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Figure 1: The "pixels-off" process illustrated on a 256x256 pixels image 1.pgm from BOSSBase [1]. Fig.a represents the cover
and Fig.b its "pixels-off" version with 100 pixels switched-off. Fig.c (resp. Fig.d) is the embedding modification probabilities
map for the cover (resp. "pixels-off" version) obtained from the S-UNIWARD model with a payload of 0.4bpp [12].

ABSTRACT

After 2015, CNN-based steganalysis approaches have started replac-
ing the two-step machine-learning-based steganalysis approaches
(feature extraction and classification), mainly due to the fact that
they offer better performance.

In many instances, the performance of these networks depend
on the size of the learning database. Until a certain point, the larger
the database, the better the results. However, working with a large
database with controlled acquisition conditions is usually rare or
unrealistic in an operational context. An easy and efficient approach
is thus to augment the database, in order to increase its size, and
therefore to improve the efficiency of the steganalysis process.

In this article, we propose a new way to enrich a database in
order to improve the CNN-based steganalysis performance. We have
named our technique "pixels-oft". This approach is efficient, generic,
and is usable in conjunction with other data-enrichment approaches.
Additionally, it can be used to build an informed database that we
have named "Side-Channel-Aware databases" (SCA-databases).

CCS CONCEPTS

« Applied computing — Computer forensics; « Comput-
ing methodologies — Image processing; -« Computer systems
organization — Neural networks.

KEYWORDS

steganalysis; deep-learning; CNN; data-augmentation; steganog-
raphy; pixels-off



1 INTRODUCTION

Modern numerical steganography is the art of concealing a message
in a digital cover [7]. In other words, steganography is the set of
techniques allowing secret communication between two protago-
nists, conventionally named Alice and Bob [19].

When we study steganography, one has to check the security of
the secret communication occurring between Alice and Bob. This
security analysis is named steganalysis, and we conventionally
attribute this role to another entity named Eve.

Since the use of deep-learning for steganalysis purposes [4],
many efficient models have been proposed, these are now seen
as state-of-the-art references for spatial image steganalysis such
as, Yedroudj-Net [24], SRNet [3], CovPool-Net [6], Zhu-Net [26],
Calpa-Net [20].

For these networks, the number of images needed to reach the
region of good performance (that is the performance of a Rich Model
[8] with an Ensemble Classifier [14]), is about 10,000 images (5,000
covers and 5,000 stegos) for the learning phase. This is the case
when there is no cover-source mismatch, and the images’ size is
256 X 256 pixels [23].

However, this quantity of images is insufficient [23] in the sense
that performance can be increased simply by augmenting the size of
the training set. In steganalysis, the so-called irreducible error region
[10] probably requires many more images than those normally
used today. In the case of [25], it takes one million images, which
corresponds to 100 times more images than those usually used for
the learning phase.

Working with an extensive database is not necessarily the only
solution to reach the irreducible error region faster. We can use trans-
fer learning [17] and/or curriculum learning [22] to start learning
from a network that has already been trained. We can also use a
set of CNNs [21] or a network made of sub-networks [16], which
can save a few percentage points on accuracy.

In this paper, we focus on the database enrichment in a clairvoy-
ant scenario with no SCA. In this scenario, a CNN-steganalyzer is
used inline to analyze test set images that have never been seen be-
fore (test phase). Prior to its inline deployment, during the learning
phase, the CNN-steganalyzer has access to images whose distribu-
tions are similar to those of the test set (i.e. same sources, same
development!, same sizes, same embedding process, and same pay-
load).

The database enrichment is usually done with virtual augmenta-
tion [15], or by adding another similar dataset such as BOWS2 [22],
[23]. We can make new acquisitions with the same devices used
to produce the test database, and perform images developments
similar to the ones used to generate the test database [23].

Here, we propose to duplicate the learning set and to add a par-
ticular noise. Adding noise for database augmentation is a classical
principle in machine learning and especially in image classification.
Nevertheless, it did not give compelling results for CNN-based ste-
ganalysis. This can be explained by the fact that the added noise
alters the initial surface statistical regularities [13], leading to a
mismatch between the learning set and the test one.

!In this paper, the "development” stands for the numerical processes transforming a
RAW color image to a 256x256 8-bits grey-levels image

We thus propose the pixels-off noise principle. After explaining
the reasoning behind this approach, its principle and its statistical
properties in section 2, we present current state-of-the-art CNNs
(section 3); then, we give the experimental methodology in section 4.
We intensively evaluate its accuracy and usability in section 5. This
evaluation is performed alongside two state-of-the-art networks
(Yedroudj-Net [24] and CovPool-Net [6]) using two well-established
embedding algorithms (S-UNIWARD [12] and WOW [11]) at 0.2
bpp and 0.4 bpp. We use two well-known test databases (BOSS [1]
and Alaska [5]), and we compare the pixels-off technique with many
other enrichment propositions. In section 6, we further analyze the
property of this technique, and we discuss its usage.

2 PIXELS-OFF PROPOSITION

2.1 The enrichment approaches

Using an initial learning set and a fixed test set, database augmen-
tation (enrichment) consists in increasing the number of images of
the initiallearning set. In this paper, we explore an enrichment tech-
nique which improves the CNN performance, without requiring
access: 1) to images other than those of the initial learning database
and 2) to the original cameras (or the original raw images) or any
knowledge about the development. The approach we are proposing
is, therefore, always feasible.

