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Abstract. The HILECOP methodology is a process for the design of
critical digital systems. In HILECOP, Petri Net (PN) models are used as
a high-level formalism to specify the behavior of the designed systems.
VHDL (VHSIC Hardware Description Language) code is then automat-
ically generated from PN models to implement the digital system on
Field Programmable Gate Array (FPGA) circuits. The goal of this work
is to formally verify that through this model-to-text transformation, the
behavior described by a PN model is preserved in the produced VHDL
code, knowing that the transformed PN models are synchronously exe-
cuted on the target. As a first step toward the achievement of this goal,
we present our implementation of HILECOP’s PN structure and seman-
tics, which has been formalized using the Coq proof assistant. We also
describe a token player program for these PNs, which has been proved
sound and complete with respect to HILECOP’s PN semantics.

Keywords: Critical Digital Systems, Formal Verification, Petri Nets,
HILECOP Methodology, Coq Proof Assistant

1 Introduction

The safe design of critical digital systems has been widely investigated but re-
mains relevant. The use of formal models is mandatory, with the help of their
mathematical foundations, to assess the soundness of the design. However, this
formalization rarely provides guarantees beyond the design itself. The formal
model is frequently hand-coded by the engineer, sometimes with automatic gen-
eration of a code skeleton to be completed. While automatic generation facilitates
the task and limits the risk of error, it remains to be proven that the properties
highlighted on the design model are preserved on its implemented version, taking
into account the impact of its execution on the target.

Although some work has been done in the field of software to automatically
generate a code with guaranteed properties from an abstract model (for instance,
see the B method [1]), this is less common in the field of electronic programmable
components. This is exactly the context of our work, and more precisely, we aim
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to produce active implantable medical devices from FPGA-type components
using a reliable methodology.

Our approach relies on the HILECOP methodology [8]. This methodology
allows us to design digital systems using formal models with a high level of
abstraction. The formalism of these models makes it possible to specify both
architecture and behavior in a formalism that provides structuring, exception-
handling, reuse, analysis, as well as readability to facilitate discussions between
engineers around the design. These formal models are then transformed to VHDL
code [15], and finally synthetized on FPGA circuits.

To get a reliable methodology, we have to verify that the transformations
carried out by HILECOP in the process of producing concrete code preserves
the semantics of the initial models. To do so, we propose to formally prove this
semantic preservation property and mechanize the corresponding proof with the
help of the Coq proof assistant [14].

To achieve the formal verification of HILECOP in Coq, our approach is similar
to what has been done in the context of verification of programming environ-
ments (see [10], for instance). The idea is to formalize the semantics of the source
and target languages, and verify that the transformation preserves the semantics
of any input model.

In the case of HILECOP, some specificities of the source and target languages
introduce additional technical difficulties in the process of formal verification. A
first difference concerns HILECOP’s high-level formalism (the input language),
which is quite abstract. This formalism depends on PNs, and thus is not a
common programming language. Moreover, due to constraints coming from the
final implementation on FPGA circuits, PNs have to be synchronously executed.
This is also very specific as PNs are usually executed in an asynchronous way.

A second difference is about the VHDL language (the output language).
Similarly to the PN models used in HILECOP, the VHDL language is not a com-
mon programming language as its purpose is both the structural and behavioral
description of hardware circuits. Although previous work has been conducted
toward the formalization of the VHDL semantics [7], a semantics that is able
to both handle all the constructs in the generated programs, and facilitate the
proof of behavior preservation, still needs to be designed.

The process of formally verifying the entire HILECOP transformation chain
is a long way to go. In this paper, we present a first step, which consists in
modeling the behavioral part of the input language, i.e. the part involving PNs.
The modeling consists of the definition of the PN structures, as well as their
synchronous evolution semantics. Both are implemented using the Coq proof
assistant. In addition, to increase confidence in our implementation of the PNs
semantics, we develop a token player program, which is proved to be sound and
complete with respect to the PN semantics.

