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Abstract

It is known that the mutual information, in the sense of Kolmogorov complexity, of any pair of strings x and y

is equal to the length of the longest shared secret key that two parties can establish via a probabilistic protocol with

interaction on a public channel, assuming that the parties hold as their inputs x and y respectively. We determine

the worst-case communication complexity of this problem for the setting where the parties can use private sources of

random bits.

We show that for some x, y the communication complexity of the secret key agreement does not decrease even

if the parties have to agree on a secret key the size of which is much smaller than the mutual information between x

and y. On the other hand, we discuss a natural class of x, y such that the communication complexity of the protocol

declines gradually with the size of the derived secret key.

The proof of the main result uses the spectral properties of appropriate graphs and the expander mixing lemma,

as well as information-theoretic techniques, including constraint information inequalities and Muchnik’s conditional

descriptions.

A preliminary version of this paper was published in the proceedings of MFCS 2020. In the present version we give

full proofs of all theorems and get rid of the assumption that the number of random bits used in the communication

protocols is polynomial.

1 Introduction

In this paper we study communication protocols that help two remote parties (Alice and Bob) to establish a common

secret key, while the communication is done via a public channel. In most practical situations, this task is achieved

with the Diffie–Hellman scheme, [8], or other computationally secure protocols based on the assumptions that the

eavesdropper has only limited computational resources and that some specific problem (e.g., the computing of the

discrete logarithm) is computationally hard. We, in contrast, address the information-theoretic version of this problem

and assume no computational restriction on the power of the eavesdropper. In this setting, the problem of the common

secret key agreement can be resolved only if Alice and Bob possess since the very beginning some correlated data. In

this setting, the challenge is to extract from the correlated data available to Alice and Bob their mutual information and

materialize it as a common secret key. Besides the obvious theoretical interest, this setting is relevant for applications

connected with quantum cryptography (see, e.g., [7, 14]) or biometrics (see the survey [15]).

The problem of the secret key agreement was extensively studied in the classical information theory in the formal-

ism of Shannon’s entropy (this research direction dates back to the seminal papers [1, 22]). In our paper, we use the

less common framework of algorithmic information theory based on Kolmogorov complexity. This approach seems

to be an adequate language to discuss cryptographic security of an individual key (while Shannon’s approach helps

to analyse properties of a probability distribution as a whole), see [3]. Besides, Kolmogorov complexity provides a

suitable framework for the one shot paradigm, when we cannot assume that the initial data were obtained from an

ergodic source of information or, moreover, there is possibly no clearly defined probability distribution on the data

sources.

Thus, in this paper we deal with Kolmogorov complexity and mutual information, which are the central notions of

algorithmic information theory. Kolmogorov complexity C(x) of a string x is the length of the shortest program that
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prints x. Similarly, Kolmogorov complexity C(x|y) of a string x given y is the length of the shortest program that

prints x when y is given as the input. Let us consider two strings x and y. The mutual information I(x : y) can be

defined by the formula I(x : y) = C(x) + C(y) − C(x, y). Intuitively, this quantity is the information shared by x
and y. The mutual information between x and y is equal (up to logarithmic additive terms) to the difference between

the absolute and the conditional Kolmogorov complexity:

I(x : y) ≈ C(x) − C(x|y) ≈ C(y)− C(y|x)

(see below the discussion of the Kolmogorov–Levin theorem). The “physical” meaning of the mutual information is

elusive. In general, the mutual information does not correspond to any common substring of x and y, and we cannot

materialize it as one object of complexity I(x : y) that can be easily extracted from x and separately from y. However,

this quantity has a sort of operational interpretation. The mutual information between x and y is essentially equal to

the size of a longest shared secret key that two parties, one having x and the other one having y, and both parties also

possessing the complexity profile of the two strings can establish via a probabilistic protocol:

Theorem 1 (sketchy version; see [30] for a more precise statement). (a) There is a secret key agreement protocol that,

for every n-bit strings x and y, allows Alice and Bob to compute with high probability a shared secret key z of length

equal to the mutual information of x and y (up to an O(log n) additive term).

(b) No protocol can produce a longer shared secret key (up to an O(log n) additive term).

In this paper we study the communication complexity of the protocols that appear in this theorem.

The statement of Theorem 1 in the form given above is vague and sketchy. Before we proceed with our results,

we must clarify the setting of this theorem: we should explain the rules of the game between Alice, Bob, and the

eavesdropper, and specify the notion of secrecy of the key in this context.

Clarification 1: secrecy. In this theorem we say that the obtained key z is “secret” in the sense that it looks random.

Technically, it must be (almost) incompressible, even from the point of view of the eavesdropper who does not know

the inputs x and y but intercepts the communication between Alice and Bob. More formally, if t denotes the transcript

of the communication, we require that C(z|t) ≥ |z| − O(1). We will need to make this requirement even slightly

stronger, see below.

If an n-bit string z is incompressible in terms of Kolmogorov complexity, i.e., if

C(z | all publicly available information) ≥ n−O(1),

this z seems to be a suitable secret key for many standard cryptographic applications. Indeed, if any deterministic

algorithm A produces a list of strings, then a string z whose complexity is close to n can appear in this list only at a

position ≥ 2n−O(1) (z can be found given A and the index of z in the list; such a description should not be shorter

than n−O(1), so the binary expansion of the index must be long enough). This means that any attempt to brute force

this secret key will take Ω(2n) steps before we arrive to the value z. Also, it can be shown that for any computable

distribution P
Prob[a randomly sampled value is equal to z] ≤ 2−n+O(logn)

(see the relation between Kolmogorov complexity and the a priori probability, e.g., in [32, Section 4.5]), which means

that any attacker trying to randomly guess the value of the secret key would need on average ≥ 2n−O(logn) false

attempts before z is revealed. In other words, the standard properties of Kolmogorov complexity guarantee that any

naive attempt to crack such a key (deterministically or with randomization) would take exponential time, so this z
could be, for example, a good code for a safe with combination lock. A more systematic discussion of the foundations

of cryptography in terms of Kolmogorov complexity can be found in [3].

Incompressible strings are abundant. For every string t and for every n, for a fraction ≥ 1 − 1/2c of strings

z ∈ {0, 1}n we have C(z|t) ≥ n − c. Thus, we can produce an incompressible z by tossing an unbiased coin.

However, Kolmogorov complexity is incomputable, and one cannot provide a certificate proving that some specific z
has large Kolmogorov complexity.

Clarification 2: randomized protocols. In our communication model we assume that Alice and Bob may use addi-

tional randomness. Each of them can toss a fair coin and produce a sequence of random bits with a uniform distribution.
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The private random bits produced by Alice and Bob are accessible only to Alice and Bob respectively. (Of course,

Alice and Bob are allowed to send the produced random bits to each other, but then this information becomes visible

to the eavesdropper.)

We assume that for each pair of inputs the protocol may fail with a small probability (the probability is taken over

the choice of random bits of Alice and Bob). The failure means that the parties do not produce any output, or Alice

and Bob produce mismatched keys, or the produced key z does not satisfy the secrecy condition.

In an alternative setting, Alice and Bob use a common public source of randomness (also accessible to the eaves-

dropper). Theorem 1 from [30] is valid for both settings — for private or public sources of randomness, though in the

model with a public source of random bits the construction of a protocol is much simpler.

Clarification 3: minor auxiliary inputs. We assume also that besides the main inputs x and y Alice and Bob both are

given the complexity profile of the input, i.e., the values C(x), C(y), and I(x : y). Such a concession is unavoidable

for the positive part of the theorem. Indeed, Kolmogorov complexity and mutual information are non-computable; so

there is no computable protocol that finds a z of size I(x : y) unless the value of the mutual information is given to

Alice and Bob as a promise. This supplementary information is rather small, it can be represented by only O(log n)
bits. The theorem remains valid if we assume that this auxiliary data is known to the eavesdropper. So, formally

speaking, the protocol should find a key z such that

C(z | communication transcript of the protocol and complexity profile of (x, y)) ≥ |z| −O(1).

There exists no algorithm computing Kolmogorov complexity of an arbitrary string, the mutual information I(x :
y) cannot be algorithmically computed neither even given an access to both strings x and y. However, the requirement

to provide the complexity profile of (x, y) is not prohibitively unrealistic. Indeed, if a string x is taken uniformly at

random from an explicitly given set SX , we can claim that C(x) is close to log |SX | with an overwhelming probability.

Similarly, if a pair (x, y) is taken uniformly from an explicitly given set of pairs SXY , and if we know the combinatorial

parameters of this set (the cardinality of the entire set SXY , of its projections on each of the coordinates, the sizes of

the sections of this set along both coordinates) we can estimate the typical value of I(x : y). Thus, we can predict an

expected complexity profile for a “typical” pair (x, y) ∈ SXY .

Even if (x, y) is produced by a more complicated random process, in many cases the expected complexity profile

of this pair can be computed given the probabilistic characteristics of the distribution from which it is sampled (below

we discuss in more detail the connection of Shannon’s characteristics of a distribution and Kolmogorov complexity of

a typical sampled outcome).

The communication protocol in Theorem 1(a) still applies when Alice and Bob are provided with not the exact

complexity profile of the input but only with its approximation. The more precise approximation we provide, the larger

secret key is produced in the protocol, see [30, Remark 5]. For example, if Alice and Bob are given that C(x) ≥ k and

C(x|y) < ℓ, they can produce a secret key z of size k− ℓ−O(log(|x|+ |y|)). So, if k and ℓ are δ-approximations for

the real values of C(x) and C(x|y), then the protocol results in a secret key of size I(x : y)−O(δ)−O(log(|x|+ |y|)).
Thus, if we know the physical nature of the process producing the initial data for Alice and Bob, although we cannot

predict exactly the complexity profile of the input, we possibly can estimate approximately the expected parameters

of this profile. Such an approximation is enough to apply the communication protocol from [30].

Now we can formulate the main question studied in this paper:

Central Question. What is the optimal communication complexity of the communication problem from Theorem 1?

That is, how many bits should Alice and Bob send to each other to agree on a common secret key?

A protocol proposed in [30] allows to compute for all pairs of inputs a shared secret key of length equal to the

mutual information between x and y with communication complexity

min{C(x|y), C(y|x)} +O(log n). (1)

This protocol is randomized (it can be adapted to the model with private or public sources of random bits). Alice and

Bob may need to send to each other different number of bits for different pairs of input (even with the same mutual

information). It was proven in [30] that in the worst case (i.e., for some pairs of inputs (x, y)) the communication

complexity (1) is optimal for communication protocols using only public randomness. The natural question whether
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this bound remains optimal for protocols with private sources of random bits remained open (see Open Question 1

in [30]). The main result of this paper is the positive answer to this question. More specifically, we provide explicit

examples of pairs (x, y) such that 



I(x : y) = 0.5n+O(log n)
C(x|y) = 0.5n+O(log n)
C(y|x) = 0.5n+O(log n)

(2)

and in every communication protocol satisfying Theorem 1 (with private random bits) Alice and Bob must exchange

approximately 0.5n bits of information. Moreover, the same communication complexity is required even if Alice and

Bob want to agree on a secret key that is much smaller then the optimal value I(x : y). Our bound applies to all

communication protocols that establish a secret key of size, say, ω(logn).

Theorem 2. Let π be a communication protocol such that given inputs x and y satisfying (2) Alice and Bob use private

random bits and compute with probability > 1/2 a shared secret key z of length δ(n) = ω(logn). Then for every n
there exists a pair of n-bit strings (x, y) satisfying (2) such that following this communication protocol with inputs x
and y, Alice and Bob send to each other messages with a total length of at least 0.5n−O(log n) bits. In other words,

the worst-case communication complexity of the protocol is at least 0.5n−O(log n).