As mentioned previously, the virtual augmentation (VA) which
flips and rotates the learning set without interpolation [15], or
eventually adding another database [22], can be used to enrich the
initial learning set.

The steganalyzer, Eve, can also decide to duplicate the initial
learning set and apply image processing on it with the purpose of
enriching the initial learning set. For example, in [24], the authors
propose two processes. The first one consists in applying a sub-pixel
image translation, of 0.5 pixel, on the padded images, followed by a
cropping operation to obtain a 256x256 pixel image. The second
one consists in upsampling with the Lanczos3 filter to obtain a
512x512 pixel image and then downsampling it with the same in-
terpolation kernel to get an image of 256x256 pixels. Unfortunately,
these processes applied directly to the images give an important
accuracy reduction. Also note that the usual approaches consisting
of adding noise, like in image classification, are also not as efficient
(see section 5). These signal processing approaches are not preserv-
ing, or are too far from the initial learning set statistics. In short, a
cover-source mismatch phenomenon [9] occurs because the added
images do not share the same surface statistical regularities [13],
i.e. the same pixel distribution.

As experimentally observed in [13], the networks tend to learn
surface statistical regularities, instead of high-level abstraction. As
appended comments, the authors of [13] observe that:

(1) better results are obtained when tests are performed on an
unfiltered database (unfiltered images) while training is per-
formed on low-pass filtered images, compared to training
and testing on unfiltered images.

(2) when merging the filtered and unfiltered images databases,
the generalization capabilities improve, but results are not
surpassing the results obtained when the learning and testing
databases are similar.



These first observations, even if they are related to an image clas-
sification context, suggest that well-chosen noises, applied to cover
images, could lead to beneficial enrichment of an initial training
set, i.e. an improvement in the steganalysis accuracy.

Our proposition consists in switching off a small proportion of
pixels from the duplicated initial database of cover images. We name
this filtering the "pixels-off" technique. We thus keep the idea of
random masking, but rather than applying it to the Fourier domain;
we apply it directly to the spatial domain so that we keep the average
cover statistics. Pixel zeroing is similar to a noise addition, but to
our knowledge, no other noise had previously worked to augment
a database for steganalysis purposes. The pixels-off technique can
be seen as a simulation of dead pixels, or faulty sensors, which
frequently occurs in various application domains.

2.2 The pixels-off technique

The Algorithm 1 describes how the pixels-off technique is used
for database enrichment.

Algorithm 1: Pixels-off database generation.

Data: training-set-list, P;
// P: numbers of pixels to nullify
Result: pixels-off-list
1 pixels-off-list = [];
2 cover-list = get-covers (training-set-list);
3 N = length (cover-list);
4 (h,w) = size (cover-list(0));
5 fori=1,i < N,i++do
6 x = cover-list(i); // x: a cover
7 z = dispatch-P-zeros (h,w, P);
// randomly spread P zeros, in an image made
of 1, of size hxw
8 Xoff =XOQ 2z // xop¢: a cover with P pixels-off
9 Yosfr = embedding (x,rr , payload);
10 pixels-off-list.append([xof , Yo 1)
11 end

-

2 return pixels-off-list;

As shown in Algorithm 1, 2nd line, only the covers are retained
out of the training set since they are the ones considered for pixels-
off.

The loop for (line 5) iterates through the entire cover list. For
each iteration, a cover, x, is selected (line 6). A binary image, z,
whose size is equal to the cover’s one, is generated (line 7) by
randomly spreading P zeros in an image made of ones. Note that
the variable P defines the number of pixels to be switched to zero.
In practice, the value of this variable should be small. Therefore,
it is chosen so that only a small portion of the image (between
1.5%0and 1.5%) is switched off.

The cover pixels-off version, x, s, is obtained by applying an
element-wise multiplication between the cover, x, and the binary
image, z. The obtained image, x,, > is thus a new cover. The latter is
subsequently used to generate a stego through the same embedding
algorithm and the same payload as those used to obtain the training-
set-list stegos (line 9). These generated pairs (cover/stego) are then

Figure 2: Visualization by elevation for the differences be-
tween the embedding modification probability maps of the
cover (Figure 1.c) and its pixels-off version (Figure 1.d).

appended to the pixels-off-list (line 10), which will later be added to
the training set.

2.3 The impact on the covers/stegos statistics

At first glance, the "pixels-off” noise could seem to be a noise of
a high power relative to the original cover image. However, this
is not the case. Take for example the noisy image in Figure 1.b, its
PSNR is 31,932. The number of modified pixels is very small with
respect to the image size. The proportion of the modified pixels
is indeed between 1.5%. and 1.5%. This can be visually observed
in Figure 1. The cover is given in Figure 1.a, and the cover with
1.5 %o pixels-off, is given in Figure 1.b. For these two images, the
difference between their average is 0.23, the difference between
their standard deviation is also 0.23, and the difference between
their Entropy is 0.0081.

The first and second moments and the probability distribution
are therefore approximately equal. There are nevertheless, some
local differences between the two images, such as the local variance
computed on a window close to pixels-off.