To the best of our knowledge, there is very little work on PN implementation
and semantics in the context of formal and mechanized proofs. In [5], a Coq
implementation of place/transition PNs is thoroughly described. The goal of the
implementation is to get an automated proof that a given PN is a refinement
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of another. The refinement relation between two PNs is a structural equivalence
relation, and no implementation of the place/transition PN semantics is given
in this work.

Literature regarding the verification of model-to-model transformation is di-
vided in two approaches: the verification of structural property preservation, and
the verification of semantics preservation through model transformation. Con-
cerning the verification of structural property preservation, in [4], the authors
use the Coq proof assistant to specify metamodels, models, and transformation
rules from source to target (meta)models. The framework allows us to complete
proofs that, given some pre-conditions on the structure of source models, the
transformation rules entail necessary post-conditions regarding the structure of
target models. In [2] and [11], verification of structural property preservation
is realized over model transformation involving PNs. However, in these papers,
PNs are only given as an illustrating example of models, and the authors are
not interested in a thorough implementation of PNs and their semantics, since
the proofs only deal with structural preservation. But to show the soundness
of the code generation in HILECOP, we will also need to consider this aspect
of structural equivalence between the initial PN models and the corresponding
VHDL designs, even though this will probably be the easiest part of the proof.

The other aspect of work regarding the verification of model-to-model trans-
formation deal with semantics preservation. In this domain, literature provides
a lot of work on the formal verification of compilers with the Coq proof as-
sistant [10,13,3]. Other work focuses on models rather than programming lan-
guages. For example, in [6], the authors deal with the verification of transfor-
mation from Colored Petri nets (CPNs) to Low Level Virtual Machine (LLVM)
programs. More precisely, the authors formalize the CPN semantics through the
use of two functions computing the graph of reachable states, and also describe
a formal operational semantics for the LLVM language. Finally, the authors
provide a proof that the generated LLVM program encodes the corresponding
graph of reachable states. In [16], the authors aim to verify a transformation
from Architecture Analysis and Design Language (AADL) models, which is a
formalism to design systems at hardware and software levels, to Time Abstract
State Machines (TASMs), which is a formalism to express concurrent systems.
In this paper, a formal semantics for AADL models and TASMs is expressed in
terms of Timed Transition Systems (TTSs). The authors then proves a theorem
of strong simulation equivalence between the TTSs representing AADL models
and the ones representing TASMs, which are generated through a model trans-
formation. All the contributions if this paper have been mechanized using the
Coq proof assistant.

The paper is organized as follows: Sec. 2 gives an overview of the HILECOP
methodology; we then introduce, in Sec. 3, the PNs that are used in the input
language of HILECOP; next, in Sec. 4, we present the formalization and im-
plementation of these PNs, which has been realized in Coq; finally, in Sec. 5,
we describe, still in Coq, the development of a token player, together with its
soundness and completeness proofs with respect to the PN semantics.
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Fig. 1: Workflow of the HILECOP Methodology
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Fig. 2: An Example of HILECOP Model

2 The HILECOP Methodology

The HILECOP methodology consists of a process for the design and implemen-
tation of critical digital systems. This methodology relies on several transforma-
tions going from abstract models to concrete FPGA implementations through
the production of VHDL code. Fig. 1 details the global workflow of HILECOP.
In this figure, Step 1 corresponds to the model of a digital system. This model is
built with component diagrams and the behavior of each component is described
by means of PNs. Fig. 2 provides an example of such model. As shown in this
figure, an internal behavior and an interface outline the structure of components.
The component interface exposes places, transitions, and signals, which are ref-
erences to nodes of the internal behavior, from which the components can be
assembled to get the global behavior of the digital system.

Next, in Fig. 1, the transformation from Step 1 to Step 2 flattens the model.
The internal behaviors are connected according to the interface compositions,
and embedding component structures are removed. The analysis phase, going
from Step 2 to Step 1, aims to produce a model that is conflict-free (see Sec. 3.2
for more details about the definition of a conflict), bounded, and deadlock-free,
using model-checking techniques. After several iterations, the model should reach
soundness and is then said to be implementation-ready.
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From Step 2 to Step 3, VHDL source code is then generated by means of a
model-to-text transformation. This generated code describes the hardware sys-
tem that will be implemented in a FPGA circuit. From Step 3 to Step 4, the
VHDL compilation/synthesis and the FPGA programming are finally performed
using industrial tools.

