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ABSTRACT The purpose of this study is to implement a human-like balance recovery controller
and analyze its robustness and energy consumption. Three main techniques to maintain balance can be
distinguished in humans, namely (i) the ankle strategy, (ii) the hip-ankle strategy, (iii) the stepping strategy.
Because we only consider quiet standing balance, then stepping is not included in our balance recovery
study. Numerical model predictive control (N-MPC) is proposed to predict the best way to maintain balance
against various disturbance forces. To simulate balance recovery, we build a three-link model including a
foot with unilateral constraints, the lower body, and the upper body. Subsequently, we derive the dynamical
equations of the model and linearize them. Based on human balance capabilities, we set bound constraints
on our model, including angles and balance torques of the ankle and hip. Unilateral constraints are set on
the foot, which makes our model more similar to the human quiet standing case. Finally, we implemented
a simulation of the proposed ankle and hip-ankle strategy in simulation and analyzed the obtained results
from kinematic and dynamic indices as well as from an energy consumption perspective. The robustness
of the proposed controller was verified through the obtained simulation results. Thus, this study provides a
better understanding of human quiet standing balance that could be useful for rehabilitation.

INDEX TERMS Balance recovery, hip-ankle strategy, Numerical Model Predictive Control, energy
consumption.

I. INTRODUCTION

HUMAN balance recovery is an important topic in the
human rehabilitation field. Human balance has been

extensively studied for many years. Three main balance
strategies have been observed in human push-recovery ex-
periments for different extents of perturbation in the anterior-
posterior (A/P) direction. For a small pushing force exerted
on the back, the human tries to move the ankles ("ankle
strategy") to maintain balance while keeping the knees, hips,
and neck straight. For a larger pushing force exerted on the
back, the human tends to rotate the hips ("hip strategy") when
the ankle movement is not large enough to maintain balance.
Finally, in cases where the human cannot maintain quiet
standing, they need to step forward ("stepping strategy") for
balance recovery. These three balance strategies are illus-
trated in Fig. 1. However, in certain environments or under

special circumstances, the human may not be able to step
forward. In quiet standing cases, the ankle and hip strategies
are the two possible choices for human balance control. After
deriving general rules from human balance experiments,
many researchers tried to model this kind of human posture
behavior for further motor learning and control.

In the literature, one can find many studies about human
balance control, involving clinical human experiments and
numerical simulations.

Vukobratovic et al. stressed the importance of artificial
locomotion systems for rehabilitation equipment design [1]
and proposed the concept of zero moment point (ZMP) as a
part of biped locomotion stability criteria [2]. Hemami et al.
used nonlinear feedback to linearize a compound inverted
pendulum system for postural stability analysis [3]. Goddard
et al. studied the single-support postural stabilization of a
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(a) (b) (c)

FIGURE 1. The three balance strategies with different external disturbing
forces in A/P direction: (a) ankle strategy, (b) hip strategy and (c) stepping
strategy.

three-link planar model of a biped while considering the
system state and input constraints in the frontal plane [4].

Gatev et al. proposed to use a feed-forward approach
to assess strategies for maintaining balance during quiet
standing and evaluated the effects of narrow stance width
and absence of sight. A feedforward controller predicts an
external input or behaves using higher-order processing in-
stead of the simple negative feedback of a variable [5]. The
postural responses to unexpected small and slow or large
and faster disturbances during quiet standing are defined
as ’ankle strategy’ and ’hip strategy’ [6], respectively. The
selection of a balance strategy against a disturbance is based
on the available suitable sensory data [7]. However, Kuo et al.
proposed a mixed hip-ankle strategy in the anteroposterior
(A/P) direction, which was implemented in biomechanical
optimization models, instead of a pure ankle strategy to
recover postural balance versus different disturbances. Con-
sidering the large moment of inertia of the whole body and
the difficulty of separating the control of the ankle and hip
joints, the objective was to minimize the neural effort, and
the predictions were based on the limited effort of the ankle
joint torque to recover the balance from unstable postures
[8], [9]. Studies of quiet standing [10], [11], [13] stated that
the strategies for postural balance recovery should be divided
into two categories: anteroposterior (A/P) and mediolateral
(M/L). A/P balance studies include the ankle strategy, the hip
strategy, and the stepping strategy. M/L balance studies focus
solely on sway motion control [12]–[15].