That said, the majority of the pixels of a pixels-off noisy cover
keep the same correlation/dependencies as the original cover. Those
correlations/dependencies are what is defining the source (i.e. the
surface statistical regularity). So, the "pixels-oft" technique only
implies a small perturbation of the statistics of the covers, but
preserves the average statistics. This is exactly what we need to
enrich the initial learning set with additional covers.

The impact on the stegos is described below. Figure 1.c shows
the embedding modification probability, when using S-UNIWARD
[12] embedding model, for each pixel of the cover image in Figure
1.a. Figure 1.d shows the embedding modification probability, for
the cover with pixels-off given in Figure 1.b. The red pixels stand
for the high probabilities and the blue ones for low probabilities.
Figure 2 better illustrates the difference between these two images
with a visualization by elevation. The "peaks" stand for pixel areas
where there is a difference between the embedding modification
probability for the cover image and its corresponding pixels-off one.
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Figure 3: Yedroudj-Net CNN architecture.

The peaks only occur to the pixels-off positions, and they are all
centred on the pixels-off positions.

One can observe that the probabilities between the two images
are similar, except in areas close to a pixel-off. This occurs because a
pixel-off area is producing a saliency in the image. It is captured by
the filters computing the cost map, such as those of S-UNIWARD,
and is identified as an area where the embedding is favorable, i.e.
whose cost value is small, thus, whose modification probability
is high. A stego image and its "pixels-off" noisy version will not
have the exact same modified pixels when the same message is
embedded. This property is also interesting because it produces
noisy stegos different from initial stegos, but still statistically close.

3 PRESENTATION OF TWO
STATE-OF-THE-ART CNNS FOR SPATIAL
STEGANALYSIS

Our study on the pixels-off data augmentation technique, is con-
ducted using two convolutional neural networks (CNNs) from exist-
ing state-of-the-art spatial steganalysis methods: Yedroudj-Net [24]
(section 3.1), and CovPool-Net [6] (section 3.2), over two databases
BOSS base [1] and ALASKA [5].

3.1 Yedroudj-Net

Yedroudj-Net [24] is a shallow network that converges fast. It can
learn on small databases whilst obtaining good performances. It
was published in 2018 to become, in a very short period of time,
one of the most important CNNs for spatial steganalysis. We report
in Figure 3 the global architecture of this network. We can observe
that it is built in three parts, called modules: the pre-processing,
the convolution and the classification module.

The pre-processing module includes one convolutional layer
whose weights are initialized with high-pass filter kernels derived
from the SRM linear filters [8]. Unlike the original paper, we have
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Figure 4: CovPool-Net CNN architecture.

decided to add a truncation activation layer (TLU) on this module.
This helps the network to converge even faster.

The convolutional module is composed of five convolutional
blocks; each block starts with a convolutional layer and ends with
an average pooling layer. In between, we find a batch normalization
layer and an activation layer (block Type2). The average pooling
layer is omitted from the first block to prevent premature signal
loss (block Typel). The average pooling layer is replaced with a
global average pooling in the last block (block Type3).

As for the classification module, it consists of three fully con-
nected layers and a softmax activation function. The softmax func-
tion is used to normalize the two scores provided by the network
between [0,1].

For more details on Yedroudj-Net, the reader can either check
the original paper [24] or the online code at 2. The pytorch version
of yedroudj-net, which has been used in this paper, will soon be
available at >,

3.2 CovPool-Net

Global Covariance Pooling Network, referred to as CovPool-Net [6],
is a deep network that is as efficient as SRNet [3], yet it requires no
curriculum learning. Moreover, according to [6] authors, CovPool-
Net converges faster than SRNet. CovPool-Net is a recent CNN that
was published in July 2019. Thanks to its deep architecture design,
this network has been able to achieve a good performance level and
thus takes its place among the state-of-the-art spatial steganalysis
models.

Similar to Yedroudj-Net, CovPool-Net is composed of a pre-
processing module, a convolutional module and a classification

2online code: Caffe version
3online code: Pytorch version


https://github.com/yedmed/steganalysis_with_CNN_Yedroudj-Net/caffe_version
https://github.com/yedmed/steganalysis_with_CNN_Yedroudj-Net/tree/master/pytorch_version

module (see Figure 4). As for the pre-processing module, it is com-
posed of two layers, a convolutional layer whose weights are initial-
ized in the same way as in Yedroudj-Net, and a truncation activation
layer (TLU) [22].

The CNN convolutional module is made up of 10 convolutional
blocks. All of these ten blocks include a convolutional layer, a batch
normalization layer and an activation layer. The average pooling
layer is present only on blocks 4, 6 and 8, while block 10 includes
a global covariance pooling which, according to [6] authors, im-
proves the detection performance while preserving similar training
speeds compared to a global average pooling. The blocks without
an average pooling layer are noted Typel. Block Type2 refers to
those with an average pooling layer. Last block, the one with the
global covariance pooling layer, is noted as block Type3.

Unlike the Yedroudj-Net classification module, which is com-
posed of three fully connected layers, the CovPool-Net classification
module is composed of only one fully connected layer, which is
followed by a softmax function that produces the probability distri-
bution on the two-class labels.

4 EXPERIMENTAL METHODOLOGY

This section describes the common core of all the experiences re-
ported in section 5.

4.1 Datasets

In this paper, to assess the reliability of our approach, we conduct
various experiments on different databases. In the following para-
graphs, we list those databases with a brief description.