Remark 1. We assume that the computational protocol π used by Alice and Bob is uniformly computable, i.e., the

parties send messages and compute the final result by following rules that can be computed algorithmically given the

length of the inputs. We require that the protocol can be applied to all pairs of inputs and all possible values of random

bits. An outcome of the protocol can be meaningless if we apply it to pairs (x, y) with too small mutual information

or with an unlucky choice of random bits, but the protocol must always converge and produce some outcome. We

may assume that the protocol is public (known to the eavesdropper). The constants hidden in the O(·) notation may

depend on the protocol, as well as on the choice of the optimal description method in the definition of Kolmogorov

complexity.

An alternative approach might be as follows. We might assume that the protocol π is not uniformly computable

(but for each n its description is available to Alice, Bob, and to the eavesdropper). Then substantially the same

result can be proven for Kolmogorov complexity relativized conditional on π. That is, we should define Kolmogorov

complexity and mutual information in terms of programs that can access π as an oracle, and the inputs x and y should

satisfy a version of (2) with the relativized Kolmogorov complexity. Our main result can be proven for this setting

(literally the same argument applies). However, to simplify the notation, we focus on the setting with only computable

communication protocols (the size of which does not depend on n).

Theorem 2 can be viewed as a special case of the general question of “extractability” of the mutual information

studied in [6]. We prove this theorem for two specific examples of pairs (x, y). In the first example x and y are

a line and a point incident with each other in a discrete affine plane. In the second example x and y are points of

the discrete plane with a fixed quasi-Euclidean distance between them. The proof of the main result consists in a

combination of spectral and information-theoretic techniques. In fact, our argument applies to all pairs with similar

spectral properties. Our main technical tools are the Expander Mixing Lemma (see Lemma 5) and the lemma on non-

negativity of the triple mutual information (see Lemma 7). We also use Muchnik’s theorem on conditional descriptions

with multiple conditions (see Proposition 2).

Let us mention one more technical detail specific for algorithmic information theory. Many information-theoretical

tools, including the Kolmogorov–Levin theorem, are inherently inaccurate: they involve an unavoidable logarithmic

error term. This causes a difficulty if a communication protocol involves too many private random bits (then even a

logarithmic term including the number of random bits can become overwhelming). To get around this obstacle, we

must reduce the number of private random bits used in the protocol. Fortunately, using an argument similar to the

classical Newman theorem, we can reduce the number of random bits involved in the protocol to a polynomial (or

even a linear) function of the length of inputs (see Proposition 1).

The communication protocol proposed in [30] and Theorem 2 imply together that we have the following threshold

phenomenon. When the inputs given to Alice and Bob are a line and a point (incident with each other in a discrete

affine plane), then the parties can agree on a secret key of size I(x : y) with a communication complexity slightly

above min{C(x|y), C(y|x)}. But when a communication complexity is slightly below this threshold, the optimal size

of the secret key sinks immediately to O(log n).
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We also show that the “threshold phenomenon” mentioned above is not universally true. There exist pairs (x, y)
with the same values of Kolmogorov complexities and the same mutual information as in the example above, but with a

sharply different trade-off between the size of a secret key and the communication complexity needed to establish this

key. In fact, for some (x, y) the size of the optimal secret key decreases gradually with the communication complexity

of the protocol. More specifically, we show that for some x and y, Alice and Bob can agree on a secret key of any size

k (which can be chosen arbitrarily between 0 and I(x : y)) via a protocol with a communication complexity of Θ(k).
This is the case for x and y with an appropriate Hamming distance between them.

Secret key agreement in classical information theory. The problem of secret key agreement was initially proposed

in the framework of classical information theory by Ahlswede and Csiszár, [1] and Maurer, [22]. In these original

papers the problem was studied for the case in which the input data is a pair of random variables (X,Y ) obtained by

n independent draws from a joint distribution (Alice can access X and Bob can access Y ). In this setting, the mutual

information between X and Y and the secrecy of the key are measured in terms of Shannon entropy. Ahlswede and

Csiszár in [1] and Maurer in [22] proved that the longest shared secret key that Alice and Bob can establish via a

communication protocol is equal to Shannon’s mutual information between X and Y . This problem was extensively

studied by many subsequent works in various restricted settings, see the survey [33]. The optimal communication

complexity of this problem for the general setting remains unknown, though substantial progress has been made (see,

e.g., [34, 19]).

There is a deep connection between the frameworks of classical information theory (based on Shannon entropy)

and algorithmic information theory (based on Kolmogorov complexity), see the detailed discussions in [18, 32] and in

[10]. It is know, for example, that for every computable distribution of probabilities on {0, 1}∗ the average value of

Kolmogorov complexity of a sampled string is close to Shannon entropy of the distribution, see [10, Theorem 2.10].

In the simplest case, if (Xi, Yi) for i = 1, . . . , n is a sequence of i.i.d. copies of random pair (X,Y ) distributed in

some finite range, then with a high probability the pair of sampled values

x ← (X1 . . . Xn),
y ← (Y1 . . . Yn)

has the profile of Kolmogorov complexities approximately proportional to the corresponding values of Shannon’s

entropy of (X,Y ),

C(x) = H(X) · n+ o(n), C(y) = H(Y ) · n+ o(n), C(x, y) = H(X,Y ) · n+ o(n),

where H(·) denotes Shannon’s entropy of a random variable. Using this observation one can transform a secret key

agreement protocol in the sense of Theorem 1(a) in a secret key agreement for Shannon’s settings (e.g., in the sense

of [1, Model S in Definition 2.1] or [22, Definition 1]). We refer the reader to [30] for a more detailed discussion of

parallels between Shannon’s and Kolmogorov’s version of the problem of secret key agreement. We believe that the

correspondence between Shannon entropy and Kolmogorov complexity might help to use Theorem 1 and Theorem 2

as a tool in the classical information theory, including (and especially) one-shot settings.

Differences between Shannon’s and Kolmogorov’s framework. Let us mention two important distinctions between

Shannon’s and Kolmogorov’s framework. The first one regards ergodicity of the input data. Most results on secret key

agreement in Shannon’s framework are proven with the assumption that the input data are obtained from a sequence of

independent identically distributed random variables (or at least enjoy some properties of ergodicity and stationarity).

In the setting of Kolmogorov complexity we usually deal with inputs obtained in “one shot” without any assumption

of ergodicity of the sources (see, in particular, Example 1 and Example 2 below). Another distinction regards the

definition of correctness of the protocol. The usual paradigm in classical information theory is to require that the

communication protocol works properly for most randomly chosen inputs. In Theorem 1 the protocol works properly

with high probability for each valid pair of input data (this approach is more typical for the theory of communication

complexity).

Though homologous statements in Shannon’s and Kolmogorov’s frameworks may look very similar, the proofs in

these frameworks are usually pretty different. Despite a close connection between Shannon entropy and Kolmogorov

complexity, many techniques from the classical information theory (designed for the framework of Shannon entropy)

cannot be translated directly in the language of Kolmogorov complexity. Even manipulations with the chain rule
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for the mutual information and other standard information inequalities become more difficult in the framework of

Kolmogorov complexity. The difficulty is that Kolmogorov’s version of the chain rule is valid not absolutely but only

up to an additive logarithmic term (see below in Preliminaries the comments on the Kolmogorov–Levin theorem).

Such a minor error term can be harmless when it appears alone, but it causes difficulties when we need to sum up

many copies of similar equalities or inequalities. (In particular, we deal with this difficulty in Section 4.2.)

Overview of the proof of the main result. Let us sketch the proof of Theorem 2, the main result of this paper. For

every large enoughn we provide a hard pair of inputs (x, y) for which the communication complexity must be large. To

this end we construct explicitly a bipartite graph Gn with N = 2n vertices in each part and with degree of each vertex

D = 2n/2. Most edges (x, y) in such a graph satisfy the property that C(x) =+ C(y) =+ n and I(x : y) =+ n/2.

Theorem 1 claims that for these x and y Alice and Bob can produce a secret key of length approximately I(x : y)
by exchanging approximately C(x|y) bits. We prove that any protocol will have to exchange for these pairs of inputs

(x, y) approximately the same number of bits, even to agree on a much shorter secret key.

We fix an arbitrary communication protocol π, take a typical edge (x, y) in Gn and proceed as follows. Let

z = z(x, y) denote the secret key produced by π for inputs (x, y) and t = t(x, y) denote the transcript (sequence of

messages sent by Alice and Bob following the protocol). Our aim is to show that t consists of at least n/2−O(log n)
bits.

On the one hand, we show that the mutual information between x and y can only decrease if we add t as a condition,

i.e., I(x : y|t)≤+ I(x : y), and it must decrease further by at least |z| bits if we add to the condition z. Thus, the gap

between I(x : y|t, z) and I(x : y) must be at least |z|. In this part of the argument we have to overcome the technical

difficulty mentioned above: we cannot use freely the chain rule if the number of rounds in the protocol is unbounded

(to handle this difficulty, we use the lemma from [30] saying that the external information complexity cannot be less

than the internal information complexity, and then apply Muchnik’s theorem on conditional descriptions to reduce a

generic communication protocol to the case where the external and the internal information complexity are equal to

each other).

On the other hand, we use the expander mixing lemma to show that the gap between I(x : y|w) and I(x : y) is

negligibly small for every w with a small enough Kolmogorov complexity (if C(w) is not greater than 0.5n). This

leads to a contradiction if complexity of w = 〈t, z〉 is smaller than 0.5n. By reducing the key size |z| to Θ(logn)
(which only makes the protocol weaker) we conclude that the contradiction can be avoided only if C(t) alone is greater

than 0.5n−O(log n). This means that the transcript must contain at least 0.5n−O(log n) bits, which concludes the

proof. This part of the argument works if the graph Gn has a large spectral gap (a large difference between the first

and the second eigenvalue). This condition is necessary to apply the expander mixing lemma.

In this sketch, we did not take into account the random bits produced by Alice and Bob. Adding private random bits

to the overall picture complicates the technical details of the argument, but does not lead to any conceptual difficulties.

The rest of the paper is organized as follows. In Preliminaries (Section 2) we sketch the basic definitions and

notations for Kolmogorov complexity and communication complexity. In Section 3 we translate information theoretic

properties of pairs (x, y) in the language of graph theory and present three explicit examples of pairs (x, y) satisfying

(2).

• Example 1 involves finite geometry, x and y are incident points and lines on a finite plane;

• Example 2 uses a discrete version of the Euclidean distance, x and y are points on the discrete plane with a

known quasi-Euclidean distance between them;

• Example 3 involves binary strings x and y with a fixed Hamming distance between them.

The pairs (x, y) from these examples have pretty much the same complexity profile, but the third example has sig-

nificantly different spectral properties. The proof of the main result sketched above applies only to Example 1 and

Example 2 (for Example 3 not only the argument fails but the statement of the main result is false1).

In Section 4 we use a spectral technique to analyse the combinatorial properties of graphs. We combine spec-

tral bounds with information-theoretic arguments and prove our main result (Theorem 2) for the pairs (x, y) from

Example 1 and Example 2 mentioned above.

1The revealed difference between Examples 1 and 2 on the one hand and Example 3 on the other hand shows that the optimal communication

between Alice and Bob is not determined by the complexity profile of the input and depends on subtler properties of (x, y).
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In Section 5 we show that the statement of Theorem 2 is not true for the pairs (x, y) from our Example 3: for

those x and y there is no “threshold phenomenon” mentioned above, and the size of the longest achievable secret key

depends continuously on the communication complexity of the protocol, see Theorem 3 and Theorem 4.

In Appendix we provide a self-contained proof of a version of Newman’s theorem on the reduction of the number

of random bits used in a communication protocol (we prove a variant of this theorem for protocols with independent

sources of private randomness).