In this work, we focus on the part of the workflow in Fig 1 that is framed with
dotted lines, i.e. the model-to-text transformation between Step 2 and Step 3.
In particular, we aim to prove that through this model-to-text transformation,
the behavior described by the initial model is preserved in the generated VHDL
code. To do so, we have to implement the structure of PNs used in the HILECOP
models, together with the semantics providing the evolution rules of these PNs.

3 HILECOP’s Petri Nets

The PNs that are used to describe the behavior of HILECOP components are
Synchronously executed, extended, generalized, Interpreted, and Time Petri Nets
with priorities and macro-places (SITPNs) [8]. The formalism was created to
deal with multiple problems at the same time: the need for model analysis, the
need for a deterministic semantics for the models since we have to consider the
design of safety-critical systems, and finally, the need for a synchronous semantics
motivated by the final implementation of the models as hardware circuits that
are synchronized with a clock signal.

In this paper, we present SITPNs but without macro-places. In this section,
we assume that the reader is familiar with the basic PN formalism, and we
describe the evolution mechanism of SITPNs.

3.1 Extended, Generalized, Interpreted, and Time Petri Nets

SITPNs are generalized PNs in the sense that they admit edge weights to be
natural numbers. They are also extended in the sense that they introduce new
kinds of edges, i.e. inhibitor and test edges, respectively represented by edges
with white and black circle heads. Fig. 3.a shows an example of generalized and
extended PN.

SITPNs are also time PNs, where time intervals are associated to transitions.
As can be seen in Fig. 3.b, time intervals are of the form [a, b], with a ∈ N∗ and
b ∈ N∗ t {∞}, where N is the set of natural numbers (non negative integers).
When a transition is sensitized, the two bounds of its time interval are decre-
mented at each time step (a clock cycle in our case, see Subsec. 3.2). When the
lower bound is equal to zero, then the transition has reached the firing time
window and must be fired right away (the semantics of time intervals is im-
perative). In Fig. 3.b, the time intervals in bold are the static time intervals
associated with transitions at the PN initialization, while the time intervals in
italics are dynamic time intervals (when the PN is executed). A time interval is
reset when an associated transition is disabled.
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Fig. 3: Interpreted and Time Petri Nets

SITPNs also include the notion of interpreted PNs, which is useful to express
the interaction between a system and its environment. This notion of interpre-
tation introduces three new concepts:

- Continuous actions, associated to places: actions associated to a place p are
activated as long as p is marked;

- Functions (or discrete actions), associated to transitions: when a transition
t is fired, all functions associated to t are executed;

- Conditions, associated to transitions: conditions are Boolean expressions
whose values depend on the environment.

As functions and actions can be any kind of operations that have an impact
on the environment of the system, their effects are measured through the values
of conditions attached to the transitions of the system. The condition value
controls the firing of the transition to which it is attached (no firing if the
condition is false). Fig. 3.c illustrates the use of actions, functions, and conditions
in an interpreted PN. In this figure, the action a0 is activated as the place
P0 is marked. The function f0 will also be executed at the firing of T0, which
depends on the value of the condition c0. The table of Fig. 3.c presents some
VHDL code associated to actions, functions, and conditions, but the expression
of interpretation goes beyond the scope of VHDL.

In generalized, extended, interpreted, and time PNs, a transition is firable if
it is sensitized, its conditions are true, and its time interval is ready.

3.2 Synchronous Execution and Conflict Resolution

The SITPN state evolution is synchronized with two clock events of a clock sig-
nal, namely the falling and rising edges of the signal, as represented in Fig. 4.
The falling edge event, i.e. the event 1© in Fig. 4, triggers the update of the
value of conditions, the activation of the actions associated to marked places,
the update of the time intervals of transitions, and the selection of the transi-
tions to be fired. The marking is then updated on the rising edge event, i.e. the
event 2© in Fig. 4, so that all transitions to be fired are fired at once, and the
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Clock signal

1 2

Fig. 4: Evolution of a SITPN Synchronized with a Clock Signal

functions associated to fired transitions are then executed. Moreover, the rising
edge determines which transitions have been disabled in a transitory manner
and must have their time intervals reset. Also, all the time intervals that have
reached their upper bound value are marked as blocked. The case of a blocked
time interval is possible, despite of the imperative semantics associated to the
firing of time transitions, i.e. transitions with a time interval. If a time transition
is bound to a condition that is always false, then it cannot be fired even though
its time interval is ready, and as long as this situation holds, the time interval is
decremented at each clock cycle, until it eventually gets blocked.