4.1.1 the BOSS base: Break Our Steganographic System [1]. This
database was made in 2011 for a steganalysis competition. This
database has become the most known and used database for ste-
ganalysis, but also for steganography. It consists of 10,000 grayscale
images of 512 X 512 pixels, uncompressed, and coming from 7 dif-
ferent cameras,

4.1.2 the BOWS2 base: Break Our Watermarking System [2]. This
database was originally created for a watermarking competition
held in 2008, but since 2017 it has been widely used as a complemen-
tary database to the BOSS base. In particular, it is used to augment
the provided samples’ number when training on the Boss base. This
database consists of 10,000 grayscale images of 512 X 512 pixels,
uncompressed, and whose distribution is close to that of BOSS base,

4.1.3 ALASKA-10K base: The ALASKA database was formerly cre-
ated for the "in the wild" steganalysis competition [5]. The main
objective of this competition was to bring steganalysis from re-
search laboratories to real-life conditions.

Compared to BOSS and BOWS2, ALASKA is a large-scale data-
base. It consists of 80,000 raw images from 51 different cameras
(including smartphones and tablets...). This allows us to reflect bet-
ter the wide media diversity that can be found "in the real world";
this diversity may be particularly fruitful for machine learning mod-
els. Moreover, a large database with many samples is important for
training Deep Learning models dedicated to steganalysis, especially
given that these models are getting deeper and deeper.

For the objectives of this paper, and in order to be able to fairly
compare the results with those obtained on the BOSS base, we de-
cided to randomly select 10,000 (the same number of images as on
the BOSS database) of the 80,000 RAW images. Next, we applied the
scripts provided with the ALASKA database to obtain 10,000 un-
compressed gray-scale images in “tiff” format of 1024x1024 pixels.
We referee to that base as ALASKA-10K.

Due to computational and time limitations, we conduct all the ex-
periments on images of 256x256 pixels. To this end, we re-sampled
all the images to 256x256 pixels, using the imresize() Matlab func-
tion with the default parameters (bi-cubic interpolation with anti-
aliasing).

Note that the sub-sampling step supposes to make the pixels’
value distribution of ALSAKA-10k database closer to that of BOSS’.
However, by examining the steganalysis results in section 5, it
appears that these two databases are statistically different. ALSAKA-
10k is still a more "secure" database relative to BOSS, i.e. more
difficult to steganalyze.

4.2 Software platform

In our experiments, we use Matlab for image manipulation and pre-
processing tasks such as image re-sampling, data embedding, pixel
manipulation, etc. For data embedding, two well-known content-
adaptive spatial steganography algorithms with two payloads of
0.2 and 0.4 bit per pixel (bpp) are used, namely S-UNIWARD [3]
and WOW [2].

Note that we use Matlab implementations (online codes*) with
the simulator for embedding and a random key for each embedding.
In this paper, both CNN’s, i.e. Yedroudj-Net and CovPool-Net, are
implemented using PyTorch 3, an open-source deep learning frame-
work widely used by the scientific community. Also, note that the
results presented in the original Yedroudj-Net paper were obtained
using Caffe. This explains the slight variations in performance com-
pared to those presented in this paper. All the experiments were
run on an NVidia Titan X GPU card.

4.3 Descriptions of the different experimental
scenarios

Below, we list all the scenarios that we have adopted in our tests
with a brief description of how we create the training sets for each
scenario. For a fair comparison, the test set remains the same on all
scenarios.

Classical scenario. This represents the conventional scenario
which is often used to obtain the baseline performance of a
steganalysis model. Basically, this scenario consists of evalu-
ating a steganalysis model on a given database. Therefore,
we split the database of pairs (cover/stego) into three sets.
40% of the cover/stego pairs are reserved for the model’s
training, 10% are assigned to the validation set, while the
remaining 50% are reserved for the test set. When referring
to this scenario, we use the name of the used database, e.g.
if we use Yedroudj-Net on ALASKA-10k, the results based
on this scenario will be noted as ALASKA-10k.

*http://dde.binghamton.edu/download/
Shttps://pytorch.org/
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Database enhancement scenario. In the field of steganaly-
sis, the databases used are still relatively small. To overcome
this limitation, researchers are studying database augmenta-
tion techniques and their impact on the overall performance
of steganalysis models. One of these techniques is what we
call database enhancement. In practical terms, database
enhancement consists of providing a training set of the
classical scenario with cover/stego pairs coming from a dif-
ferent database (a complementary database). To refer to this
scenario, we put side-by-side the names of the original base
and the complementary base. For example, BOSS+BOWS2
is when we enrich the BOSS training set with images from
BOWS2.

Virtual augmentation scenario. This is the most commonly
used technique for database enrichment, whether for ma-
chine learning or deep learning tasks. In steganalysis, VA
consists of performing label-preserving flips and rotations
on both covers and stegos of the training set, thus increasing
the size of the learning set by a factor of 8. In this paper, we
refer to this scenario as Database name_VA. If we take the
previous example BOSS+BOWS2, when applying VA, this
scenario will be noted "BOSS+BOWS2_VA". Note that the
test set of this configuration remains unchanged (no virtual
augmentation).

