K. Horch, S. Meek, T. G. Taylor, and D. T. Hutchinson, Object Discrimination With an Artificial Hand Using Electrical Stimulation of Peripheral Tactile and Proprioceptive Pathways With Intrafascicular Electrodes, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.19, pp.483-489, 2011.

M. Ortiz-catalan, B. Hakansson, and R. Branemark, An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs, Science Translational Medicine, vol.6, pp.257-263, 2014.

E. L. Graczyk, The neural basis of perceived intensity in natural and artificial touch, Science Translational Medicine, vol.8, pp.362-142, 2016.

M. Schiefer, D. Tan, S. M. Sidek, and D. J. Tyler, Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis, J Neural Eng, vol.13, p.16001, 2016.

D. W. Tan, M. A. Schiefer, M. W. Keith, J. R. Anderson, and D. J. Tyler, Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in human amputees, J Neural Eng, vol.12, p.26002, 2015.

G. S. Dhillon and K. W. Horch, Direct neural sensory feedback and control of a prosthetic arm, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.13, pp.468-472, 2005.

S. Raspopovic, Restoring Natural Sensory Feedback in Real-Time Bidirectional Hand Prostheses, Science Translational Medicine, vol.6, pp.222-241, 2014.

G. A. Clark, Using multiple high-count electrode arrays in human median and ulnar nerves to restore sensorimotor function after previous transradial amputation of the hand, 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1977.

T. S. Davis, Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves, Journal of Neural Engineering, vol.13, p.36001, 2016.

D. W. Tan, A neural interface provides long-term stable natural touch perception, Sci Transl Med, vol.6, pp.257-138, 2014.

C. M. Oddo, Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans, vol.5

X. Navarro, A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems, J. Peripher. Nerv. Syst, vol.10, pp.229-258, 2005.

P. M. Rossini, Double nerve intraneural interface implant on a human amputee for robotic hand control, Clinical Neurophysiology, vol.121, pp.777-783, 2010.

G. Valle, Biomimetic Intraneural Sensory Feedback Enhances Sensation Naturalness, Tactile Sensitivity, and Manual Dexterity in a Bidirectional Prosthesis, 2018.

, , vol.9, 19258.

G. Valle, Comparison of linear frequency and amplitude modulation for intraneural sensory feedback in bidirectional hand prostheses, Scientific Reports, vol.8, p.16666, 2018.

C. Pasluosta, P. Kiele, and T. Stieglitz, Paradigms for restoration of somatosensory feedback via stimulation of the peripheral nervous system, Clinical Neurophysiology, vol.129, pp.851-862, 2018.

S. Raspopovic, F. M. Petrini, M. Zelechowski, and G. Valle, Framework for the Development of Neuroprostheses: From Basic Understanding by Sciatic and Median Nerves Models to Bionic Legs and Hands, Proceedings of the IEEE 105, pp.34-49, 2017.

F. M. Petrini, Six-months assessment of a hand prosthesis with intraneural tactile feedback, Ann. Neurol, 2018.
URL : https://hal.archives-ouvertes.fr/lirmm-01943433

R. K. Kalkman, J. J. Briaire, and J. H. Frijns, Stimulation strategies and electrode design in computational models of the electrically stimulated cochlea: An overview of existing literature, Network: Computation in Neural Systems, vol.27, pp.107-134, 2016.

M. A. Schiefer, E. L. Graczyk, S. M. Sidik, D. W. Tan, and D. J. Tyler, Artificial tactile and proprioceptive feedback improves performance and confidence on object identification tasks, Plos One, vol.13, p.207659, 2018.

E. D'-anna, A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback, Sci. Robot, vol.4, p.8892, 2019.

T. Boretius, A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve, Biosensors and Bioelectronics, vol.26, pp.62-69, 2010.

R. S. Johansson and J. R. Flanagan, Coding and use of tactile signals from the fingertips in object manipulation tasks, Nature Reviews Neuroscience, vol.10, pp.345-359, 2009.

G. V. Békésy, Funneling in the nervous system and its role in loudness and sensation intensity on the skin, The Journal of the Acoustical Society of America, vol.30, pp.399-412, 1958.

J. Cha, L. Rahal, and A. El-saddik, A pilot study on simulating continuous sensation with two vibrating motors, IEEE International Workshop on Haptic Audio visual Environments and Games, pp.143-147, 2008.