Pai et al. [16] predicted the center-of-mass (CoM) velocity
and position of an inverted pendulum with a foot segment
within the limits of a base of support (BOS) for balance
recovery from forward and backward falls. Kajita et al. [17]
used a preview control of the ZMP to generate a bipedal
walking pattern. A ZMP tracking servo controller based on
the future-reference preview control was designed to com-
pensate for the eventual ZMP error caused by the difference

between an amplified model and a precise multibody model.
Azevedo et al. [18] studied the human walking and balance
strategies and proposed the ’trajectory-free nonlinear model
predictive control’ to simulate various walking, and also the
stable standing situations. Hofmann [19] studied humanoid
walking and balance control in his thesis and highlighted
the importance of horizontal motion control of the CoM for
balance recovery. Stephens et al. [20]–[23] studied humanoid
push balance recovery during walking and quiet stances
from multiple perspectives, including balance indices and
control methods. However, they did not consider the balance
recovery against long-time disturbances and under-actuated
humanoid feet in their simulations. Liu et al. [24] proposed
a balance controller based on a trajectory library used for
nonlinear systems control with constraints, such as a hu-
manoid standing balance control. Kiemel [25] demonstrated
that a humanoid robot can maintain balance against larger
disturbances when using the hip-ankle strategy instead of the
ankle strategy from preliminary experimental evidence and
used a bang-bang controller to implement the proposed hip-
ankle strategy. Nenchev [26] studied the deciding between
the ankle and hip strategies for balance recovery depending
on acceleration data measured during the impact. Aftab et al.
[27]–[30] proposed a multi-step balance recovery scheme
based on linear model predictive control (LMPC) by mini-
mizing the horizontal CoM velocity and angular velocity of
a flywheel, including the use of a hip strategy and a variable-
step duration to correct large perturbations on an inverted
pendulum or an inverted pendulum plus a flywheel. Thus,
the typical kinematics of the human hip strategy could not
be observed. Choi et al. [31] studied a trajectory-free reactive
stepping controller using momentum control. The proposed
controller was able to make a humanoid model move pas-
sively without following a planned trajectory in the direction
of a disturbance and achieved natural stepping for different
pushes. Ashtiani et al. [32] developed a control scheme based
on model predictive control (MPC) and capture point (CP)
for balance recovery against pushes. The proposed MPC was
used to guide the CP to the desired position by regulating the
ZMP and the centroidal moment pivot (CMP). Penco et al.
[33] developed a retargeting framework to make an iCub
robot mimic a human operator’s motions for maintaining
whole-body balance. Yamamoto [34] studied the maximal
output admissible (MOA) set of a CP feedback controller
for adaptive humanoid balance with external disturbances in
both the M/L and A/P directions.

After reviewing previous works, we found that they did
not cover long-time disturbing forces, the robustness of MPC,
the energy consumption of the hip and ankle joints, and the
evolution of the ground reaction force and feet with unilateral
constraints. The contributions of this paper are as follows.
1) We built a three-link simplified human model in which the
foot is unilaterally constrained to remain in contact with the
ground. This makes our model maintain a more human-like
balance.
2) Numerical MPC with system states and control constraints
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is proposed to implement a human-like balance strategy
and autonomous switching between ankle strategy and hip-
ankle strategies during quiet standing balance for the dif-
ferent disturbing forces. This model illustrates that N-MPC
is similar to the behavior elicited by the human brain and
nervous system from a neuroscience viewpoint. N-MPC is
also endowed with a predictive aspect that enables it to
predict future behavior and select a control balance strategy
through the minimization of the energy consumption of the
whole body. N-MPC can handle state and input constraints
simultaneously. This is crucial to fulfilling realistic require-
ments because body limitations, including joint ranges and
input torques, can be considered. N-MPC is also a robust
controller able to optimize the balance strategy and to deal
with different types of external disturbances, such as small
and large disturbing forces and short-time and long-time
disturbing forces.
3) The CoM and the center of pressure (CoP) are used as
evaluation indices and constraints to maintain an upright ori-
entation. Different disturbing forces are considered, namely
small and large disturbing forces and short-time and long-
time disturbing forces.
4) From the obtained simulation results, we analyzed the
mixed hip-ankle strategy regarding two aspects: kinematic
and dynamical indices and energy consumption. In addition,
we tested the robustness of the proposed controller and
verified that our model and control approach can implement a
much more human-like balance behavior. Thus, the proposed
controller could shed light on human motor control on the
ankle and hip may become an efficient guide to understand
the elderly’s quiet standing balance.

The rest of this paper is organized as follows. In Section
2, the three-link model is described and its dynamic equation
is derived and linearized. The proposed N-MPC is described
particularly in Section 3. In Section 4, simulation settings
and results are presented and discussed. Our conclusions are
presented in Section 5.