Pixels-off scenario. This scenario is similar to that of data-
base enhancement, but rather than enriching the training set
with cover/stego pairs from a complementary database, we
use the pixels-off technique outlined in Algorithm 1 and dis-
cussed in section 2.2. First, we generate a pixels-off version(s)
of the training set’s covers. Once the covers are generated,
we proceed to the generation of their corresponding ste-
gos. These new resulting base of cover/stego pairs are then
added to the training set. This increases the size of the learn-
ing set by a factor of 2. Note that it is possible to further
increase the size of the training set by changing the P pa-
rameter each time (see Algorithm 1) and thus generating
more pixels-off versions. To refer to this scenario, we use the
following notation “Database name+P;_Pj .._Pp-off”, where
Pie{1,..,n} is the number of pixels that are switched to zero,
and n is the number of duplicated versions. For example,
"BOSS+100_400-off" refers to the scenario in which we aug-
ment the Boss training set with two pixels-off versions,
n =2 with P; = 100, P = 400.

5 EXPERIMENTAL RESULTS

In the following section, we present the obtained results for different
setups. Note that the maximum number of epoch is fixed to 200 (resp.
400) epochs for CovPool-Net (resp.Yedroudj.Net). Nevertheless, the
two networks reach convergence before attaining this number.
Therefore, to give a rough estimate, we provide convergence times
for each setup.

5.1 Setup 1: No pixels-off, Yedroudj-Net, BOSS
base

In Table 1, we report the error probability obtained using Yedroudj-
Net on WOW and S-UNIWARD at 0.2 bpp and 0.4 bpp. Different

scenarios are tested, the classical scenario, virtual augmentation sce-
nario and the database enhancement scenario, plus the combination
of database enhancement and virtual augmentation scenarios.

Table 1: Steganalysis error probability of Yedroudj-Net on
BOSS base with two embedding algorithms WOW and S-
UNIWARD at 0.2 bpp and 0.4 bpp under different scenarios

WOowW SUNIWARD examples | conv

0.2bpp | 0.4bpp | 0.2bpp | 0.4bpp (pairs) time

BOSS 27.71 15.27 35.42 22.7 4,000 4-5h
BOSS_VA 24.2 13.01 34.2 18.4 32,000 4-5h
BOSS+BOWS2 23.12 12.84 33.06 17.8 14,000 14-15h

BOSS+BOWS2_VA | 20.85 10.13 29.12 16.37 112,000 14-15h

Regardless of payload size and embedding algorithms, this virtual
augmentation scenario (BOSS_VA) provides superior results to the
classical scenario (BOSS), with a 2-3% performance improvement.
Note that the training time (to reach convergence) of Yedroudj-
Net under the virtual augmentation scenario is the same as under
the classical scenario; this is due to the fact that we use online
virtual augmentation. Thus, in theory, more images are available
for network training (32,000 pairs), but in practice, for each epoch,
the network will see as many images as in the classical scenario
(4,000 pairs). In other words, for each epoch, we randomly select
4,000 pairs from the 3,2000 pairs.

As for the database enhancement scenario, noted BOSS+BOWS,
the CNN’s performance is even better. As we can see, the stegan-
alyzer efficiency has increased by 2 to 5%. However, more time
is needed to train (14-15h versus 4-5h in the VA scenario). This
is because, in contrast to the VA scenario, the number of images
provided to the network at each epoch in the database enhance-
ment scenario increases. The results are even better when we apply
both augmentation techniques (database enhancement and virtual
augmentation); the error probability is reduced by 5-7% compared
to the classical scenario.

5.2 Setup 2: With pixels-off, Yedroudj-Net,
BOSS base

In order to study the importance of the proposed technique, several
tests have been carried out. First, as a reference test, we tested the
classical scenario noted B (BOSS). Then, we tested the "pixels-off"
scenario. For that, four pixels-off versions of the BOSS (B) training
set were generated (100-off, 256-off, 400-off, 1024-off). These gen-
erated versions were then added, gradually, to the classic scenario
training set B (BOSS); the training set size is thus increased by
4,000 each time. Accordingly, the final training set (B4) contains
20,000 cover/stego pairs.

The results are presented in Table 2. For the experiment with
the training set noted B; (B+100-off), when the initial learning
set is increased using the 100-off version, the Yedroudj-Net error
probability is decreased -on average- by 2%. The performance is
further improved when we increase the initial training set twice by
using both the 100-off and the 256-off versions (B2). The detection



Table 2: Steganalysis error probability of Yedroudj-Net on
BOSS base with two embedding algorithms WOW and S-
UNIWARD at 0.2 bpp and 0.4 bpp for pixels-off scenario

WOwW SUNIWARD examples | conv

0.2bpp | 0.4bpp | 0.2bpp | 0.4bpp (pairs) time

B = BOSS 27.71 15.27 35.42 22.70 4,000 4-5h

B; = B+100-off 25.31 14.3 33.1 19.4 8,000 9-10h

B, = By+256-off 23.95 13.41 29.8 17.8 12,000 13-14h

B3 = By+400-off 23.5 13.44 29.3 16.95 16,000 17-18

B4 = B3+1024-off 23.8 13.65 29.2 16.98 20,000 21-22

Bs =B;_VA 21.5 124 31.4 14.8 64,000 9-10h

error probability is reduced by 2-4% for WOW (resp. 5-6% for S-
UNIWARD) in comparison to the classical scenario. However, more
time is needed to train (~ 14h).