2 Preliminaries

Kolmogorov Complexity. Given a Turing machine M with two input tapes and one output tape, we say that p is

a program that prints a string x conditional on y (a description of x conditional on y) if M prints x on the pair of

inputs p, y. Here M can be understood as an interpreter of some programming language that simulates a program p
on a given input y. We denote the length of a binary string p by |p|. The algorithmic complexity of x conditional on y
relative to M is defined as

CM (x|y) = min{|p| : M(p, y) = x}.
It is known that there exists an optimal Turing machine U such that for every other Turing machine M there is a

number cM such that for all x and y
CU (x|y) ≤ CM (x|y) + cM .

Thus, if we ignore the additive constant cM , the algorithmic complexity of x relative to U is minimal. In the rest we

fix an optimal machine U , omit the subscript U and denote

C(x|y) := CU (x|y).

This value is called Kolmogorov complexity of x conditional on y. Kolmogorov complexity of a string x is defined as

the Kolmogorov complexity of x conditional on the empty string Λ,

C(x) := C(x|Λ).

We fix an arbitrary computable bijection between binary strings and all finite tuples of binary strings (i.e., each tuple

is encoded in a single string). Kolmogorov complexity of a tuple 〈x1, . . . , xk〉 is defined as Kolmogorov complexity

of the code of this tuple. For brevity we denote this complexity by C(x1, . . . , xk).
We use the conventional notation

I(x : y) := C(x) + C(y)− C(x, y)

and

I(x : y|z) := C(x|z) + C(y|z)− C(x, y|z).
In this paper we use systematically the Kolmogorov–Levin theorem, [36], which claims that all x, y.

|C(x|y) + C(y)− C(x, y)| = O(log(|x|+ |y|)).

It follows, in particular, that

I(x : y) = C(x) − C(x|y) +O(log(|x|+ |y|)) = C(y)− C(y|x) + O(log(|x|+ |y|)).

Since many natural equalities and inequalities for Kolmogorov complexity hold up to a logarithmic term, we

abbreviate some formulas by using the notation A =+ B, A≤+ B, and A≥+ B for

|A−B| = O(log n), A ≤ B +O(log n), and B ≤ A+O(log n)

respectively, where n is clear from the context. Usually n is the sum of the lengths of all strings involved in the

inequality. In particular, the Kolmogorov–Levin theorem can be rewritten as C(x, y) =+ C(x|y) + C(y).
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C(x|y, z) C(y|x, z)

C(z|x, y)

I(x : y : z)

I(x : y|z)

I(x : z|y) I(y : z|x)

x y

z
Figure 1: Complexity profile for a triple x, y, z. On this diagram it is easy to observe several standard equations:

• C(x) = C(x|y, z) + I(x : y|z) + I(x : z|y) + I(x : y : z)
(the sum of all quantities inside the left circle representing x);

• I(x : y) = I(x : y|z) + I(x : y : z)
(the sum of the quantities in the intersection of the left and the right circles representing x and y respectively);

• C(x, y) = C(x|y, z) + C(y|x, z) + I(x : y|z) + I(x : z|y) + I(y : z|x) + I(x : y : z)
(the sum of all quantities inside the union of the left and the right circles);

• C(x|y) = C(x|y, z) + I(x : z|y)
(the sum of the quantities inside the left circle but outside the right one);

and so on; all these equations are valid up to O(log(|x| + |y|+ |z|)).

We also use the notation

I(x : y : z) := C(x) + C(y) + C(z)− C(x, y) − C(x, z)− C(y, z) + C(x, y, z).

Using the Kolmogorov–Levin theorem it is not hard to show that

I(x : y : z) =+ I(x : y)− I(x : y|z) =+ I(x : z)− I(x : z|y) =+ I(y : z)− I(y : z|x).

These relations can be observed on a Venn-like diagram, as shown in Fig. 1.

In the usual jargon, x is said to be (almost) incompressible given y if

C(x|y) ≥+ |x|,

and x and y are said to be independent, if I(x : y) =+ 0.

For a survey of basic properties of Kolmogorov complexity we refer the reader to the introductory chapters of [18]

and [32].

Communication Complexity. In what follows we use the conventional notion of a communication protocol for

two parties (traditionally called Alice and Bob), see for detailed definitions [17]. In a deterministic communication
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protocol the inputs of Alice and Bob are denoted x and y respectively. A deterministic communication protocol is said

to be correct for inputs of length n if for all x, y ∈ {0, 1}n, following this protocol Alice and Bob obtain a valid result

z = z(x, y). The sequence of messages sent by Alice and Bob to each other while following the steps of the protocol

is called a transcript of the communication.

In the setting of randomized protocols with private sources of randomness, Alice can access x and an additional

string of bits rA, and Bob can access y and an additional string of bits rB . A randomized communication protocol is

said to be correct for inputs of length n if for all x, y ∈ {0, 1}n and for most rA and rB , following this protocol Alice

and Bob obtain a valid result z = z(x, rA, y, rB).
In a secret key agreement protocol, correctness of the result z means that (i) z is of the required size and (ii) it

is almost incompressible even given the transcript of the communication. That is, if t = t(x, rA, y, rB) denotes the

transcript of the communication, then C(z|t) must be close enough to |z|. Note that in this setting the transcript t and

the final result z are not necessarily functions of the inputs x, y, they may depend also on the random bits used by

Alice and Bob. For a more detailed discussion of this setting we refer the reader to [30].

Communication complexity of a protocol is the maximal length of its transcript, i.e., max
x,rA,y,rB

|t(x, rA, y, rB)|.
In this paper we deal with communication protocols that can be meaningfully applied only to pairs of inputs with

a special property (in particular, the mutual information between the inputs of Alice and Bob must be large enough).

However, we assume that by definition a communication protocol can be formally applied to any inputs with any

values of random bits. This means that with any input data a protocol produces some communication transcript, and

each party ends up with some outcome.

In communication complexity, it is typical to study a communication protocol as a scheme defined for inputs of

one fixed length. In this paper, we prefer to deal with protocols that are defined for inputs of all lengths. We always

assume that the communication protocols under consideration are uniformly computable: there are algorithms for

Alice and Bob that compute the messages to be sent by the parties, and produce at the end of the protocol the final

result. Uniformity means that the same algorithms can be used for inputs of all lengths. This approach simplifies

the formal definition of secrecy — we may assume that the communication protocol (an algorithm that computes this

protocol) is a finite object, and this object is known to Alice, Bob, and to the eavesdropper (see also Remark 1 on p. 4).

We may ignore the description of a protocol in the definition of secrecy, since the information on a finite object affects

only additive constant terms in all expressions with Kolmogorov complexity.

The Amount of Randomness in Communication Protocols. In the usual definition of a randomized communi-

cation protocol, Alice and Bob are allowed to use any number of random bits. However, for most settings, it can

be shown that the amount of randomness in use can be reduced without loss of the performance of the protocol. It is

known that for a communication protocol computing a function of Alice’ and Bob’s inputs with help of a public source

of randomness, the number of used random bits can be reduced to O(log n) (where n is an upper bound on the length

of the inputs of the protocol) at the price of only a minor degradation of the error probability, see Newman’s theorem

[28]. We cannot apply Newman’s theorem directly in our setting. The main reason is that we care about not only the

result obtained by Alice and Bob but also about the relation between the final result (the secret key) and the transcript

of the communication (the secrecy condition). In general, we cannot reduce the number of random bits used in such

a protocol to O(log n), but we will see that O(n) random bits is always enough. In an arbitrary protocol of this type

we cannot delegate the task of generating the random bits to only one participant of the protocol, and Alice and Bob

must be careful when communicating the produced random bits to each other. Indeed, sending the random bits via

the communication channel not only affects the communication complexity of the protocol but may also reveal to the

eavesdropper some information on the resulting secret key. Thus, another technical difficulty with our communication

protocols is that we have to deal with two private sources of randomness (we need to handle separately the random

bits produced by Alice and the ones produced by Bob). However, the ideas used in the proof of Newman’s theorem

(random sampling) can be adapted to this setting. We are not aware of such results being previously published, so in

what follows we present it in more detail.

We deal with two-party communication protocols where Alice and Bob are given inputs x and y respectively

(usually of the same length n) and can use any number of private random bits. Following the protocol, the parties

exchange several messages (this sequence of messages is a transcript t of the protocol), and end up with some results

— final answers z1 (the answer of Alice) and z2 (the answer of Bob). For every pair of inputs (x, y), a randomized
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communication protocol can produce with different probabilities different answers z1, z2 and different transcripts t.
(We usually require that Alice and Bob obtain with a high probability the same answer, i.e., z1 = z2. However, in

general the results obtained by two parties can be different.) These outcomes of the protocol can be valid or invalid. In

the classical settings, where Alice and Bob compute some function F (x, y), the results are valid if z1 = z2 = F (x, y).
In the setting where Alice and Bob compute a relation R, an answer zi is valid if the relation R(x, y, zi) is true. In

a secret key agreement protocol the condition of validity is more involved: for each admissible pair of inputs (x, y)
(technically, for all x and y satisfying (2)) the outcome of the protocol is valid if

• answers z1 and z2 are equal to each other;

• Kolmogorov complexity of the obtained key z1 = z2 is bigger than some fixed threshold (e.g., we may require

that Kolmogorov complexity of the key is close to I(x : y));

• the information in the transcript on the obtained secret key is smaller than some fixed threshold (e.g., we may

require that C(zi|t) ≥ |zi| −O(log n)).

Let π be a two-party communication protocol of secret key agreement with private randomness such that for all inputs

x and y satisfying (2) with a probability > 1− ε the produced answers z1, z2 and the transcript t are valid in the sense

explained above. We may assume that the transcript is reasonably short (its length is at most O(n), as it is the case

for all protocols of interest). Under this assumption, we argue that there is another communication protocol π′ that

produces valid outcomes with almost the same probability and uses only O(n) random bits.

Proposition 1. Let ε1, ε2 be positive numbers, and let π be a two-party communication protocol of secret key agree-

ment with private randomness such that for all inputs x and y satisfying (2) with a probability > 1− ε1 the produced

answers z1, z2 and the transcript t are valid in the sense explained above. Assume that the lengths of the produced

answers z1 and z2 is always bounded by O(n) and communication complexity of the protocol is O(n). Then there

exists a communication protocol π′ that produces valid outcomes with a probability > 1− ε1− ε2, and Alice and Bob

use at most O(n + log(1/ε2)) private random bits.

Moreover, if the original protocol was uniformly computable (there is an algorithm that implements the protocol

for all inputs of all lengths), then the new protocol also can be made uniformly computable.

Notice that we do not assume that the notion of validity of the output of a protocol is computable (we cannot assume

that because Kolmogorov complexity and the mutual information are not computable). However, we do assume that

the protocol is defined for all pairs of inputs (even on those which do not satisfy (2) and for which the outcome of the

communication is meaningless). The proof of Proposition 1 uses the standard idea of random sampling. The proof is

deferred to Appendix.

3 From Information-Theoretic Properties to Combinatorics of Graphs

To study the information-theoretic properties of a pair (x, y) we will embed this pair of strings in a large set of pairs

that are in some sense similar to each other. We will do it in the language of bipartite graphs. The information-theoretic

properties of the initial pair (x, y) will be determined by the combinatorial properties of these graphs. In their turn, the

combinatorial properties of these graphs will be proven using the spectral technique. In this section we present three

examples of (x, y) corresponding to three different constructions of graphs. In the next sections we will study the

spectral and combinatorial properties of these graphs and, accordingly, the information-theoretic properties of these

pairs (x, y).
We start with a simple lemma that establishes a correspondence between information-theoretic and combinatorial

language for the properties of pairs (x, y).