II. DYNAMIC EQUATION OF THE THREE-LINK MODEL
To implement quiet standing balance recovery, we consider
the human body as a three-link simplified model comprising
a unilaterally constrained foot, an ankle joint, a lower body,
a hip joint, and an upper body, as illustrated in Fig. 2. The
physical parameters of our model are summarized in Tables
1. Based on an existing anthropometric database [35], the
total body height is 1.6 [m] and the total body mass is
66.3 [kg]. m0, m1, and m2 represent the masses of the foot,
the lower body, and the upper body respectively. L0, L1, and
L2 represent the lengths of the foot, the lower body and the
upper body respectively. q0, q1, and q2 represent toe, ankle
and hip angles, respectively. It is worth noting that we ignore
the body segments between the ankle joint and the hip joint,
and between the hip joint and the head. This is consistent with
the case of human quiet standing balance because humans
maintain their knee joint angle within a certain range of
disturbing forces acting on their body. However, if these
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FIGURE 2. Illustration of the three-link, two-joint model. m0, m1, m2

represent the masses of foot, lower body and upper body respectively. L0

represents the length from the toe to the ankle. L1, L2 represent the lengths
of lower body and upper body respectively. q0, q1, q2 represent the toe angle,
the ankle angle and hip angle respectively.

TABLE 1. Summary of the physical parameters of the three-link, two-joint
model inspired by human.

Link Mass [kg] Length [m]
Foot 1.3 0.3
Lower body 30 1.0
Upper body 35 0.6

disturbing forces become too large, they need to bend their
knee and step forward to avoid falling down.

First, we use Lagrange formalism [36]–[38] to derive the
dynamic equation of motion for this two-joint, three-link
model controlled by the ankle and hip torques. The Lagrange
equations are as follows:

d

dt

(
∂L

∂q̇1

)
− ∂L

∂q1
= τa, (1)

d

dt

(
∂L

∂q̇2

)
− ∂L

∂q2
= τh, (2)

L = T − V . (3)

where T is the total kinetic energy, V is the total potential
energy, τa is the ankle torque and τh is the hip torque. In
this mechanical system, we assume that the toe rotates with
q0 and h is the vertical displacement of the toe with respect
to its original point on the ground. Then, we set unilateral
constraints on the foot to make the toe and the heel of the foot
remain in contact with the ground. There are two degrees of
freedom (DOFs) for the foot constraints: the toe angle q0 and
the displacement of the toe with respect to the ground h. The
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constraint forces can be solved via the Lagrange method for
q0 and h.

Let us now express the complete dynamic equation of
motion. First, the kinetic energies of the foot T0, of the lower
body T1, and of the upper body T2 are computed separately
as follows

T0 =
1

2
m0(

1

3
L0

2q̇20 + L0q̇0ḣ+ ḣ2), (4)

T1 =
1

2
m1[L0

2q̇20 +
1

3
L1

2q̇21 + ḣ2 + L0L1q̇0q̇1

sin(q0 − q1) + 2ḣL0q̇0 cos q0 − ḣL1q̇1 sin q1],
(5)

T2 =
1

2
m2[L0

2q̇20 + L1
2q̇21 +

1

3
L2

2q̇22 + ḣ2 + L0L2q̇0q̇2

sin(q0 − q2) + L1L2q̇1q̇2 cos(q2 − q1)− ḣL2q̇2

sin q2 + 2ḣL0q̇0 cos q0 − 2ḣL1q̇1 sin q1]. (6)

The total kinetic energy of the whole body is given by:

T = T0 + T1 + T2. (7)

Second, the potential energies of the foot V0, the lower
body V1 and the upper body V2 are derived as follows,

V0 = m0g(
1

2
L0 sin q0 + h), (8)

V1 = m1g(
1

2
L1 cos q1 + L0 sin q0 + h), (9)

V2 = m2g(
1

2
L2 cos q2 + L1 cos q1 + L0 sin q0 + h). (10)

The total potential energy of the whole body is given by:

V = V0 + V1 + V2. (11)

Here, g represents the gravity coefficient. Because our
balance implementation is for quiet standing balance, our
model foot cannot leave the ground, which means that step-
ping and rotation of the foot are not allowed. We set the
angle, angular velocity, and acceleration of the toe equal to
zero, i.e., q0 = q̇0 = q̈0 = 0. The vertical displacement,
velocity, and acceleration of the toe are also set to zero,
i.e., h = ḣ = ḧ = 0. These unilateral constraints are
required to meet with the condition of quiet standing. Based
on the above equations of unilateral constraints, the complete
dynamic equation of motion can be expressed as follows:

[
M11 M12

M21 M22

] [
q̈1
q̈2

]
+

[
C1

C2

]
=

[
τa
τh

]
. (12)

Where,

M11 =
1

3
m1L1

2 +m2L1
2,

M12 =M21 =
1

2
m2L1L2 cos(q2 − q1),

M22 =
1

3
m2L2

2,

C1 = −1

2
m2L1L2q̇

2
2 sin(q1 − q2)−

1

2
m1gL1 sin q1

−m2gL1sinq1,

C2 = −1

2
m2L1L2q̇

2
1sin(q1 − q2)−

1

2
m2gL2 sin q2.