The B3 training set slightly reduces the steganalysis error prob-
ability, for both payloads, compared to the By training set (0,4% for
WOW at 0.2bpp, and 0.8% for S-UNIWARD at 0.4bpp). Furthermore,
no significant improvement is observed from B3 to By.

Table 3: Steganalysis error probability of Yedroudj-Net on
BOSS base with two embedding algorithms WOW and S-
UNIWARD at 0.4 bpp with different numbers P of pixels-off.

WOW 0.4 bpp | SUNIWARD 0.4 bpp
BOSS 15.27 22.70
BOSS+100-off | 14.3 19.4
BOSS+256-off | 14.6 19.3
BOSS+400-off | 13.9 18.6
BOSS+1024-off | 14.8 19.9

As shown in Table 3, whatever the value of the variable P used
for the enrichment (100-off, 256-off, 400-off, or 1024-off) the ste-
ganalysis performance is improved, with P = 400 (400-off) gives
the best results. When grouping all those enrichment, as observed
in Table 2, with By, the results are even better. Thus, the optimal
parameters is roughly around P = 400 pixels-off, but combining
various enrichments with P between 100 and 1024 allows us to im-
prove even more the steganalysis efficiency. Note that this behavior
is also observed in the other experiments detailed hereafter.

In the case of B1_VA (Table 2) where the enrichment is done by
applying, in addition to the pixels-off technique, the virtual data
augmentation, a significant improvement is observed. The detection
error probability is reduced by 3-6% for WOW (and 4-5% for S-
UNIWARD) compared to the classical scenario. These results show
that virtual data augmentation can be freely used in parallel with
pixels-off techniques. This conclusion is very interesting as it shows
that the pixels-off technique can offer a good and straightforward

solution to further improve the performance of CNN steganalysis,
while continuing to apply classical enrichment methods.

5.3 Setup 3: With pixels-off, Yedroudj-Net,
ALASKA base

To investigate the usability of the pixels-off technique to different
databases, we conducted similar tests to those presented in Table
2, except that we used a different database, ALASKA-10k. The
results are presented in Table 4. For the pixels-off scenario using
A (ALASKA+100-off) training set, the error probability is reduced
by an average of 1% in comparison with the classical scenario
A (ALASKA). The performance keeps improving as we further
enrich the training set (Az). Better results are obtained for As, as
we achieve an improvement in performance of 2-4% on WOW, and
2-3% on S-UNIWARD with respect to the no-enrichment scenario
(ALASKA).

The trend for scenario Ay is similar to those obtained with BOSS
base with scenario B4 (Table 2). The results between Az and A4 are
comparable or even a little bit improved with A4. Again, combining
various enrichments by varying the parameter P between 100 and
1024 improves the performances. From previous results, we can
conclude that the pixels-off technique improves the performance
of the model, regardless of the database.

Table 4: Steganalysis error probability of Yedroudj-Net on
ALASKA-10K base with two embedding algorithms WOW
and S-UNIWARD at 0.2 bpp and 0.4 bpp for pixels-off sce-
nario

WOwW SUNIWARD examples | conv
0.2bpp | 0.4bpp | 0.2bpp | 0.4bpp (pairs) time
A = Alaska 40.11 30.4 42.85 32.45 4,000 4-5h

Aj = A+100-off 38.78 28.92 41.87 31.69 8,000 9-10h

Ay = A1+256-off 38.15 28.09 40.55 30.24 12,000 13-14h

A3z = Ay+400-off 38.05 27.91 40.05 29.54 16,000 17-18h

Ay = A3+1024-off | 375 28.02 40.01 28.94 20,000 21-22h

Before moving to the next section, where we will examine the
performance of the pixels-off technique using another state-of-
the-art steganalyzer CovPool-Net, we would like to point out two
observations in agreement with those completed in [9] and [18].

Firstly, we can notice that the intrinsic security of ALASKA-10k
database is better than that of BOSS database. As an example, the
accuracy of S-UNIWARD 0.4 bpp, steganalyzed with Yedroud;j-Net,
is 32% on ALASKA (A), whereas it is 22% on BOSS (B). This can
be explained by the fact that ALASKA-10k is made up of images
that come from many different camera models, and that the raw im-
ages have been developed with a various number of developments,
among them some are producing a high level of mismatch [9].

Secondly, the superiority, in terms of security, of S-UNIWARD
versus WOW, when evaluated on BOSS, is less apparent when the
evaluation is done on ALASKA-10K. At 0.4 bpp, S-UNIWARD is 7%
more secure than WOW on BOSS, whereas the gap falls to 2% on
ALASKA-10K. As reported in [18], most of the adaptive algorithms
have been tuned on the BOSS base, and the internal parameters



Table 5: Steganalysis error probability of CovPool-Net on
BOSS base with two embedding algorithms WOW and S-
UNIWARD at 0.2 bpp and 0.4 bpp for pixels-off scenario

Table 6: Steganalysis error probability of Yedroudj-Net on
BOSS base with two embedding algorithms WOW and S-
UNIWARD at 0.4 bpp for different types of noise enrichment