Lemma 1. Let G = (L ∪R,E) be a bipartite graph such that |L| = |R| = 2n+O(1) and the degree of each vertex is

D = 20.5n+O(logn). We assume that this graph has an explicit construction in the sense that the complete description

of this graph (its adjacency matrix) has Kolmogorov complexity O(log n). Then most2 (x, y) ∈ E (pairs of vertices

2For every d > 0, we can make the fraction of such pairs greater than is 1 − 1/nd by choosing the constants hidden in the terms O(logn)
in (3).
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C(x|y) = 0.5n C(y|x) = 0.5nI(x : y) = 0.5n

x y

Figure 2: A diagram for the complexity profile of two strings x, y: from the Kolmogorov–Levin theorem we have

C(x) =+ C(x|y) + I(x : y) =+ n, C(y) =+ C(y|x) + I(x : y) =+ n, and C(x, y) =+ C(x|y) + C(y|x) + I(x :
y) =+ 1.5n.

connected by an edge) have the following complexity profile:





n−O(log n) ≤ C(x) ≤ n+O(log n),
n−O(log n) ≤ C(y) ≤ n+O(log n),

1.5n−O(log n) ≤ C(x, y) ≤ 1.5n+O(log n)
(3)

(which is equivalent to the triple of equalities in (2), see Fig. 2).

Proof. There are D · |L| = D · |R| = 21.5n+O(logn) edges in the graph. Each of them can be specified by its index

in the list of elements of E, and this index should consists of only log |E| bits; the set E itself can be described by

O(log n) bits. Therefore,

C(x, y) ≤ log |E|+O(log n) = 1.5n+O(log n).

For most (x, y) ∈ E this bound is tight. Indeed, for every number c there are at most 21.5n−c objects with complexity

less than 1.5n− c. Therefore, for all but |E|/2O(logn) = 21.5n−O(logn) edges in E we have

C(x, y) ≥ 1.5n−O(log n). (4)

Similarly, for each x ∈ L and for each y ∈ R we have

C(x) ≤ log |L|+O(log n) = n+O(log n), C(y) ≤ log |R|+O(log n) = n+O(log n).

To prove that for most pairs (x, y) these bounds are also tight, we use the fact that each vertex in the graph has D
neighbours. A pair (x, y) ∈ E can be specified by a description of x combined with the index of y in the list of all

neighbours of x. It follows that

C(x, y) ≤ C(x) + logD +O(log n) = C(x) + 0.5n+O(log n).

Therefore, if C(x) is significantly (by at least ω(logn)) less than n, then C(x, y) must be significantly less than 1.5n.

But we have seen that (4) is true for the vast majority of pairs (x, y). Hence, for the vast majority of pairs we have

C(x) ≥ n−O(log n). A similar argument implies that for most pairs (x, y) ∈ E we have C(y) ≥ n−O(log n).

Remark 2. In a graph satisfying the conditions of Lemma 1 each vertex has D = 20.5n+O(logn) neighbours. There-

fore, for all (x, y) ∈ E we have

C(x|y) ≤ 0.5n+O(log n), C(y|x) ≤ 0.5n+O(log n),
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(given x, we can specify y by its index in the list of all neighbours of x and vice-versa.) From Lemma 1 and the

Kolmogorov–Levin theorem it follows that for most (x, y) ∈ E these inequalities are tight, i.e., C(x|y) = 0.5n ±
O(log n) and C(y|x) = 0.5n±O(log n).

Remark 3. The density of edges in the graph G = (L ∪R,E) (i.e., the ratio
|E|

|L|·|R| ) corresponds on the logarithmic

scale to the mutual information between x and y. Indeed, the equations in (3) mean that for most (x, y) ∈ E

|E|
|L| · |R| =

2C(x,y)+O(logn)

2C(x)+O(logn) · 2C(y)+O(logn)
= 2−I(x:y)±O(logn).

Below we pay attention to the density of edges in the induced subgraphs of G. We will see that this ratio corresponds

in some sense to the property of “extractability” of the mutual information. We will show that for some specific graphs

G satisfying Lemma 1, in all large enough induced subgraphs, the density of edges is close to 2−I(x:y).

Example 1 (discrete plane). Let Fq be a finite field of cardinality q = 2n. Consider the set L of points on plane F2
q

and the set R of non-vertical lines, which can be represented as affine functions y = ax − b for (a, b) ∈ F2
q . Let

G = (L ∪ R,E) be the bipartite graph where a point (x0, y0) is connected to a line y = ax− b if and only if it is on

the line i.e. y0 = ax0 − b. Clearly |L| = |R| = 22n. The degree of each vertex is 2n since there are exactly q points

on each line and there are exactly q lines on each point. In the sequel we denote this graph by GPl
n .

This graph (or its adjacency matrix) can be constructed effectively when the field Fq is given. We assume a

standard construction of the field F2n to be fixed. Thus, the graph is uniquely defined by the binary representation of

n. Therefore, we need only O(log n) bits to describe the graph (as a finite object). Lemma 1 applies to this graph, so

for most (x, y) ∈ E the equalities in (3) are satisfied.

The graph from Example 1 was used in [24, 6] to construct an example of a pair with non-extractable mutual

information. We will use a similar property of this graph (although formulated differently and proven by a different

technique, see Remark 9 below).

Example 2 (discrete Euclidean distance). Let Fq be a finite field of order q, where q is an odd prime power. Let us

define the distance function between two points x = (x1, x2), y = (y1, y2) in F2
q as

dist(x, y) = (x1 − y1)
2 + (x2 − y2)

2.

For every r ∈ Fq \ {0} we define the finite Euclidean distance graph G = (L ∪R,E) as follows: L = R = F2
q, and

E = {(x, y)) | dist(x, y) = r}.

Obviously, |L| = |R| = q2.

This graph is regular: for each point x ∈ F2
q the number of neighbours is equal by definition to the number of

points y = x+ u where the coordinates of u = (u1, u2) satisfy u2
1 + u2

2 = r. This number depends on q and r but not

on a specific x. It can be shown that for all r 6= 0 the degree of this graph is Θ(q), and |E| = Θ(q3), see [23].

For definiteness, we can fix for each n one qn such that ⌈log(q2n)⌉ = n. Since the prime numbers are dense

enough3, for every large enough integer n we can fix a suitable prime number qn.

For the defined above graph G = (L ∪ R,E) for this Fqn we have |L| = |R| = 2n+O(1) and |E| = 21.5n+O(1),

and Lemma 1 applies to this graph. We should also fix the value of r. Any non-zero element of Fqn would serve the

purpose. For simplicity we may assume that r = 1. Thereafter we denote this graph by GEuc
n .

In our next example we use the following standard lemma.

Lemma 2. Denote h(t) := −t log t− (1 − t) log(1 − t). For any real number γ ∈ (0, 1) and every positive integer

m,
(
m
γm

)
= 2h(γ)m+O(logm).

3It is known, see [27], that for all x ≥ 25 there exists a prime number between x and (1 + 1

5
)x. Since (1 + 1

5
)2 < 2, this implies that for all

n ≥ 10 we can find a square of a prime number between 2n−1 and 2n (starting, for example, with the number 23 whose square lies between 29

and 210).
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Example 3 (Hamming distance). We choose θ ∈ (0, 1
2 ) such that h(θ) = 0.5. Let L = R = {0, 1}n. We define the

bipartite graph G = (L ∪R,E) so that two strings (vertices) from L and R are connected if and only if the Hamming

distance between them is θn. Clearly |L| = |R| = 2n. By Lemma 2 the degree of each vertex is D =
(
n
θn

)
=

20.5n+O(logn). Lemma 1 applies to this graph. Therefore, for most (x, y) ∈ E we have (3). Subsequently we denote

this graph by GHam
θ,n .

We are interested in properties of (x, y) that are much subtler than those from Lemma 1. For example, we would

like to know whether there exists a z materializing a part of the mutual information between x and y (i.e., such that

C(z|x) ≈ 0, C(z|y) ≈ 0, and C(z)≫ 0). These subtler properties are not determined completely by the “complexity

profile” of (x, y) shown in Fig. 2. In particular, we will see that some of these properties are different for pairs (x, y)
from Example 1 and Example 2 on the one hand and from Example 3 on the other hand. In the next section we will

show that some information-theoretic properties of (x, y) are connected with the spectral properties of these graphs.

Randomized Communication Protocols in the Information-Theoretic Framework. In our main results we dis-

cuss communication protocols with two parties, Alice and Bob, who are given inputs x and y. We will assume that

Alice and Bob are given the ends of some edge (x, y) from GPl
n , from GEuc

n , or from GHam
θ,n .

We admit randomized communication protocols with private sources of randomness. Technically this means that

besides the inputs x and y, Alice and Bob are given strings of random bits, rA and rB respectively. We assume that

both rA and rB are binary strings from {0, 1}m. Without loss of generality we may assume that m = poly(n), see

Proposition 1.

It is helpful to represent the entire inputs available to Alice and Bob as an edge in a graph. The data available to

Alice are x′ := 〈x, rA〉 and the data available to Bob are y′ := 〈y, rB〉. We can think of the pair (x′, y′) as an edge in

the graph

ĜPl
n := GPl

n ⊗KM,M

(if (x, y) is an edge in GPl
n ), or

ĜEuc
n := GEuc

n ⊗KM,M

(if (x, y) is an edge in GEuc
n ), or

ĜHam
θ,n := GHam

θ,n ⊗KM,M

(if, respectively, (x, y) is an edge in GHam
θ,n ). Here KM,M is a complete bipartite graph with M = 2m vertices in each

part, and ⊗ denotes the usual tensor product of bipartite graphs.

Keeping in mind Example 1, Example 2, and Example 3, we obtain that for most edges (x′, y′) in ĜPl
n , in ĜEuc

n ,

and in ĜHam
θ,n we have

C(x′) =+ n + m,
C(y′) =+ n + m,

C(x′, y′) =+ 1.5n + 2m.

4 Bounds with the Spectral Method

4.1 Information Inequalities from the Graph Spectrum

In this section we show that the spectral properties of a graph can be used to prove information-theoretic inequalities

for pairs (x, y) corresponding to the edges in this graph. We start with a reminder of the standard considerations

involving the spectral gap of a graph.

Let G = (L ∪ R,E) be a regular bipartite graph of degree D on 2N vertices (|L| = |R| = N , each edge e ∈ E
connects one vertex from L with another one from R, and each vertex is incident to exactly D edges). The adjacency

matrix of such a graph is a (2N)× (2N) zero-one matrix H of the form

(
0 J
J⊤ 0

)
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(the N × N submatrix J is usually called bi-adjacency matrix of the graph; Jab = 1 if and only if there is an edge

between the a-th vertex in L and the b-th vertex in R). Let

λ1 ≥ λ2 ≥ . . . ≥ λ2N .

be the eigenvalues of H . Since H is symmetric, all λi are real numbers. It is well known that for a bipartite graph

the spectrum is symmetric, i.e., λi = −λ2N−i+1 for each i. As the degree of each vertex in the graph is equal to D,

we have λ1 = −λ2N = D. We focus on the second eigenvalue of the graph λ2; we are interested in graphs such that

λ2 ≪ λ1 (that is, the spectral gap is large).

Remark 4. If the bi-adjacency matrix of the graph is symmetric, then the spectrum of the (2N) × (2N) matrix H
consists of the eigenvalues of the N ×N matrix J and their opposites. This observation makes the computation of the

eigenvalues simpler.

It is immediately clear that the bi-adjacency matrices of the bipartite graphs from Example 2 and Example 3 are

symmetric. For Example 1 this is also true, since a point with coordinates (x, y) and a line indexed (a, b) are incident

if a · x− y − b = 0.

In the rest we will use the fact that for the graphs from Example 1 and Example 2 the value of λ2 is much less than

λ1 = D:

Lemma 3 (see lemma 5.1 in [29]). For the bipartite graph GPl
n from Example 1 (incident points and lines on plane

F2
q) the second eigenvalue is equal to

√
q =
√
D.

