trust is the essential factor in their viability, and so it is
hard to create a large pool.

5.4 Fault tolerance from masternodes

Let us consider faulty masternodes that can disconnect or suffer from network
latency. In PoU, when a masternode receives a block with a hash that does
not match the hash of its last block (not up-to-date due to a disconnection),
the masternode executes a recovery protocol. Indeed, the masternode sends
requests to all other masternodes for the hashes of their last blocks and updates
using the relative majority. Since a relative majority of nodes need to agree
on the last block hash, the system can be considered safe. Once back on the
network, faulty masternodes can retrieve all missing blocks from any proven
up-to-date masternode from the majority pool.

6 Conclusion

This paper describes a new consensus algorithm that encourages participants
to spend coins and share data for service provision rather than stacking. It is
important to promote and sustain the usage of a stable currency over time in
an environment that is both permissioned and distributed.

In its first version, Proof of Usage is open-source and accessible.4 Currently,
there are two iterations of the PikcioChain network running PoU:5:

– The test net, used for tests, with nine masternodes entirely governed by
Pikcio.

– The main net, where any nodes can buy, sell, or exchange data. It includes
16 masternodes governed by 16 different entities, either private individuals
or companies.

The changeState function of the two blockchains runs at regular intervals
of 20 seconds. If the selected masternode does not share a valid block after
two executions (i.e., 40 seconds), the function will consider the masternode

4 https://github.com/Pikciochain/Proof_of_Usage
5 https://monitor.pikciochain.com/

unavailable. At best, the test net achieves a little under a hundred transactions
per second. The main net does not achieve as many transactions because the
demand is insufficient. For more details, the entire test net and its transactions
are available.6

From our point of view, the model described in Section 2 is a viable al-
ternative to current data-exchange models, and PoU is a solution to create a
reliable and scalable environment using a user-centric data-sharing model.

The next step will be to adapt the PoU consensus for public blockchains.
Masternodes need to be rethought to guarantee the integrity of the blockchain
even in the event that one or more masternode is malicious.

References

1. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system (2008)
2. Z. Zheng, S. Xie, H. Dai, X. Chen, H. Wang, in Big Data (BigData Congress), 2017

IEEE International Congress on (IEEE, 2017), pp. 557–564
3. C. Dwork, M. Naor, in Annual International Cryptology Conference (Springer, 1992),

pp. 139–147
4. M. Jakobsson, A. Juels, in Secure Information Networks (Springer, 1999), pp. 258–272
5. S. King, S. Nadal, self-published paper (2012)
6. I. Bentov, C. Lee, A. Mizrahi, M. Rosenfeld, ACM SIGMETRICS Performance Evalu-

ation Review (2014)
7. N. company, Nem, technical reference, version 1.2.1. Tech. rep., NEM company (2018).

https://nem.io/wp-content/themes/nem/files/NEM_techRef.pdf
8. V. Buterin, et al., white paper (2014)
9. E.B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, M. Virza, in 2014

IEEE Symposium on Security and Privacy (SP) (IEEE, 2014), pp. 459–474
10. I. Miers, C. Garman, M. Green, A.D. Rubin, in Security and Privacy (SP), 2013 IEEE

Symposium on (IEEE, 2013), pp. 397–411
11. C. Cachin, in Workshop on Distributed Cryptocurrencies and Consensus Ledgers, vol.

310 (2016), vol. 310
12. J. Lartigau, F. Bucamp, D.C. de Casaubon. Pikciochain: a new eco-system for personal

data (2018)
13. P. Company. Pikciochain, the personal data chain, white paper version 2.0 (2018).

https://www.pikcio.com/pikciochain-whitepaper
14. G.D.P. Regulation, Official Journal of the European Union (OJ) (2016). https://eur-

lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L:2016:119:FULL
15. M. Gill, G. Taylor, British Journal of Criminology 44(4), 582 (2004)
16. W.H. Muller, C.H. Kalin, J.G. Goldsworth, Anti-Money Laundering: international law

and practice (John Wiley & Sons, 2007)
17. R.C. Merkle, in Conference on the theory and application of cryptographic techniques

(Springer, 1987), pp. 369–378
18. Q. Wang, T. Dunlap, Y. Cho, G. Qu, (2017), pp. 1–6. DOI 10.1109/WOCC.2017.

7928974

6 https://explorer.testnet.pikciochain.com/#/