In (12), M11 and M22 are the effective inertia terms, M12

and M21 are the coupling inertia terms. C1 and C2 are the
total of centrifugal, Coriolis, and gravity forces.

III. NUMERICAL MODEL PREDICTIVE CONTROL
(N-MPC)
In this section, we propose a linear MPC scheme for our
balance recovery problem. First, we propose to linearize
the dynamic model around the unstable vertical equilibrium
point, which is q1 = q2 = 0 in our system.Because the
disturbance of the upright standing body is considered to be
small enough, it is possible to linearize the dynamic equation
of motion. The state vectorX and the control input vector τ
are defined as follows:

X =


x1
x2
x3
x4

 =


q1
q2
q̇1
q̇2

 , τ =

[
τ1
τ2

]
=

[
τa
τh

]
.

Then, the dynamic equation of motion can be converted
via linearization to

Ẋ = AX +Bτ , (13)

where A is the 4× 4 state matrix and B is the 4× 2 control
matrix. After obtaining the state-space representation of our
model, we introduce the concept of MPC and propose our
N-MPC approach with boundary conditions.

MPC is also referred to as receding horizon predictive con-
trol [39]. It should be noted that we use discrete-time MPC
because the proposed MPC is implemented in discrete time
through a combination of discrete-time state space functions.
Here, the discrete-time state space equation is given by:

x(k + 1) = Ax(k) +Bτ (k), (14)

where x(k+1) represents the 4×1 vector of the angles and
angular velocities of the ankle and hip joints at time k + 1.
x(k) represents the 4 × 1 vector of the angles and angular
velocities of the ankle and hip joints at time k and τ (k)
represents the 2 × 1 vector of the ankle and hip torques at
time k. To implement N-MPC with boundary conditions, the
cost function and constraints need to be defined as follows in
a finite time N as follows.

The cost function is
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J
(
x(0), τ(0,N−1)

)
=

N−1∑
0

l(x, k, τ ) + Vf (15)

l(x, k, τ ) =
1

2

(
xT (k)Qx(k) + τT (k)Rτ (k)

)
,

Vf =
1

2
xT (N)Qfx(N),

whereQ > 0 andQf > 0 are 4× 4 real symmetric matrices
and R > 0 is a 2 × 2 real symmetric matrix. Q and R
can be used as tuning parameters to penalize the states and
the control inputs. The terminal weighting Qf is defined to
be equal to the solution of the algebraic Riccatti equation
(ARE) [40]. This makes Vf become a Lyapunov function to
achieve stable MPC performance. Then, by tuning Q and R
into suitable values, the MPC controller can be improved.

The objective is to minimize J
(
x(0), τ(0,N−1)

)
subject to

the following constraints:
1) The discrete time state space function:

x(k + 1) = Ax(k) +Bτ (k).

2) For all i = 1, 2 and k = 0, 1, 2, ..., N − 1, the torques
should satisfy

τmin(i) ≤ τi(k) ≤ τmax(i),

where τmin(1) = −20 [Nm], τmin(2) = −100 [Nm],
τmax(1) = 20 [Nm], and τmax(2) = 100 [Nm].
3) For all i = 1, ..., 4 and k = 0, ..., N , the system states

satisfy:

xmin(i) ≤ xi(k) ≤ xmax(i),

where xmin(1) = −0.26 [rad], xmin(2) = −0.35 [rad],
xmin(3) = −∞ [rad/s], xmin(4) = −∞ [rad/s],
xmax(1) = 0.5 [rad], xmax(2) = 1.4 [rad], xmax(3) =
∞ [rad/s], and xmax(4) =∞ [rad/s].
4) For k = 0, ..., N , the CoP should satisfy:

CoPmin ≤ CoP i(k) ≤ CoPmax(i),

where CoPmin = −0.15 [m] and CoPmax = 0.15 [m].
5) For k = 0, ..., N , the CoM should satisfy:

CoMmin ≤ CoM i(k) ≤ CoMmax(i).

where CoMmin = −0.15 [m] and CoMmax = 0.15 [m].
The N-MPC problem described above can be solved as

an iterative open-loop optimal control problem with a finite
horizon and an observable initial state for each sampling
time. For instance, let N-MPC starts at k = 0 with the
observed initial states x(0) = x and a prediction horizon
k = N (here N = 20). Then, the prediction-based optimal
control sequence for the whole horizon can be obtained as

τopt = [τopt(0), τopt(1), τopt(2)...τopt(N − 1)] (16)

The sequence of the predicted states is given by

xopt = [xopt(1),xopt(2)...xopt(N)] (17)

Then, the first sample of the obtained optimal control
sequence τopt(0) is applied to the system and produces the
states x(1). Here, x(1) are the observed states, which can be
identical or different from the predicted states xopt(1). In the
next sampling time, x(1) becomes the new initial variables
for the new optimal control problem at the sampling time
k = 1. Then, the N-MPC repeats the above described optimal
process and obtains the new optimal control inputs for the
current system. Afterward, the new initial state variables can
be observed for the forthcoming optimal process. Thus, N-
MPC is an iterative optimal control algorithm.