Remark 5. We prove the main result of this paper (Theorem 2) for the construction of (x, y) from Example 1. The

same result can be proven for a similar (and even somewhat more symmetric) construction: we can take lines and

points in the projective plane over a finite field. The construction based on the projective plane has spectral properties

similar to Lemma 3.

Lemma 4 (see theorem 3 in [23]). For the bipartite graph GEuc
n from Example 2 (a discrete version of the Euclidean

distance) the second eigenvalue is equal to O(
√
q) = O(

√
D).

Remark 6. For the tensor product of two graphs G1 ⊗ G2, the eigenvalues can be obtained as pairwise products of

the eigenvalues of G1 and G2. So, for the graph ĜPl
n (see p. 13) the eigenvalues are all pairwise products of the graph

of incidents lines and points GPl
n and the complete bipartite graph KM,M . For GPl

n the first eigenvalue D and the

second eigenvalue
√
D. The bi-adjacency matrix of KM,M is the M ×M matrix with 1’s in each cell. It is not hard

to see that its maximal eigenvalue is M and all other eigenvalues are 0. Therefore, the first eigenvalue of ĜPl
n is equal

to MD and the second one is equal to M
√
D. A similar observation is valid for GEuc

n .

It is well known that the graphs with a large gap between the first and the second eigenvalues have nice combi-

natorial properties (vertex expansion, strong connectivity, mixing). One version of this property is expressed by the

expander mixing lemma, which was observed by several researchers (see, e.g., [13, lemma 2.5] or [2, theorem 9.2.1]).

We use a variant of the expander mixing lemma for bipartite graphs (see [9]):

Lemma 5 (Expander Mixing Lemma for bipartite graphs). Let G = (L ∪ R,E) be a regular bipartite graph, where

|L| = |R| = N and each vertex has degree D. Then for each A ⊆ L and B ⊆ R we have

∣∣∣∣E(A,B) − D · |A| · |B|
N

∣∣∣∣ ≤ λ2

√
|A| · |B|,

where λ2 is the second largest eigenvalue of the adjacency matrix of G and E(A,B) is the number of edges between

A and B.

Remark 7. In what follows we apply Lemma 5 to the graphs with a large gap between D and λ2. This technique

is pretty common. See, e.g., [35, Theorem 3] where the Expander Mixing Lemma was applied to the graph from

Example 1. Due to technical reasons, we will need to apply the Expander Mixing Lemma not only to the graph GPl
n

from Example 1 and GEuc
n from Example 2 but also to the tensor product of these graphs and a complete bipartite

graph, see below.
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In what follows we use a straightforward corollary of the expander mixing lemma:

Corollary 1. (a) Let G = (L ∪ R,E) be a graph satisfying the same conditions as in Lemma 1 with λ2 = O(
√
D).

Then for A ⊆ L and B ⊆ R such that |A| · |B| ≥ N2/D we have

|E(A,B)| = O

(
D · |A| · |B|

N

)
. (5)

(b) Let G = (L ∪ R,E) be the same graph as in (a), and let KM,M be a complete bipartite graph for some

integer M . Define the tensor product of these graphs Ĝ := G ⊗ KM,M (this is a bipartite graph (L̂ ∪ R̂, Ê) with

|L̂| = |R̂| = N ·M , with degree D ·M ).

Then for all subsets A ⊂ L̂ and B ⊂ R̂ such that |A| · |B| ≥ (MN)2/D inequality (5) holds true.

Proof. (a) From Lemma 5 it follows that

|E(A,B)| ≤ D · |A| · |B|
N

+ λ2

√
|A| · |B| (6)

Assuming that λ2 = O(
√
D) and |A| · |B| ≥ N2/D we conclude that the first term on the right-hand side of (6) is

dominating:

λ2

√
|A| · |B| = O

(
D · |A| · |B|

N

)

Given this and Lemma 5 we obtain (5).

(b) Let us recall that the eigenvalues of G ⊗ KM,M are pairwise products of the eigenvalues of G and KM,M .

Therefore, the maximal eigenvalue of G ⊗KM,M is MD and the second one is O(M
√
D), see Remark 6. The rest

of the proof is similar to the case (a).

Now we translate the combinatorial property of mixing in the information-theoretic language. We show that a

large spectral gap in a graph implies some inequality for Kolmogorov complexity that is valid for each pair of adjacent

vertex in this graph. We do it in the next lemma, which is the main technical ingredient of the proof of our main result.

Lemma 6. Let G = (L ∪ R,E) be a bipartite graph satisfying the same conditions as in Lemma 1, with |L| =
|R| = N = 2n+O(1) and degree D = O(

√
N). Assume also that the second largest eigenvalue of this graph is

λ2 = O(
√
D). Let KM,M be a complete bipartite graph for some M = 2m. Define the tensor product of these graphs

Ĝ := G⊗KM,M .

For each edge (x, y) in Ĝ and for all w one of the following inequalities is true: either

C(x|w) + C(y|w) ≤ 1.5n+ 2m+O(log k) (7)

or

I(x : y|w) ≥ 0.5n−O(log k), (8)

where k = n+m.

Remark 8. Note that Lemma 6 applies to the graphs from Example 1 and Example 2 due to Lemma 3 and Lemma 4

respectively.

Proof. Denote a = C(x|w) and b = C(y|w). If a+ b ≤ 1.5n+ 2m+O(log k), then (7) is true and we are done. In

what follows we assume that a+ b > 1.5n+ 2m+ c log k (for some constant c to be specified later), and our aim is

to prove (8).

Let A be the set of all x′ ∈ L such that C(x′|w) ≤ a and B be the set of all y′ ∈ R such that C(y′|w) ≤ b. Note

that by definition A contains x and B contains y. In what follows we show that for all pairs (x′, y′) ∈ (A × B) ∩ E
we have C(x′, y′)≤+ a+ b− 0.5n.

Claim 1. We have
∣∣ log |A| − a

∣∣ ≤ O(log k) and
∣∣ log |B| − b

∣∣ ≤ O(log k).
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Proof of the claim 1: We start with a proof of the upper bounds for the cardinalities of A and B. Each element of A
can be obtained from w with a programs (description) of length at most a. Therefore, the number of elements in A is

not greater than the number of such descriptions, which is at most 1 + 2 + . . .+ 2a < 2a+1. Similarly, the number of

elements in B is less than 2b+1.

Now we proceed with the lower bounds. Given w and an integer number a we can take all programs of size at most

a, apply them to w and run in parallel. As some programs converge, we will discover one by one all elements in A
(though we do not know when the last stopping program terminates, and when the last element of A is revealed). The

element x must appear in this enumeration. Therefore, we can identify it given its position in this list, which requires

only log |A| bits. Thus, we have

C(x|w) ≤ log |A|+O(log k)

(the logarithmic additive term is needed to specify the binary expansion of a). On the other hand, we know that

C(x|w) = a. It follows that log |A| ≥ a−O(log k), and we are done. The lower bound log |B| ≥ b −O(log k) can

be proven in a similar way.

Claim 2. The number of edges between A and B is rather small:

|(A×B) ∩ E| ≤ O

(
D · |A| · |B|

N

)
.

Proof of the claim 2: By Claim 1 we have |A| = 2a+O(log k) and |B| = 2b+O(log k). Since a+b > 1.5n+2m+c logk
we obtain

|A| · |B| = 2a+b+c log k±O(log k) > 21.5n+2m = (NM)2/D

(here we fix the constant c: the term O(log k) can be negative but it should be compensated by the positive term

c log k). Hence, we can apply Corollary 1 (b) and obtain the claim.

Claim 3. For all pairs (x′, y′) ∈ (A×B) ∩ E we have

C(x′, y′|w) ≤ log |E(A,B)| +O(log k).

Proof of the claim 3: Given a string w and the integer numbers a, b, we can run in parallel all programs of length at

most a and b (applied to w) and reveal one by one all elements of A and B. If we have in addition the integer number

n, then we can construct the graph G and enumerate all the edges between A and B in the graph G. The pair (x′, y′)
must appear in this enumeration. Therefore, we can identify it by its ordinal number in this enumeration. Thus,

C(x′, y′|w) ≤ log |E(A,B)| +O(log k),

where the logarithmic term involves the binary expansions of n, a, and b.

Now we can finish the proof of the lemma. By claim 3, we have

C(x′, y′|w) ≤ log |E(A,B)|+O(log k)

for all pairs x′, y′ ∈ (A×B) ∩ E. By using claim 2, we obtain

C(x′, y′|w) ≤ logD + log |A|+ log |B| − logN +O(log k).

With claim 1 this rewrites to

C(x′, y′|w) ≤ a+ b− 0.5n+O(log k).

Now we apply this inequality to the initial x and y:

I(x : y|w) =+ C(x′|w) + C(y′|w) − C(x′, y′|w)
≥+ a+ b− (a+ b− 0.5n) +O(log k) =+ 0.5n.
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Remark 9. The property of “extractability” of the mutual information for neighbouring vertices in the graph from

Example 1 was studied in [24, 6]. Instead of the expander mixing lemma, these papers used the fact that this graph

has no cycles of length 4 (since two lines cannot intersect at two different points). With this technique, it was proven

in [6] that for the same x and y as above and for every w

C(w) ≤ 2C(x|w) + 2C(y|w) +O(log(|x|+ |y|+ |w|)). (9)

(Technically, [6] only considered the case m = 0; however, the same argument applies to an arbitrary m, [37].)

This result is incomparable with Lemma 1. On the one hand, (9) is weaker then (8). Indeed, (8) together with

I(x : y) =+ 0.5n imply

C(w) ≤ C(x|w) + C(y|w) +O(log(|x|+ |y|+ |w|))
(without factors 2 in the right-hand side). On the other hand, (9) is true for every w, while (8) is proven only under the

assumption that (7) is false.

The bound (9) is not strong enough to prove our main theorem.

4.2 Information Inequalities for a Secret Key Agreement

In this section we prove some information-theoretic inequalities that hold true for the objects involved in a communi-

cation protocol: the inputs given to Alice and Bob, the transcript of the communication, and the final result computed

by Alice and Bob.

The intuitive meaning of the argument below can be explained as follows. We would like to reduce every transcript

of a communication protocol to a “natural” form, where the complexity profile for the triple

〈Alice’ data,Bob’s data, transcript〉

looks as it is shown in the diagram in Fig. 3. The key property of this profile is that the triple mutual information

I(Alice’ data : Bob’s data : transcript) =
I(Alice’ data : Bob’s data)− I(Alice’ data : Bob’s data | transcript)

is equal to 0 (as usual, within a logarithmic precision). In Shannon’s entropy setting, a similar property would mean

that the external information complexity of the protocol is equal to its internal information complexity. In other words,

the quantity of information learned from the transcript by the eavesdropper is equal to the sum of information quantities

learned from the transcript by Alice and Bob.

In Fig. 3, the transcript is split into two components, tA and tB . These components are independent with each

other (the mutual information I(tA : tB) is negligibly small), one of them is independent of Alice’ data and the other

one is independent of Bob’s data. Intuitively, one of these component should consist of all messages of Alice, and the

other one should consist of all messages of Bob.

The diagram in Fig. 3 represents well enough the situation for “natural” examples of communication protocols.

Indeed, in naturally constructed examples, each message of Alice can be chosen in such a way that it has virtually no

mutual information with Bob’s input (even given all the previous messages of the protocol as a condition). Similarly,

each message of Bob can be chosen in such a way that it has virtually no mutual information with Alice’ input (again,

given all the previous messages of the protocol as a condition).