WwWOow SUNIWARD examples conv WOWO0.4 | SUNIWARDO.4
0.2b 0.4b 0.2b 0.4b i ti

PP | 0-4bpp | 02bpp | 0-4bpp | (pairs) __ time BOSS 15.27 22.70

B = BOSS 26.08 | 1560 | 31.89 | 18.32 4,000 5-6h
BOSS+100-off 14.3 19.4

By = B+100-off | 2533 | 14.63 | 2854 | 16.25 8,000 10-11h
By = B+256-0ff | 24.88 | 13.11 | 2661 | 1500 | 12,000 | 14-15h BOSS+Gaussian 16.08 23.25
Bs = By+400-off | 23.34 | 13.02 | 26.64 | 15.44 16,000 | 19-20h BOSS+salt&pepper (d = 0.05) 15.16 22.25
By =B; VA 175 9.23 | 2158 | 10.54 64,000 | 10-11h BOSS+salt&pepper (d = 0.0016) | 14.76 19.92

are not optimized for other databases. This can explain the security
gap reduction between WOW and S-UNIWARD.

5.4 Setup 4: With pixels-off, CovPool-Net, BOSS

In order to analyse the performance of the pixels-off technique
when using different steganalyzer, additional tests were carried out.

In this section, we present the obtained results when pixels-off
enrichment technique is used with another steganalysis model,
CovPool-Net. For embedding, we use WOW and S-UNIWARD with
BOSS base. As in section 5.2, we start with the classical scenario
(no enrichment) and then gradually extend the training set size by
applying the pixels-off algorithm, the results are presented in Table
5. For By, we see an improvement of 2-3% for S-UNIWARD and less
than 1% for WOW compared to the classical scenario. Better results
are achieved for By (3-5% for S-UNIWARD and 1-2% for WOW)

For B3, the pixels-off algorithm increases the performance by
3-2% for S-UNIWARD and 2% for WOW. Like on Yedroudj-Net,
CovPool-Net shows a considerable improvement when we combine
both pixels-off and virtual augmentation (B4). The error rate can be
reduced by 10-7% for S-UNIWARD (resp. 8-6% for WOW ) compared
to classical scenario (BOSS). Note that CovPool-Net takes one to
two hours longer for training compared to Yedroudj-Net.

6 DISCUSSION AND ADVANCED ANALYSIS

In an attempt to better understand the underlying properties re-
sulting from the use of the pixels-off technique, we first evaluate
two other noises and compare their performance to the pixels-off
enrichment. Second, we detail the class of problems addressed by
the pixels-off technique.

6.1 Discussion on the noise power

We evaluate the impact of two classical additive noises when used
for database enrichment. The first noise is the intensity spikes noise,
known as the salt and pepper noise. We set the density to the default
value, d = 0.05. The second noise is the Gaussian one. We use it with
a zero mean and a variance of 0.01. We use BOSS base with WOW
and S-UNIWARD at a payload of 0.4 bpp. For the steganalysis we
use Yedroudj-Net.

The results are presented in Table 6. Note that for a fair compari-
son, the tests are always performed on the same test set. Also, note
that the training sets have the exact same number of cover/stego

pairs. One can observe that the results are worse when we perform
a database enrichment using Gaussian noise (BOSS+Gaussian), com-
pared to the no-enrichment scenario. An increase of 1% in detection
error probabilities is reported for both WOW and S-UNIWARD.
These results suggest that the addition of high-power noise, such
as Gaussian noise, can lead to an important modification of the
initial statistical models of both cover and stego contents. Thus, it
provokes a mismatch between the training and the test set and so
causes a drop in performance.

For enrichment with the salt and pepper noise and a density
d = 0.05, the results are similar to those of the classic scenario
(BOSS), and significantly inferior to those of the pixels-off scenarios
(BOSS+100-off), regardless of the embedding algorithms used. The
density d = 0.05 stands for the default density value (in Matlab) and
the value commonly used in machine learning for data enrichment,
however for steganalysis this value may be too high. Indeed, for
an image of 256 X 256 pixels, with d= 0.05, about 3,300 pixels are
affected by the salt and pepper noise, that is three times more
modifications than when the maximum value of the P parameter is
used (in pixel-off technique Ppqx = 1024 pixels).

It appears that only low-power noise affecting a very small per-
centage of pixels (less than 1.5%) can be useful for data-enrichment.
To investigate this assumption, we test the salt and pepper noise
but this time with a lower noise density, d=0.0016. Therefore, for
an image of 256 X 256 pixels, about 100 pixels will be affected by
the salt and pepper noise. In this case, the performance is signifi-
cantly improved compared to the "BOSS+salt&pepper (d = 0.05)"
scenario, while it is quite similar to that of the the "BOSS+100-off"
scenario. This is because the salt and pepper noise, with d=0.0016,
is inherently close to the pixels-off noise, as it randomly scatters
white or black pixels in the image.

In the past, the steganalysis community did not obtain successful
results with salt and pepper noise, this is mainly due to the use
of the same density value used in the machine learning literature,
which was actually too high for steganalysis’ purpose. However,
this type of noise gives satisfactory results when the lower density
value is used. Finally, note that we have also observed that some
other weak noises can be used fruitfully. Instead of switching off
100 pixels (setting their values to 0), we tested adding a noise of "+/-
1" to 100 pixels randomly picked. We obtained an improvement,
almost equal to that of "BOSS+salt&pepper (d = 0.0016)".