Stability analyses of MPC have been discussed from
different perspectives in the literature [43]–[46]. Here, the
stability of the proposed N-MPC is analyzed in a concise
form. Here, the sufficient conditions here that ensure closed-
loop asymptotic stability are obtained from a previous work
[43]:
A1: state constraint satisfied in the terminal constraint set.
A2: control constraint satisfied in the terminal constraint set.
A3: the terminal constraint set is positively invariant under
the control law.
A4: Vf (x(k+1))− Vf (x(k)) + l(x, k, τ ) ≤ 0, where Vf (·)
is a local Lyapunov function.
With the constraints set for the proposed in N-MPC, condi-
tions A1 through A3 are satisfied. Let Qf > 0 satisfy the
Lyapunov equation

ATQfA+Q = 0.

Then, Vf = (1/2)xTQfx satisfies A4 with equality. Thus,
the closed-loop system with N-MPC is asymptotically stable,
which means that all the states converge to the origin. This is
also verified by the obtained results, which are presented in
the next section.

To implement the control scheme N-MPC scheme in the
hip-ankle balance recovery simulations, we used CasADi
3.4.5 to solve the numerical optimization problems [41].
CasADi is an open-source tool that implements algorithmic
differentiation (AD) on user-defined symbolic expressions.
CasADi also provides standardized interfaces to a variety
of numerical routines, such as the simulation, optimization,
and solution of linear and nonlinear equations. The IPOPT
solver, which is based on the primal-dual nonlinear interior-
point (IP) method, was used in the proposed N-MPC scheme.
IPOPT can solve optimization problems with boundary con-
straints for all variables. A multiple-shooting technique was
applied for faster numerical integration and optimization.
A fourth-order Runge-Kutta method (RK4) was used for
the numerical integration of ordinary differential equations
(ODE) [42].

The control method described in [47] is effective for three
kinds of constraints, namely actuated state constraints, under-
actuated state constraints, and constraints on some specific
composite variables. However, in this study, we need to
simultaneously consider the state and input constraints, to
meet the requirements of a human-like balance behavior.
This is also one of the advantages of the proposed controller.

VOLUME 4, 2016 5
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FIGURE 3. Evolution of the ankle angle versus time for different disturbing
forces: 0 [N ], 20 [N ], 50 [N ], 80 [N ], 100 [N ], 120 [N ].

To the best of our knowledge, the method proposed in the
aforementioned study is not straightforwardly applicable to
solve our problem.

IV. NUMERICAL SIMULATION OF THE PROPOSED
RECOVERY STRATEGY
In this section, we describe our implementation of the pro-
posed human-like hip-ankle strategy for balance recovery
and the control scheme based on N-MPC in the Mujoco
simulation environment [48]. The sampling period used was
0.01 [s]. The obtained simulation results are described and
analyzed from kinematic, dynamic, energy consumption per-
spectives.

A. KINEMATIC AND DYNAMIC ANALYSIS
In this section, we analyze the kinematic and dynamic aspects
of the proposed hip-ankle strategy, such as joint angles and
velocities, CoM, CoP, and control inputs. We pushed the po-
sition of the CoM of the upper body with different disturbing
forces along the same direction within 0.1 [s]. The disturbing
forces were set as follows: 0 [N ], 20 [N ], 50 [N ], 80 [N ],
100 [N ], and 120 [N ]. The model can recover balance after a
perturbation within a recovery time of 12 [s]. The state weight
Q and the input weight R are unchangeable, I is a 4 × 4
identity matrix.

Q = 103 ∗ I,

R = 10−4 ∗
[

1000 0
0 1

]
.

The evolution of the ankle angle for different disturbing
forces is shown in Fig. 3. Based on these results, we compare
the influence of different external forces on the amplitude
of the ankle angle and balance recovery time. For small
disturbing forces, the ankle joint amplitude changes slightly,
and the recovery time is also short. This is similar to human-
like balance because, for a small pushing force, our body
sways a little and maintains balance easily. For larger dis-
turbing forces, the ankle joint changes considerably, and thus
balance recovery takes a longer time. Figure 4 illustrates the
relationship between the ankle joint position and velocity in
a phase portrait representation. It can be seen that no matter
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FIGURE 4. Evolution of the ankle phase portrait versus time for different
disturbing forces: 0 [N ], 20 [N ], 50 [N ], 80 [N ], 100 [N ], 120 [N ].
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FIGURE 5. Evolution of the hip angle versus time for different disturbing
forces: 0 [N ], 20 [N ], 50 [N ], 80 [N ], 100 [N ], 120 [N ].
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FIGURE 6. Evolution of the hip phase portrait versus time for different
disturbing forces: 0 [N ], 20 [N ], 50 [N ], 80 [N ], 100 [N ], 120 [N ].

how large the disturbance force is, the cycle finally converges
to the origin (0, 0).