The semantics of synchronous execution requires that all transitions are fired
at the same time, while in asynchronous PNs, transitions are fired one at a time.
However, we cannot allow two transitions sensitized by the same token to be
fired at the same time, since we must preserve the balance between resource
consumption and transition firing. Transitions that have a common input place
are in structural conflict. Moreover, transitions are in effective conflict if they are
in structural conflict and if the firing of one of them disables the others. To solve
effective conflicts, priorities are introduced between transitions and allow us to
compute a firing order in case the marking would not provide enough tokens to
fire all the transitions involved in the conflict.

4 Formalization and Implementation of SITPNs

In this section, we formally present the structure of SITPNs, together with their
semantics, and present some parts of the corresponding implementation realized
using the Coq proof assistant [14]. Due to lack of space, we purposely omit to
present the metatheoretical principles underlying the Coq system. The interested
reader can refer to [12] for a thorough introduction to the concepts of Coq.

4.1 SITPN Data Structure

Let us introduce some notations that we use to formalize SITPNs. Let I+ be
the set of intervals of positive integers, where [a, b] ∈ I+, and a ∈ N∗ and
b ∈ N∗ t {∞}. Let us also add that given an interval I = [a, b] ∈ I+ and a
positive integer θ ∈ N∗, I − θ = [a − θ, b − θ] if b 6= ∞ and I − θ = [a − θ, b]
otherwise. Moreover, lower(I) (resp. upper(I)) denotes the lower (resp. upper)
bound of interval I.

An SITPN is defined as follows (this definition is mainly based on the similar
definition given in [9]):
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Definition 1 (SITPN). A synchronously executed, extended, generalized, in-
terpreted, and time Petri net with priorities is a tuple
<P, T, pre, test, inhib, post,M0,�,A, C,F ,A,C,F, Is>, where we have:

1. P = {P0, . . . , Pn}, a set of places.
2. T = {T0, . . . , Tm}, a set of transitions.
3. pre ∈ P → T → N, the function associating a weight to place-transition

edges that are not inhibitor or test edges. ∀p ∈ P , ∀t ∈ T , pre(p, t) = 0 if no
such pre edge exists from place p to transition t.

4. test ∈ P → T → N, the function associating a weight to test edges. ∀p ∈ P ,
∀t ∈ T , test(p, t) = 0 if no test edge exists from place p to transition t.

5. inhib ∈ P → T → N, the function associating a weight to inhibitor edges.
∀p ∈ P , ∀t ∈ T , inhib(t, p) = 0 if no inhibitor edge exists from place p to
transition t.

6. post ∈ T → P → N, the function associating a weight to transition-place
edges. ∀t ∈ T , ∀p ∈ P , post(t, p) = 0 if no such post edge exists from
transition t to place p.

7. M0 ∈ P → N, the initial marking of the SITPN.
8. �, the irreflexive, anti-symmetric, and transitive priority relation, which rep-

resents the firing priority between transitions.
9. A = {a0, . . . , an}, a set of continuous actions.

10. C = {c0, . . . , cn}, a set of conditions.
11. F = {f0, . . . , fn}, a set of functions (discrete actions).
12. A ∈ P → A→ B, the function associating actions to places. ∀p ∈ P , ∀a ∈ A,

A(p, a) = 1, if a is associated to p, A(p, a) = 0 otherwise.
13. F ∈ T → F → B, the function associating functions to transitions. F is

defined in the same manner as A.
14. C ∈ T → C → {−1, 0, 1}, the function associating conditions to transitions.
∀t ∈ T , ∀c ∈ C, C(t, c) = 1, if c is associated to t, C(t, c) = −1, if c̄ is
associated to t, C(t, c) = 0 otherwise.