P. Maciejasz, Delaying discharge after the stimulus significantly decreases muscle activation thresholds with small impact on the selectivity: an in vivo study using TIME, Med Biol Eng Comput, vol.53, pp.371-379, 2015.
URL : https://hal.archives-ouvertes.fr/lirmm-01116454

J. A. Hokanson, R. A. Gaunt, and D. J. Weber, Effects of Synchronous Electrode Pulses on Neural Recruitment During Multichannel Microstimulation, Sci Rep, vol.8, pp.1-12, 2018.

R. M. Friedman, L. M. Chen, and A. W. Roe, Responses of Areas 3b and 1 in Anesthetized Squirrel Monkeys to Single-and Dual-Site Stimulation of the Digits, J Neurophysiol, vol.100, pp.3185-3196, 2008.

B. Nierula, F. U. Hohlefeld, G. Curio, and V. V. Nikulin, No somatotopy of sensorimotor alpha-oscillation responses to differential finger stimulation, NeuroImage, vol.76, pp.294-303, 2013.

G. Granata, Phantom somatosensory evoked potentials following selective intraneural electrical stimulation in two amputees, Clinical Neurophysiology, vol.129, pp.1117-1120, 2018.
URL : https://hal.archives-ouvertes.fr/lirmm-01767540

N. Forss, Activation of the human posterior parietal cortex by median nerve stimulation, Exp Brain Res, vol.99, pp.309-315, 1994.

F. Mauguière, Activation of a distributed somatosensory cortical network in the human brain. A dipole modelling study of magnetic fields evoked by median nerve stimulation. Part I: location and activation timing of SEF sources, Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, vol.104, pp.281-289, 1997.

T. Allison, Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating shortlatency activity, Journal of Neurophysiology, vol.62, pp.694-710, 1989.

Y. Okajima, N. Chino, E. Saitoh, and A. Kimura, Interactions of somatosensory evoked potentials: simultaneous stimulation of two nerves, Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, vol.80, pp.26-31, 1991.

F. Bengtsson, R. Brasselet, R. S. Johansson, A. Arleo, and H. Jörntell, Integration of Sensory Quanta in Cuneate Nucleus Neurons In Vivo, PLoS ONE, vol.8, p.56630, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01537855

A. Gindrat, A window into the plasticity of the sensorimotor system in adult primates using EEG: insights from lesion, repeated stimulation and touchscreen use, 2015.

M. Solomonow, J. Lyman, and A. Freedy, Electrotactile two-point discrimination as a function of frequency, body site, laterality, and stimulation codes, Ann Biomed Eng, vol.5, pp.47-60, 1977.

T. Guiho, Advanced 56 Channels Stimulation System to Drive Intrafascicular Electrodes, Converging Clinical and Engineering Research on Neurorehabilitation II, pp.743-747, 2017.
URL : https://hal.archives-ouvertes.fr/lirmm-01386618

G. Risso, Optimal integration of intraneural somatosensory feedback with visual information: a single-case study, Scientific Reports, vol.9, 2019.

R. Oostenveld and P. Praamstra, The five percent electrode system for high-resolution EEG and ERP measurements, Clinical Neurophysiology, vol.112, pp.713-719, 2001.

A. Delorme and S. Makeig, EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis, Journal of Neuroscience Methods, vol.134, pp.9-21, 2004.

F. Artoni, D. Menicucci, A. Delorme, S. Makeig, and S. Micera, RELICA: A method for estimating the reliability of independent components, NeuroImage, vol.103, pp.391-400, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02344933

F. Artoni, A. Delorme, and S. Makeig, Applying dimension reduction to EEG data by Principal Component Analysis reduces the quality of its subsequent Independent Component decomposition, Neuroimage, vol.175, pp.176-187, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02341930

A. Delorme, J. Palmer, J. Onton, R. Oostenveld, and S. Makeig, Independent EEG Sources Are Dipolar. PLOS ONE, vol.7, p.30135, 2012.

F. Artoni, ErpICASSO: A tool for reliability estimates of independent components in EEG event-related analysis, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, p.6345945, 2012.

J. Cardoso, Infomax and maximum likelihood for blind source separation, IEEE Signal Processing Letters, vol.4, pp.112-114, 1997.

D. Menicucci, Brain Responses to Emotional Stimuli During Breath Holding and Hypoxia: An Approach Based on the Independent Component Analysis, Brain Topogr, vol.27, pp.771-785, 2014.

E. Maris and R. Oostenveld, Nonparametric statistical testing of EEG-and MEG-data, Journal of Neuroscience Methods, vol.164, pp.177-190, 2007.

R. Oostenveld, P. Fries, E. Maris, J. Schoffelen, and . Fieldtrip, Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Computational Intelligence and Neuroscience, 2011.