Figure. 5 shows the evolution of the hip joint angle for
different disturbing forces. From the changes in amplitude of
the hip joint angle, it is worth noting that for a disturbing
force of 20 [N ], the hip starts to react to achieve balance
recovery, which indicates that the ankle strategy contains
a small amount of hip rotation. Similar results have been
reported in human postural balance experiments by Nashner
et al. [49] and Horak et al. [50]. Moreover, for a disturbing
force of 50 [N ], hip rotation plays an important role, as
evidenced by comparing the ankle joint amplitudes shown
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FIGURE 7. Screenshot of simulation animation for the disturbing force:
120 [N ].

in Fig. 3 and the hip joint angle amplitudes shown in Fig. 5.
For disturbing forces of 100 [N ] and 120 [N ], the sway of
the ankle is not enough to maintain balance and therefore the
hip sways as well for balance control. These results indicate
that the hip-ankle strategy (not a pure hip strategy) is used to
maintain balance against a certain range of disturbing forces,
which is similiar to the published results of human movement
experiments published by Runge et al. [51]. It is also worth
noting that the hip joint angle amplitude is larger than the
ankle joint amplitude, which is similar to the results of human
experiments published by Colobert et al. [52]. The hip joint
angle also converges to zero but takes a longer time than the
ankle joint angle. The relationship between hip velocity and
hip angle is illustrated through a phase portrait in Fig. 6. It
can be seen that the cycle shown in Fig. 6 is larger than that
shown in Fig. 4. This comparison also shows that for larger
disturbances, our model favors using more hip movement
because ankle movement is not sufficient to maintain balance.
In our simulations, the ankle and hip movements observed
were different from the results of Aftab et al. [27]–[30],
where the upper body was not included. A screenshot of
a simulation animation for a disturbing force of 120 [N ]
is shown in Fig. 7. We note that the deviation of the hip
angle is within ’± 0.15 [rad]’ owning to our linearization
assumption. This is an important limitation of the proposed
model.

The definitions of the CoP and the CoM are given as
follows. A schematic diagram for calculating the location of
the CoP is shown in Fig. 8. The origin of the world coordinate
system is point O at the center of the foot’s bottom. The
positions and ground reaction forces of four load cells under
pressure are defined by (x1, y1, 0, F1), (x2, y2, 0, F2),
(x3, y3, 0, F3), and (x4, y4, 0, F4). Because the model
sways in the x-axis direction, the CoP and CoM in the y-axis
direction are always zeros and are omitted in the study. The
formula for calculating the location of the CoP in the x-axis
direction is as follows:

CoP =
F1x1 + F2x2 + F3x3 + F4x4

F1 + F2 + F3 + F4
. (18)

The CoM is calculated with the CoMs in the x-axis di-

FIGURE 8. The schematic diagram for calculating the CoP location. The origin
of world coordinate system is point O at the foot botterm center. The positions
and ground reaction forces of four load cells under pressure are defined by
(x1, y1, 0, F1), (x2, y2, 0, F2), (x3, y3, 0, F3), (x4, y4, 0, F4).

FIGURE 9. Evolution of the CoP versus time for different disturbing forces:
0 [N ], 20 [N ], 50 [N ], 80 [N ], 100 [N ], 120 [N ].

rection and the masses of the foot, the lower body, and the
upper body. The CoMs in each part of the model can be
obtained online during the simulation using the Mujoco API
and are represented by xf , xl, and xu. In addition, m0, m1,
and m2 represent the masses of the foot, the lower body, and
the upper body, respectively, as mentioned in Section 2. The
formula for calculating the location of the CoM in the x-axis
direction is as follows:

CoM =
m0xf +m1xl +m2xu

m0 +m1 +m2
. (19)
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FIGURE 10. Evolution of the CoM versus time for different disturbing forces:
0 [N ], 20 [N ], 50 [N ], 80 [N ], 100 [N ], 120 [N ].

0 2 4 6 8 10 12
Time[s]

−30

−20

−10

0

10

20

30

An
kl
e 
to
rq
ue

[N
m
]

Disturbance_force0
Disturbance_force20
Disturbance_force50
Disturbance_force80
Disturbance_force100
Disturbance_force120

FIGURE 11. Evolution of the ankle balance recovery torque versus time for
different disturbing forces: 0 [N ], 20 [N ], 50 [N ], 80 [N ], 100 [N ], 120 [N ].
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FIGURE 12. Evolution of the hip balance recovery torque versus time for
different disturbing forces: 0 [N ], 20 [N ], 50 [N ], 80 [N ], 100 [N ], 120 [N ].