In general case, the transcript of the protocol cannot be represented as shown in Fig. 3. Indeed, Alice may put in

her messages some information that is already known to Bob, and vice-versa. However, it seems plausible that the

protocols which are not natural (in the sense explained above) are also not optimal in the sense of communication

complexity. Indeed, if Alice and Bob send to each other excessive information, then it looks believable that we can

“compress” excessively long messages of Alice and Bob and, therefore, make the communication complexity smaller.

The aim of this section is to formulate and prove a more precise version of this intuitive guess.

We will prove that the transcript t of every communication protocol can be reduced in some sense to the form shown

in Fig. 3. More precisely, we will extract from a generic transcript t a digital fingerprint t′ so that the complexity profile

of the triple 〈Alice’ data,Bob’s data, t′〉 looks as shown in Fig. 3. Moreover, this “extraction” preserves all essential

information of the original transcript: Alice and Bob can retrieve from the new t′ (almost) the same information as
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≥ 0 ≥ 0

0

0

≥ 0

tA tB

Alice’ data Bob’s data

transcript = 〈tA, tB〉

Figure 3: Complexity profile for Alice’ and Bob’s data and a “natural” communication transcript.

they could obtain from the original transcript t. The formal version of this statement is given in Lemma 8(e), see

below.

The reduction of an arbitrary communication transcript t to its compressed version t′ is quite non-trivial, especially

for protocols with an unbounded number of rounds. We use in the proof two important technical tools: Muchnik’s

technique of conditional descriptions (see Proposition 2) and the lemma on the non-negativity of the triple mutual

information for communication transcripts (see Lemma 7).

The following lemma was proven in [30] (see also a similar result proven for Shannon entropy in [16]):

Lemma 7 ([30]). Let us consider a deterministic communication protocol with two parties. Denote by x and y
the inputs of the parties, and denote by t = t(x, y) the transcript of the communication between the parties. Then

I(x : y : t)≥+ 0, see Fig. 4.

Proposition 2 (Muchnik’s theorem on conditional descriptions, [25]). (a) Let a and b be arbitrary strings of length at

most n. Then there exists a string p of length C(a|b) such that

• C(p|a) = O(log n),

• C(a|p, b) = O(log n).

(b) Let a, b1, b2 be arbitrary strings of length at most n. Then there exist strings q1, q2 of length C(a|b1) and C(a|b2)
respectively such that

• C(qj |a) = O(log n),

• C(a|bj , qj) = O(log n)

for j = 1, 2; we may also require that one of the strings q1, q2 is a prefix of another one. As usual, the constants in

O(log n)-notation do not depend on n.

Remark 10. In Proposition 2(a) the string p can be interpreted as an almost (up to O(log n)) shortest description of

a conditional on b that satisfies a nice additional property: it can be easily computed given a. In other words, p is a

“digital fingerprint” of a (it is easy to obtain p from a) such that we can reconstruct a given this fingerprint and b.
Similarly, in Proposition 2(b) the strings q1 and q2 can be interpreted as almost shortest descriptions of a given b1

and b2 respectively. The non-trivial part of (b) is the requirement that one of the strings q1, q2 (the shorter one) is a

prefix of the other (longer) one. In particular, if C(a|b1) = C(a|b2), then q1 = q2, and we can use one and the same

shortest program to transform b1 or b2 into a.
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C(x|t, y) C(y|t, x)

0

≥ 0

I(x : y|t)

I(t : x|y) I(t : y|x)

x y

t

Figure 4: Complexity profile for inputs x, y, and the transcript t of a communication protocol with given inputs. Note

that C(t|x, y) is negligibly small (we can compute t by simulating the communication protocol) and I(x : y|t)≤+I(x :
y) due to Lemma 7.

Since p in Proposition 2(a) is an almost optimal description of a given b, we can conclude that p is almost incom-

pressible given b, i.e., C(p|b) = |p| + O(log n). Similar properties hold true for q1and q2 in Proposition 2(b): these

strings are almost incompressible conditional on b1 and b2 respectively. We will use this observation in the proof of

the next lemma.

This proposition can be proven by an ad hoc argument, [25], or by using the generic technique of extractor, as

shown in [5]. For a discussion of different proofs of this theorem we refer the reader to [26].

Now we can prove the main technical result of this section.

Lemma 8. Assume a deterministic communication protocol for two parties on inputs x and y gives transcript t and

denote n = C(x, y, t).

(a) C(t|x, y) = O(log n).

(b) C(t|x) =+ I(t : y|x).
(c) C(t|y) =+ I(t : x|y).
(d) C(t|x) + C(t|y) =+ I(t : x|y) + I(t : y|x) +O(log n)≤+ C(t).

(e) There exist tx and ty such that

• C(tx) = C(t|x) and C(ty) = C(t|y),

• C(tx|t) = O(log n) and C(ty |t) = O(log n),

• C(t|tx, x) = O(log n) and C(t|ty , y) = O(log n),

• C(tx, ty) =
+ C(tx) + C(ty).

Speaking informally, tx and ty are “fingerprints” of t that can play the roles of (almost) shortest descriptions of

t conditional on x and y respectively. The last condition means that the mutual information between tx and ty is

negligibly small.

The complexity profile for x, y, and 〈tx, ty〉 is shown in Fig. 5.
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C(x|t, y) C(y|t, x)

0

0

I(x : y)

C(ty) C(tx)

x y

t′ := 〈tx, ty〉

Figure 5: Complexity profile for x, y, and t′ := 〈tx, ty〉 from Lemma 8. Note that C(tx) = I(x : t|y), C(ty) = I(y :
t|x), and I(x : y|t′) = I(x : y).

Remark 11. Lemma 8 is a technical statement, and its claim (e) might look artificial. However, this claim has an

intuitive motivation, as explained in the beginning of this section. The “compressed” components tx and ty correspond

to the components tB and tA of a “natural” transcripts shown in Fig. 3.

In an arbitrary protocol the messages of Alice and Bob may have positive mutual information with the data of their

counterparts: Alice may send a message (partially) known to Bob, and Bob may send a message (partially) known to

Alice, in absolute terms or conditional on the previously sent messages. We can find “compressed” descriptions of each

individual message in the protocol using Muchnik’s method, Proposition 2. Indeed, for each of Alice’ message there

exists a compressed description that looks incompressible from Bob’s point of view, conditional on the data available

to Bob and the previous messages of Alice; similarly, for each of Bob’s messages there exists a compressed description

that looks incompressible from Alice’ perspective. By combining together the obtained compressed codes of separate

messages, we can try to construct tx and ty required in the claim (e) of the lemma. However, this approach fails for

protocols with unbounded number of rounds. Indeed, “compressing” each individual message with Proposition 2(a)

costs us a logarithmic error term; as the number of messages is large, the sum of logarithmic terms grows beyond

control. This is why we have to use a less intuitive argument based on Lemma 7, which helps to handle the transcript

of a protocol in one piece, without splitting it into separate messages, as we do in the proof below.

Proof. (a) follows trivially from the fact that t can be computed given (x, y) (we may simulate the communication

protocol on the given inputs). Note that the constant in the term O(·) includes implicitly a description of the commu-

nication protocol (we assume that the protocol has a description of size O(1), see the discussion on p. 9).

(b) For all x, y, t we have

C(t|x) =+ C(t|x, y) + I(t : y|x).
The term C(t|x, y) vanishes due to (a), and we are done.

(c) Is similar to (b).

(d) A routine check shows that for all x, y, t we have

C(t) =+ I(t : x|y) + I(t : y|x) + (I(x : y)− I(x : y|t)) + C(t|x, y).

Due to Lemma 7 we have I(x : y)− I(x : y|t) =+ I(x : y : t)≥+ 0, so (d) follows.

(e) First, we apply Proposition 2(a) with a = t and b = x; we obtain a string p of length C(t|x) such that

• C(p|t) = O(log n) and
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• C(t|p, x) = O(log n).

From (b) we have C(p) =+ I(t : y|x). So we can let tx := p.

Observe that

C(t|tx) =+ C(t)− C(tx) =
+ C(t)− I(t : y|x) ≥ C(t|y)

(this inequality follow from (d)). Now we apply Proposition 2(b) with a = t, b1 = y, and b2 = tx. We obtain q1, q2 of

length C(t|y) and C(t|tx) respectively such that

• q1 and q2 are comparable (one of these strings is a prefix of the other one),

• C(q1|t) = O(log n) and C(q2|t) = O(log n),

• C(t|y, q1) = O(log n), where q1 is the prefix of q having length C(t|y), and

• C(t|tx, q2) = O(log n), where q2 is the prefix of q having length C(t|tx).

Note that the length of q2 is not less (up to O(log n)) than the length of q1. Since q2 is incompressible conditional

on tx, the shorter prefix q1 must be also incompressible conditional on tx. Thus, tx and q1 are independent. We let

ty := q1, and (e) is proven.

4.3 Proof of Theorem 2

Now we are ready to combine the spectral technique from Section 4.1 and the information-theoretic technique from

Section 4.2 and prove our main result.

Proof of Theorem 2. Let us take a pair of (x, y) from Example 1 or Example 2. We know that it satisfies (3) and,

therefore, (2). Assume that in a communication protocol π Alice and Bob (given as inputs x and y respectively) agree

on a secret key z of size δ(n). We will prove a lower bound on the communication in this protocol. To simplify the

notation, in what follows we ignore the description of π in all complexity terms (assuming that it is a constant, which

is negligible compared with n).

In this proof we will deal with four objects: the inputs x′ = 〈x, rA〉 and y′ = 〈y, rB〉, the transcript t, and the

output of the protocol (secret key) z. Our aim is to prove that C(t) cannot be much less than 0.5n. This is enough

to conclude that the length of the transcript measured in bits (which is exactly the communication complexity of the

protocol) also cannot be much less than 0.5n. Due to some technical reasons that will be clarified below we need to

reduce in some sense the sizes of t and z.

Reduction of the key. First of all, we reduce the size of z. This step might seem counter-intuitive: we make the

assumption of the theorem weaker by suggesting that Alice and Bob agree on a rather small secret key. We know

from [30] that C(z) can be pretty large (more specifically, it can be of complexity 0.5n + O(log n)). However, we

prefer to deal with protocols where Alice and Bob agree on a moderately small (but still not negligibly small) key. To

this end we may need to degrade the given communication protocol and reduce the size of the secret key to the value

µ logn (the constant µ to be chosen later). It is simple to make the protocol weaker: if the original protocol provides

a common secret key z of larger size, then in the degraded protocol Alice and Bob can take only the δ(n) first bits

of this key. Thus, without loss of generality, we may assume that the protocol gives a secret key z with complexity

δ(n) = µ logn.

Reduction of the transcript. Now we perform a reduction of t. We know from Lemma 7 that I(x′ : y′ : t) is

non-negative. We want to reduce t to a t′ such that I(x′ : y′ : t′) is exactly 0 (here exactly means, as usual, an equality

that holds up to O(log n)). To this end, we apply Lemma 8 to the triple (x′, y′, t) and obtain tx and ty , which play the

roles of optimal descriptions of t given the conditions x′ and y′ respectively. We let t′ := 〈tx, ty〉. Though technically

this t′ is not a transcript of any communication protocol, we will see that in some sense it behaves similarly to the

initial transcript.

We know from Lemma 8(d,e) that C(t′)≤+ C(t). Thus, to prove the theorem, it is enough to show that C(t′)≥+

0.5n− 2δ(n).

21



Lemma 9. For t′ = 〈tx, ty〉 we have the following equalities:

(a) C(x′|t′, z) =+ n+m− C(ty)− δ(n),

(b) C(y′|t′, z) =+ n+m− C(tx)− δ(n),

and

(c) I(x′ : y′|t′, z) =+ I(x′ : y′)− C(z) +O(log n) = 0.5n− δ(n), (10)

see Fig. 6.