6.2 Class of problems addressed by the
pixels-off technique

A signal like the pixels-off noise slightly changes the statistical
properties of both cover and stego images [13]. As a consequence,
the enrichment of a database with pixels-off noisy images should
introduce a mismatch between the learning and test set, and thus
imply a drop off in steganalysis performance. Nevertheless, the re-
sults that we reported previously, show that this type of enrichment
improves CNN steganalysis accuracy.

What can appear as a counter-intuitive behaviour is, in fact,
specific to deep-learning based steganalysis. Indeed, feature-based
steganalysis, for its part, is badly impacted by the pixel-off noise.
This was checked by evaluating the impact of a pixels-off-100 en-
richment on the BOSS base with WOW at 0.4 bpp using an Ensemble
Classifier [14] with Rich Model SRM [8]. Instead of improving the
accuracy, the error probability increases from 25.5% to 28.3%. This
confirms that the pixels-off technique does not produce images
sharing the exact same source-model, and/or does not produce
stegos that comes from the exact same stego-source-model. The
pixels-off noise is breaking a sufficient number of pixel dependen-
cies (which are due to the development processing) to results in an
image realization that cannot come from the source that produced
the initial database.

One should conclude that pixels-off enrichment incites the learn-
ing to be more sensitive to areas around switched-off pixels since
these areas are now associated with strong embedding probabil-
ities. Indeed, an area with a pixel switched off is creating a local
abrupt signal change, for the covers and the stegos, and we think
that it encourages the convolutional kernels to learn local weights
more sensitive to those very singular areas. Knowing that modern
adaptive embedding algorithms are mainly modifying the pixels
from the textured areas, pixels-off may also encourage the network
to focus more attention on these areas.

In order to challenge this rationale, we have forced the pixels
that are switched-off to occur in the pixels of higher embedding
probability. We conducted two additional experiments to check if
the enrichment of the database can be guided by the adaptability
of the embedding algorithm. In order to do so, we modify the
pixels-off Algorithm 1 such that pixels switched-off are chosen by
taking into account the Side Channel Information, which is in our
case the embedding modification probabilities map. More precisely,
instead of randomly switching off 100 pixels of the whole image,
we switch off the same number of pixels while considering only
the 10% pixels with the highest embedding probability (experiment
noted BOSS+100_off-highP), then we test while considering only
the 10% pixels with the lowest embedding probability (experiment
noted BOSS+100_off-lowP). These results are presented in Table 7.

We can observe that the detection accuracy is reduced by 1% for
the Boss+100_off-lowP scenario compared to the classical pixels-off
scenario BOSS+100_off . On the other hand, the results are improved
for the +100_off-highP scenario compared to the Boss+100_off sce-
nario.

These results are interesting because they could lead to another
way of doing SCA steganalysis, by generating SCA training sets.
The usual approaches, such as Ye-Net [22], SRNet [3], are using
the probability map as an input of the network. On the contrary,

with the adaptive pixels-off method, the side information is only
used to enrich the database. In order to better understand how
noises, like the pixels-off one, could be used as another way to do
SCA learning, additional experiments can be carried out, such as
selecting the pixels-off by drawing them from a scaled version of the
probability map, or compare the results with a CNN-based informed
steganalysis. We postpone the numerous additional experiments
for future works.

Table 7: Steganalysis error probability of Yedroudj-Net on
BOSS base with two embedding algorithms WOW and S-
UNIWARD at 0.4 bpp for different scenarios of pixels-off

WOWO0.4 | SUNIWARDO.4
BOSS 15.27 22.70
BOSS+100_off 14.3 19.4
BOSS+100_off-lowP | 15.17 20.85
BOSS+100_off-highP | 13.65 18.15

7 CONCLUSION

Today, CNN-based steganalyzer architectures are getting deeper
and deeper. Therefore, larger databases are needed in order to reach
the region of good performance (irreducible error region). However,
having a larger database in the steganalysis field can be a chal-
lenging option. This is where database enrichment techniques can
help. This consists in increasing the number of images of the initial
training set. Among existing techniques, we find the virtual data
augmentation technique and the database enhancement technique.

In this paper, we propose and explore a novel technique for data-
base enrichment for CNN-based steganalyzer. We call this enrich-
ment technique "pixels-off". This technique is similar, in concept,
to a noise addition, but it is performed in such a manner that it
ensures that the pixel distribution of the resulting image remains
as close as possible to the original one. Thus it avoids triggering a
Cover Source Mismatch phenomenon (CSM).

The proposed technique is simple to implement, with low com-
plexity and, most importantly, it improves the detection accuracy
of the CNN-based steganalyzer. In addition, our technique is com-
pliant with other techniques, so there is no restriction when it is
performed in conjunction with other techniques such as virtual
augmentation. Furthermore, the combination of the pixels-off tech-
nique with other data enrichment techniques leads to an even better
performance.

We expect this paper to lead to fruitful research avenues that
we plan to pursue. In future work, it would be interesting to study
thoroughly how data enrichment impacts CNN-based steganalyzer
performances. For this, we could examin the confusion matrix to
understand the origin of the performance improvements. We could
examine the learned filters of CNN, before and after data enrich-
ment. We shall also study other techniques, and evaluate their
scope for improving CNN-based SCA or not-SCA steganalysis per-
formance.
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