The evolution of the CoP and the CoM is represented
in Figs. 9 and 10, respectively. One can observe that the
CoP and CoM amplitudes become progressively higher as
the disturbing force becomes greater. In addition, it is worth
noting that the CoP amplitude is generally larger than the
CoM amplitude. In our simulations, We make the foot model
not leave the ground via unilateral constraints. We also take
the CoP as a criterion to evaluate the dynamic stability of the
body. The CoP remains permanently inside the footprint. If
the CoP were outside the footprint, our optimization prob-
lem would become infeasible, and maintaining the balance
behavior could not be guaranteed.
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FIGURE 13. Evolution of the ankle, hip and total energy respectively for
different disturbing forces: 0 [N ], 20 [N ], 50 [N ], 80 [N ], 100 [N ], 120 [N ].

The changes of the ankle and hip reaction torques for
different disturbing forces are depicted in Figs. 11 and 12,
respectively. Here, we consider boundary constraints of the
input torques (ie. saturation) for the ankle and hip joints.
This makes the behavior of our balance model more similar
to the hip-ankle strategy. From Fig. 11, it can be seen that
the ankle input torque starts to be saturated at −20 [N ]
for a disturbing force of 50 [N ]. This indicates that when
the pushing force becomes larger enough, the ankle joint
torque produces a maximum torque of −20 [N ] to maintain
balance. However, the ankle input torque seems insufficient
to maintain balance, and thus the hip input torque is produced
to help the body maintain balance. By observing the ankle
and hip input torques for pushing forces of 100 [N ] and
120 [N ], we find that larger hip input torques are used and
the balance recovery duration becomes longer.

In this subsection, we analyzed the evolution of the angles,
phase portraits, CoP, CoM, and input torques of the ankle and
hip joints. As shown through our simulation results, we im-
plemented a hip-ankle strategy with a unilaterally constrained
foot and analyzed the resulting balance behavior against the
different pushing forces.

B. ENERGY CONSUMPTION VIEWPOINT
In this subsection, we analyze our implementation of the
hip-ankle strategy and from a new analysis perspectives: en-
ergy consumption. The joint energy is calculated as follows,
where, τ is the joint input torque and q̇ is the angular velocity,
t is time.

W =

∫
τ q̇dt. (20)

Figure 13 clearly shows that as the disturbing force in-
creases, the energy consumption increases to maintain bal-
ance. We compared the energy consumption of the ankle joint
with that of the hip joint and note three main concluding
observations. First, the energy consumption of the hip is
larger than that of the ankle, for disturbing forces greater
than 50 [N ]. This indicates that when the pushing force is
considerable, the hip joint needs to make a higher effort to
maintain balance. Secondly, for pushing forces lower than
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FIGURE 14. Evolution of the ankle energy, hip energy and total energy of both
joints for different state weight Q settings and a constant control weight R:
Q1, Q2, Q3, Q4, Q5.

50 [N ], the energy consumption of the ankle is larger than
that of the hip. This indicates that the ankle a higher effort for
balance control than the hip joint for small disturbing forces.
Thirdly, as pushing forces increase, the energy consumption
of our model for balance control increases.

The state weightQ and input weightR in the cost function
(15) were adjusted to find the minimum energy consumption
for balance recovery. The condition for adjusting the weights
is to recover balance within 12 [s]. First,Q is varies over five
cases whileR is not changed as follows. I is a 4× 4 identity
matrix. The energy consumption of the ankle and hip joints,
as well as the total energy consumed, are depicted in Fig. 14.

Q1 = 103 ∗ I,
Q2 = 104 ∗ I,
Q3 = 105 ∗ I,
Q4 = 106 ∗ I,
Q5 = 107 ∗ I,

R = 10−4 ∗
[

1000 0
0 1

]
.

Then, Q is kept unchanged and R is adjusted over five
cases as follows. Figure 15 shows the energy consumption of
the ankle and hip joints and the total energy consumed.

Q = 103 ∗ I,

R1 = 10−4 ∗
[

1000 0
0 1

]
,

R2 = 10−5 ∗
[

1000 0
0 1

]
,

R3 = 10−6 ∗
[

1000 0
0 1

]
,

R4 = 10−7 ∗
[

1000 0
0 1

]
,

R5 = 10−8 ∗
[

1000 0
0 1

]
.

In these calculations, the disturbing force was set to
100 [N ] and its acting time was 0.1 [s]. By comparing the
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FIGURE 15. Evolution of the ankle energy, hip energy and total energy of both
joints for different control weight R settings and a constant state weight Q:
R1, R2, R3, R4, R5.