0.5n+m− C(ty) 0.5n+m− C(tx)

0

δ

0.5n− δ

C(ty) C(tx)

x′ y′

〈t′, z〉

Figure 6: Complexity profile for the triple that consists of x′, y′, and 〈t′, z〉 from Lemma 9.

Proof of the lemma. The proof is a routine check where we use repeatedly the Kolmogorov–Levin theorem. For (a)

we have
C(x′|t′, z) =+ C(x′, t′, z)− C(t′, z)

/ from the Kolmogorov–Levin theorem /

=+ C(x′) + C(t′|x′) + C(z|t′, x′)− (C(t′) + C(z))
/ since z is independent of t′ /

=+ C(x′) + C(t′|x′)− C(t′)− C(z)
/ z is computable given t and x′, so C(z|x′, t′) = O(log n) /

=+ C(x′) + I(y′ : t|x′)− I(x′ : t|y′)− I(y′ : t|x′)− C(z)
/ from Lemma 8 /

=+ C(x′)− I(x′ : t|y′)− δ(n)
=+ n+m− C(ty)− δ(n)

The proof of (b) is similar.

Since t and z can be computed from (x′, y′) by a simulation of the protocol and t′ has negligibly small complexity
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conditional on t, we obtain from the Kolmogorov–Levin theorem

C(x′, y′|t′, z) =+ C(x′, y′, t′, z)− C(t′, z)
/ from the Kolmogorov–Levin theorem /

=+ C(x′, y′)− C(t′, z)
/ since t′ and z have logarithmic complexity conditional on (x′, y′) /

=+ C(x′, y′)− C(t′)− C(z)
/ since z is incompressible given t′ /

=+ 1.5n+ 2m− I(x′ : t|y′)− I(y′ : t|x′)− δ(n).

Combining this with (a) and (b) we obtain (c).

Now we are ready to prove the theorem. Assume that

C(tx) + C(ty) < 0.5n− 2δ(n)− λ logn. (11)

If the constant λ is large enough, then we obtain from Lemma 9(a,b)

C(x′|t′, z) + C(y′|t′, z) > 1.5n+ 2m+ c logn. (12)

By choosing λ we can make the constant c in this inequality sufficiently large, so that (12) contradicts (7). Now we

can apply Lemma 6 (the spectral bound applies to Example 1 and Example 2, see Remark 8), and (8) rewrites to

I(x′ : y′|t′, z) ≥ 0.5n−O(log n). (13)

Comparing (10) and (13) we conclude that δ(n) = O(log n) (the constant hidden in O(·) depends only on the choice

of the optimal description method in the definition of Kolmogorov complexity). This contradicts the assumption

δ(n) = µ logn, if µ is chosen large enough. Therefore, the assumption in (11) is false (without this assumption we

cannot apply Lemma 6 and conclude with (13)).

The negation of (11) gives

C(t) ≥ C(tx) + C(ty)−O(log n) ≥ 0.5n− 2δ(n)−O(log n),

and we are done.

5 Pairs with a Fixed Hamming Distance

Theorem 2 estimates communication complexity of the protocol in the worst case. For some classes of inputs (x, y)
there might exist more efficient communication protocol. In this section we study one such special class — the pairs

(x, y) from Example 3. The spectral argument from the previous section does not apply to this example. The spectral

gap for the graph from Example 3 is too small: for this graph we have λ2 = Θ(λ1), while in Example 1 and Example 2

we had λ2 = O(
√
λ1). In fact, the spectrum of the graph from Example 3 can be computed explicitly: the eigenvalues

of this graph are the numbers

Kθn(i) =

θn∑

h=0

(−1)h
(
i

h

)(
n− i

θn− h

)
for i ∈ {0, 1, . . . n}

with different multiplicities, see [4] and the survey [20]. In particular, the maximal eigenvalue of this graph is

Kθn(0) =
(
n
θn

)
and its second eigenvalue is Kθn(1) =

(
n−1
θn

)
−

(
n−1
θn−1

)
. It is not difficult to verify that Kθn(1) =

Ω
((

n
θn

))
(for a fixed θ and n going to infinity), so the difference between the first and the second eigenvalues is only

a constant factor. Thus, we cannot apply Lemma 6 to this graph.

It is no accident that our proof of Theorem 2 fails on Example 3. Actually, the statement of the theorem is not

true for (x, y) from this example. In what follows we show that given these x and y Alice and Bob can agree on a

secret key of any size m (intermediate between logn and n/2) with communication complexity Θ(m). The positive

part of this statement (the existence of a communication protocol with communication complexity O(m)) is proven in

Theorem 3. The negative part of the statement (the lower bound Ω(m) for all communication protocols) is proven in

Theorem 4.
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Theorem 3. For every δ ∈ (0, 1) there exists a two-parties randomized communication protocol π such that given

inputs x and y from Example 3 (a pair of n-bit strings with the Hamming distance θn and complexity profile (2)) Alice

and Bob with probability > 0.99 agree on a secret key z of size δn/2− o(n) with communication complexity O(δn).
(The constant hidden in the O(·) does not depend on n or δ.)

Theorem 4. For every δ ∈ (0, 1) for every randomized communication protocol π such that for inputs x and y from

Example 3 Alice and Bob with probability > 0.99 agree on a secret key z of size ≥ δn, the communication complexity

is at least Ω(δn). (The constant hidden in the Ω(·) does not depend on n or δ.)

Proof of Theorem 3. We start the proof with a lemma.

Lemma 10. Let (x, y) be a pair from from Example 3 (two n-bit strings with the Hamming distance θn and complexity

profile (2)). Let m = δn for some δ ∈ (0, 1). Denote by x̂ and ŷ the m-bit prefixes of x and y respectively. Then

• C(x̂) = m+ o(n),

• C(ŷ) = m+ o(n),

• I(x̂ : ŷ) = 0.5m+ o(n),

• the Hamming distance between x̂ and ŷ is θm+ o(n).

Proof of lemma. Denote by x̂′ and ŷ′ the suffixes of length n−m of x and y respectively (so x is a concatenation of x̂
and x̂′, and y is a concatenation of ŷ and ŷ′). The idea of the proof is simple: the law of large number guarantees that

for the vast majority of pairs (x, y) such that HammingDist(x, y) = θn, the fraction of positions where x̂ differs from

ŷ and the fraction of positions where x̂′ differs from ŷ′ are both close to θ; the pairs violating this rule are uncommon;

therefore, Kolmogorov complexity of these “exceptional” pairs is small, and they cannot satisfy (2). To convert this

idea into a formal proof, we need the following technical claim:

Claim: If the pair (x, y) satisfies (3) and the Hamming distance between x and y is θn, then

HammingDist(x̂, ŷ) = θm+ o(n),
HammingDist(x̂′, ŷ′) = θ(n−m) + o(n).

Proof of the claim. Denote

θ1 := 1
m ·HammingDist(x̂, ŷ),

θ2 := 1
n−m ·HammingDist(x̂′, ŷ′)

(note that θ1m + θ2(n −m) = θn; as θ is fixed, there is a linear correspondence between θ1 and θ2). For a fixed x
of length n, the number strings y of the same length that matches the parameters m, θ1, θ2 (i.e., that differ from x in

exactly θ1m bits in the first m positions and in θ2(n−m) bits in the last n−m positions) is

(
m

θ1m

)
·
(

n−m
θ2(n−m)

)
= 2h(θ1)m+O(logn) · 2h(θ2)(n−m)+O(logn)

= 2(
m

n
h(θ1)+

n−m

n
h(θ2))n+O(logn)

= 2(δh(θ1)+(1−δ)h(θ2))n+O(logn)

≤ 2h(θ)n+O(logn) = 20.5n+O(logn),

where h(τ) = −τ log τ − (1− τ) log(1− τ) is the binary entropy function. The last inequality follows from the fact

that the function h(τ) is concave, and therefore

δh(θ1) + (1− δ)h(θ2) ≤ h (δθ1 + (1− δ)θ2) = h(θ). (14)

If θ1 and θ2 are not close enough to the average value θ, then the gap between the left-hand side and the right-hand

side in (14) is getting large. More specifically, it is not hard to verify that the difference

h(θ)− δh(θ1)− (1− δ)h(θ2) (15)
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grows essentially proportionally to the square of |θ1−θ| (as the second term of the Taylor series of the function around

the extremum point). So, if |θ1 − θ| and |θ2 − θ| are getting much larger than
√
(logn)/n, then the gap (15) becomes

much bigger than (logn)/n, and then we obtain

(
m

θ1m

)
·
(

n−m

θ2(n−m)

)
< 20.5n−ω(logn).

On the other hand,

C(x, y) =+ C(x) + C(y|x)≤+ n+ log

((
m

θ1m

)
·
(

n−m

θ2(n−m)

))
.

Thus, the assumption C(x, y) =+ 1.5n can be true only if θ1m = θm+ o(n) and θ2(n−m) = θ(n−m)+ o(n).

Note that
C(x̂) ≤ |x̂|+O(1) = m+O(1),
C(ŷ) ≤ |ŷ|+O(1) = m+O(1).

Further, from the Claim it follows that

C(ŷ|x̂)≤+ log

(
m

θm+ o(n)

)
= h(θ) ·m+ o(n) = 0.5m+ o(n). (16)

Therefore,

C(x̂, ŷ) =+ C(x̂) + C(ŷ|x̂)≤+ 1.5m+ o(n).

Thus, we have proven that

C(x̂) ≤ m+ o(n),
C(ŷ) ≤ m+ o(n),

C(x̂, ŷ) ≤ 1.5m+ o(n).

It remains to show that these three bounds are tight. To this end, we observe that a similar argument gives the upper

bound

C(x̂′, ŷ′) ≤ 1.5m+ o(n).

Since

C(x̂, x̂′, ŷ, ŷ′) =+ C(x, y) = 1.5n+O(1),

we obtain

C(x̂, ŷ) ≥ 1.5m− o(n).

Due to (16), this implies C(x̂) ≥ m− o(n), and similarly C(ŷ) ≥ m− o(n).

Thus, Alice and Bob can take the prefixes of their inputs x, y of size m = δn. Lemma 10 guarantees that

these prefixes x̂ and ŷ have the complexity profile (Kolmogorov complexities and mutual information) similar to the

complexity profile of the original pair (x, y) scaled with the factor of δ (up to an o(n)-term). Thus, Alice and Bob can

apply to x̂ and ŷ the communication protocol from Theorem 1 and end up with a secret key z of size δn/2 − o(n).
It is shown in [30] that communication complexity of this protocol is C(x̂|ŷ) + O(logm) (note that it is enough for

Alice and Bob to know the complexity profile of (x̂, ŷ) within a precision o(n), see Remark 5 in [30]). In our setting

this communication complexity is equal to δn/2 + o(n).

Proof of Theorem 4. In the proof of the theorem we use two lemmas. The first lemma gives us a pair of simple

information inequalities:

Lemma 11 (see, e.g., Ineq 6 in [11] or lemma 7 in [21]). For all binary strings a, b, c, d

(i) C(c) ≤+ C(c|a) + C(c|b) + I(a : b),
(ii) C(c|d) ≤+ C(c|a) + C(c|b) + I(a : b|d).
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The other lemma is more involved:

Lemma 12 ([31], see also exercise 316 in [32]). There exists an integer number k with the following property. Let

x = x0 and y = y0 be a pair of strings from Example 3 (two n-bit strings with the Hamming distance θn and

complexity profile (2)). Then there exist two sequences of n-bit binary strings x1, . . . , xk and y1, . . . , yk such that

• I(xi : yi|xi+1) = O(log n) for i = 0, . . . , k − 1,

• I(xi : yi|yi+1) = O(log n) for i = 0, . . . , k − 1,

• I(xk : yk) = O(log n).

(Note that k is a constant that does not depend on n. It is determined uniquely by the value of θ, which is the normalized

Hamming distance between x and y.)