TABLE 2. The ankle joint energy, hip joint energy and total energy of both
joints for different disturbing forces and their application time under
consideration of balance recovery within 12 [s].

Force [N] Force time
[s]

Ankle
joint
energy [J]

Hip joint
energy [J]

Total
energy [J]

5 0.10 0.286 0.042 0.356
5 8.00 0.340 0.227 0.567
10 0.10 0.290 0.066 0.356
10 7.00 1.851 2.554 4.405
15 0.10 0.287 0.083 0.370
15 6.00 2.386 2.408 4.794
20 0.10 0.291 0.110 0.401
20 0.70 4.018 8.016 12.034
30 0.10 0.354 0.245 0.600
30 0.45 4.351 8.818 13.169
40 0.10 0.487 0.455 0.942
40 0.30 3.630 7.236 10.866
50 0.10 0.724 0.822 1.546
50 0.25 4.196 8.491 12.687
60 0.10 1.074 1.358 2.432
60 0.20 4.131 8.162 12.193
80 0.10 1.842 3.054 4.896
100 0.10 3.129 5.693 8.822
120 0.10 4.762 9.395 14.157

energy consumption values shown in Figs. 14 and 15, which
were obtained by respectively changing the settings ofQ and
R, we found that the weight settings Q1 and R1 yielded
the minimum energy consumption. Thus, we choose weight
settingsQ1 andR1 as the initial settings in our balance sim-
ulations, which is representative of human behavior. When a
human is pushed, their body tries to predict a way to maintain
balance with low energy consumption.

We then analyzed the robustness of the proposed con-
troller. We tested the longer time acting for different dis-
turbances and found the maximum acting time that allows
for balance recovery within 12 [s]. The results obtained are
shown in Table. 2. For instance, when the disturbing force is
5 [N ], the maximum acting time is 8.00 [s]. When the dis-
turbing force is 10 [N ], the maximum acting time is 7.00 [s].
For a disturbing force of 15 [N ], the maximum acting time
is 6.00 [s]. In contrast, for a disturbing force of 20 [N ], the
maximum acting time is 0.70 [s], etc. These results indicate
that the proposed controller has good robustness. For an
acting time of 8.00 [s] and a force of 5 [N ], the ankle
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joint energy (0.340 [J]) is larger than the hip joint energy
(0.227 [J]). Therefore, the ankle strategy plays a crucial role
in this case. However, for an acting time of 7 [s] and a force
of 10 [N ], the ankle joint energy (1.851 [J]) is lower than
the hip joint energy (2.554 [J]). The hip strategy thus plays
a major role when the disturbing force and acting time are
increased.

C. DISCUSSION
The stability of the closed-loop system with the proposed
control strategy, which was previously analyzed, was con-
firmed through the results presented in this section.

In the cost function (15), the states and input torques are
adjusted to desired values. In our case, the desired values
are zeros. This makes the model remain upright around the
vertical equilibrium point. Figures 3, 11, 5, and 12 respec-
tively show that the angles and torques of the ankle and
hip joints converge to zeros after several seconds. The limit
cycles indicate that the evolution of the angles and angular
velocities of the ankle and hip versus time in Figs. 4 and 6
converge to the origin. The CoM and CoP are determined by
the model postures and input torques. Thus, similar results
are shown in Figs. 10 and 9, respectively. In the proposed
N-MPC, the ankle input torque constraints are given, and
Fig. 11 shows the input saturation of the ankle. However,
the hip input torque is not saturated simultaneously, which
indicates that the hip makes a much higher effort to maintain
balance in our model. The energy consumption of the model
is determined by the balance recovery time and the angular
velocities and input torques of the ankle and hip. As shown in
Figs. 14 and 15, changing Q and R in the cost function (15)
can affect the resulting energy consumption. The robustness
of the proposed N-MPC is evident from the results shown
in Table. 2, where it can be seen that the proposed model
can achieve balance recovery within 12 [s] for different
disturbing forces and acting times.

V. CONCLUSION
In this paper, we proposed a new model with a unilaterally
constrained foot and derived its dynamic equation of motion.
Subsequently, we proposed an N-MPC scheme for our model
and provided a detailed explanation of our implementation
of N-MPC. We implemented the hip-ankle strategy based on
the proposed model and controller in a simulated physical
environment. Finally, we analyzed the obtained simulation
results, which were found to be similar to those of previous
human balance experiments in two perspectives: kinematic
and dynamic aspects and energy consumption. This helped
us gain a better understanding of the hip-ankle strategy from
new perspectives. Notably, this study may also be meaningful
for the control of exoskeleton devices because N-MPC is very
useful for bio-mechanical optimization control. In our future
works, we will consider implementing the stepping strategy.
Changing the height of the center of mass is also a very
interesting topic, which could help us test the robustness of
the proposed controller.
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