Remark 12. In the proof Lemma 12 suggested in [31], each pair (xi, yi) consists of two binary strings of length n
with Hamming distance θin and maximal possible (for this value of θi) Kolmogorov complexity. In our case, the

initial θ0 = θ is chosen so that I(x0 : y0) =+ n/2. Each next θi is bigger than the previous one. For the last pair

we have θk = 1/2. This means that in the last pair (xk, yk) the strings differ in a half of the positions, so the mutual

information is only O(log n).

Applying Lemma 11(ii), we obtain for every string w and for all xi, yi, xi+1, yi+1 the inequalities

C(w|xi+1) ≤+ C(w|xi) + C(w|yi) + I(xi : yi|xi+1),
C(w|yi+1) ≤+ C(w|xi) + C(w|yi) + I(xi : yi|yi+1).

Combining these inequalities for i = 0, . . . , k−1 and taking into account the assumptions I(xi : yi|xi+1) = O(log n)
and I(xi : yi|yi+1) = O(log n), we obtain

C(w|xk) + C(w|yk)≤+ 2k · (C(w|x0) + C(w|x0)) .

Now we use Lemma 11(i) and obtain

C(w) ≤+ C(w|xk) + C(w|yk) + I(xk : yk).

With the condition I(xk : yk) = O(log n) we get

C(w) ≤+ 2k · (C(w|x0) + C(w|y0)) + I(xk : yk) =
+ 2k · (C(w|x) + C(w|y)) . (17)

Denote by rA and rB the strings of random bits used in the protocol by Alice and Bob respectively. With high

probability the randomly chosen rA and rB have negligibly small mutual information with w, x, y. Therefore, (17)

rewrites to

C(w) ≤+ 2k · (C(w|x, rA) + C(w|y, rB)) . (18)

We apply (18) to w := 〈t, z〉, where z is the secret key obtained by Alice and Bob, and t is the transcript of the

communication protocol. Then

C(w) =+ C(z) + C(t)

(the key has no mutual information with the transcript), and

C(w|x, rA)≤+ C(t), C(w|y, rB)≤+ C(t)

(given the transcript and the data available to Alice or to Bob, we can compute z). Plugging this in (18) we obtain

C(z) + C(t)≤+ 2k+1 · C(t),

which implies C(t) = Ω(C(z)). Therefore, the size of the transcript t is not less than Ω(δn), and we are done.
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6 Conclusion

In Theorem 2 we have proven a lower bound for communication complexity of protocols with private randomness.

The argument can be extended to the setting where Alice and Bob use both private and public random bits (the private

sources of randomness are available only to Alice and Bob respectively; the public source of randomness is available

to both parties and to the eavesdropper). Thus, the problem of the worst case complexity is resolved for the most

general natural model of communication.

For pairs of inputs (x, y) from Example 1 and Example 2 (corresponding to edges of a graph with a large spectral

gap) we have got a lower bound for communication complexity that matches the known upper bound. However, in

the known protocols achieving this bound the communication is very non-symmetric: all (or almost all) the burden of

communication falls on only one of two participants. We do not know whether there exist more balanced protocols,

where the communication complexity is shared equally between Alice and Bob.

We have no characterization of the optimal communication complexity of the secret key agreement for pairs of

inputs (x, y) that do not enjoy the spectral property required in Corollary 1. In particular, there is a large gap between

constant hidden in the O(δn) notation in Theorem 3 and in the Ω(δn) notation in and Theorem 4, so the question on

the optimal trade-off between the secret key size and communication complexity for (x, y) from Example 3 remains

open (cf. Conjecture 1 in [19] for an analogous problem in Shannon’s setting).

In some applications (see, e.g., [7, 14]) it is natural to assume that the eavesdropper is given a non-negligible a

priori information about Alice’ and Bob’s inputs. For this setting we do not have a characterization of the optimal size

of the key and the communication complexity of the protocol.
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A Technical Lemmas and a Proof of Proposition 1

In this section we prove a version of Newman’s theorem (on sampling random bits) for communication protocols with

private randomness. We start with two technical lemmas and then proceed with a proof of Proposition 1.

Definition 1. Let RA and RB be finite sets and let S ⊂ A × B. We say that a sequence (or a multiset) of elements

a1, . . . , ak in A and a sequence (multiset) of elements b1, . . . , bk in B provide a δ-precise sampling of S in A×B if
∣∣∣∣Probi,j [(ai, bj) ∈ S]− |S|

|A×B|

∣∣∣∣ < δ,

see Fig. 7.

Lemma 13. Let A and B be finite sets and let S ⊂ A×B. We choose at random sequences of elements a1, . . . , ak in

A and b1, . . . , bk in B (all ai and bj are independent and uniformly distributed on A and B respectively). Then with

probability at least 1− 4e−δ2k/2 the chosen pair of sequences provides a δ-precise sampling of S.

Proof. To prove the lemma, we split the process of sampling in two steps. At first, we substitute A by a sequence

a1, . . . , ak and estimate the difference

∣∣Probi∈{1,...,k},b∈B [(ai, b) ∈ S]− Proba∈A,b∈B[(a, b) ∈ S]
∣∣ , (19)

see Fig. 8. Then, we fix a sequence a1, . . . , ak, choose at random a sequence b1, . . . , bk ∈ B and estimate the

difference ∣∣Probi∈{1,...,k},j∈{1,...,k}[(ai, bj) ∈ S]− Probi∈{1,...,k},b∈B[(ai, b) ∈ S]
∣∣ . (20)

We show that both of these differences are typically small and, therefore, the difference

∣∣Probi∈{1,...,k},j∈{1,...,k}[(ai, bj)]− Proba∈A,b∈B[(a, b) ∈ S]
∣∣

is typically small as well.

Claim: For a randomly chosen sequence a1, . . . , ak ∈ A, the probability that the difference in (19) is larger than δ/2

is less than 2e−δ2k/2.
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Figure 7: Sampling random points in S ⊂ A × B by choosing independently random columns ai ∈ A and random

rows bj ∈ B.
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Figure 8: Restriction of a set S ⊂ A×B onto the product {a1, . . . , ak} ×B with randomly chosen columns ai ∈ A.
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Proof of the claim: For every a ∈ A we denote by ϕ(a) the fraction of elements from S in the column of the Cartesian

product A×B corresponding to the value a, i.e.,

ϕ(a) :=
|S ∩ ({a} ×B)|

|B| .

From the definition it follows that 0 ≤ ϕ(a) ≤ 1 for every a ∈ A, and the average value of ϕ(a) (for a randomly

chosen a) is equal to σ := |S|
|A×B| . Since a1, . . . , ak are chosen in A independently, the values ϕ(a1), . . . , ϕ(ak) are

independent and identically distributed. Hence, we can apply Hoeffding’s inequality (see [12]):

Prob

[∣∣∣∣
ϕ(a1) + . . .+ ϕ(ak)

k
− σ

∣∣∣∣ ≥ δ/2

]
≤ 2e−2(δ/2)2k.

This means that with a probability≥ 1− 2e−2(δ/2)2k the gap (19) is less than δ/2.

Let us fix now a sequence a1, . . . , ak ∈ A, and estimate the difference in (20) as a function of random sequence

b1, . . . , bk ∈ B. We can use once again the same argument with Hoeffding’s inequality as in Claim above, now for the

sampling of values of the second coordinate in {a1, . . . , ak} × B. It follows that with a probability ≥ 1 − 2e−δ2k/2

the gap (20) is less than δ/2. Combining the bounds for (19) and(20), we obtain the lemma.

Lemma 14. Let π be a two-party communication protocol where Alice and Bob access inputs x and y respectively,

and use private random bits rA ∈ {0, 1}s and rB ∈ {0, 1}s respectively. For z1, z2, t we denote by p(x, y, z1, z2, t)
the probability of the following event: given x and y as inputs, Alice and Bob apply the protocol π and end up with

an answer z1 ∈ {0, 1}m for Alice, an answer z2 ∈ {0, 1}m for Bob, and a communication transcript t ∈ {0, 1}l. The

probability is taken on independent and uniformly distributed rA, rB .

We apply to π a random transformation as follows: we choose two random sequences a1, . . . , ak and b1, . . . , bk
in {0, 1}s. In the new communication protocol π′ Alice and Bob choose at random i, j ∈ {1, . . . , k}, and then apply

the original communication protocol with private strings of random bits ai and bj respectively. By construction, in the

protocol π′ Alice and Bob need log k private random bits each (they both need to choose a random index between 1
and k).

Denote by p′(x, y, z1, z2, t) the probability analogous to p(x, y, z1, z2, t) computed for the protocol π′. The prob-

ability is taken on the choice of independent and uniformly distributed i, j ∈ {1, . . . , k}. We claim that for all

x, y, z1, z2, t the probability of the event

|p(x, y, z1, z2, t)− p′(x, y, z1, z2, t)| < δ (21)

is greater than 1 − 4e−δ2k/2 (here the probability is taken over the choice of a1, . . . , ak and b1, . . . , bk in {0, 1}s in

the construction of π′).

Proof. We apply Lemma 13 with A = B = {0, 1}s (the space of random bits of the original protocol), and S =
S(x, y, z1, z2, t) that consists of the pairs (rA, rB) ∈ {0, 1}s × {0, 1}s compatible with the given x, y, z1, z2, t. In

other words, a pair (rA, rB) belongs to S, if Alice and Bob given x and y as inputs and rA and rB as random bits,

obtain with the protocol π answers z1 and z2 respectively and produce a communication transcript t. From the lemma

it follows that with the probability 1− 4e−δ2k/2, the choice of a1, . . . , ak and b1, . . . , bk in {0, 1}s in the construction

of π′ provides a δ-precise sampling of S.

Now we are ready to prove a version of Newman’s theorem suitable for our setting.

Proof of Proposition 1. Due to Lemma 14, with randomly chosen samples a1, . . . , ak and b1, . . . , bk with a probability

> 1−4e−δ2k/2 we obtain a new protocol π′ such that for each (x, y, z1, z2, t) we have (21). We apply this construction

with a δ such that

δ :=
ε2

#answers z1 ·#answers z2 ·#transcripts t
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and a k such that

4e−δ2k/2 ·#inputs (x, y) ·#answers z1 ·#answers z2 ·#transcripts t < 1. (22)

The property (22) implies that there are samples a1, . . . , ak and b1, . . . , bk such that (21) is true simultaneously for all

(x, y, z1, z2, t). Let us fix one such instance of sampling.

In the obtained protocol π′, for each pair of input (x, y) the total probability to obtain an invalid outcome (which

is the sum over all (z1, z2, t) that are invalid) increases in comparison with the original protocol π by at most

δ ·#answers z1 ·#answers z2 ·#transcripts t < ε2. (23)

Note that we can claim (23) even without having an explicit description of the sets of valid and invalid outcomes, it is

enough to have (21) for each tuple of inputs and outcomes.

Since the length of the outputs and the communication complexity of π are linear in n, the total number of inputs

(x, y), outputs (z1, z2), and transcripts t is 2O(n). It is not hard to see that we can chose

δ = ε2/2
O(n) and k = 2O(n)/ε22

so that (22) and (23) are satisfied. From the choice of k it follows that in the new protocol π′ Alice and Bob need only

log k = O(n+ log(1/ε2)) private random bits.

It remains to notice that an appropriate instance of sampling in Lemma 14 (suitable sequences a1, . . . , ak and

b1, . . . , bk) can be found by brute-force search. To organize this search we do not need to know the precise definition

of the validity of the outcome nor the class of admissible inputs (x, y). Indeed, we can simulate the original protocol

π on all pairs of inputs of length n and find an instance of sampling such that for each (z1, z2, t) the probability of this

outcome increases by at most δ. Thus, if the original protocol was uniformly computable, so is the new one (though

the computational complexity could increase dramatically).
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