15. Is ∈ T 7→ I+, the partial function associating static time intervals to transi-
tions. Ti denotes the definition domain of Is, i.e. the set of time transitions.

From this definition, SITPNs have been implemented in Coq as a record type,
i.e. the Sitpn type of List. 1. In this code, the types Place, Trans, Action,
Condition, and IFunction are actually aliases for the type of natural numbers
(nat in Coq). The fields places and transs respectively represent the set of
places and transitions of the PN. The fields pre, test, and inhib are functions
returning the weight of place-transition edges, respectively for regular, test, and
inhibitor edges. In the same way, the field post deals with output edges. The
field initial_marking corresponds to the initial marking of the PN.

The s_intervals field implements the partial function Is. s_intervals re-
turns an option of type TimeInterval, which is the type implementing the I+
set. The option type allows us to implement partial functions in Coq, where all
functions must be total (the None/Some constructors are used to represent the
elements that are respectively members and not members of the domain). The
fields conditions, actions, and functions respectively implement the set of
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1 Record Sitpn : Set := mk_Sitpn {
2 places : list Place;
3 transs : list Trans;
4 pre : Place → Trans → nat;
5 test : Place → Trans → nat;
6 inhib : Place → Trans → nat;
7 post : Trans → Place → nat;
8 initial_marking : Place → nat;
9 priority_groups : list (list Trans);

10 s_intervals : Trans → option TimeInterval;
11 conditions : list Condition;
12 actions : list Action;
13 functions : list IFunction;
14 has_condition : Trans → Condition → bool;
15 has_action : Place → Action → bool;
16 has_function : Trans → IFunction → bool;
17 }.

Listing 1: The Coq Structure for SITPNs

P0 P1

T0 T1 T2 T3

P2

T4 T5

Priority groups :

[T3, T2, T1, T0]

[T5, T4]

Fig. 5: Computation of Priority Groups of a Petri Net

conditions, actions, and functions. The field has_condition implements the C
function, and indicates if a given condition is attached to a given transition. The
fields has_function and has_action similarly implement the F and A functions.

As an alternative to the priority relation � introduced in Def. 1, the priorities
between transitions are implemented by the priority_groups field, which con-
tains a list of lists of transitions ordered by level of firing priority. Fig. 5 shows
how priority groups are computed from the structure of the PN and the defini-
tion of the priority relation (represented by the dotted arrows). To build priority
groups, we have to build conflict groups first by gathering all the transitions that
have an input place in common. If the intersection of two conflict groups is not
empty, then the two conflict groups are merged into one. For example, in Fig. 5,
the conflict groups {T0, T1, T2} and {T2, T3} have to be merged. When all the
conflict groups have been identified and built, an ordering of transitions that
conforms with the definition of the priority relation is applied to each conflict
group. This allows us to determine the firing order and create priority groups.
If the priority relation is only partially defined for a given conflict group, then
the translation into a priority group is not possible. In the following, we only
consider models for which the priority relation defines a total order over the
transitions of each conflict group.
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1 Record SitpnState : Set := mk_SitpnState {
2 fired : list Trans;
3 marking : list (Place ∗ nat);
4 d_intervals : list (Trans ∗ DynamicTimeInterval);
5 reset : list (Trans ∗ bool);
6 exec_a : list (Action ∗ bool);
7 exec_f : list (IFunction ∗ bool);
8 cond_values : list (Condition ∗ bool);
9 }.

Listing 2: The Coq Structure for SITPN state

4.2 SITPN Semantics

Before describing the semantics of SITPNs, we need to introduce some prelim-
inary definitions and notations. In the rest of the section, each definition refers
to an implicit SITPN <P, T, pre, test, inhib, post,M0,�,A, C,F ,A,C,F, Is>.

An SITPN state is defined as follows:

Definition 2 (SITPN State). An SITPN state is a tuple
<Fired,M, I, resett, ex, cond>, where:

1. Fired ⊆ T is a set of transitions.
2. M ∈ P → N is the current marking of the SITPN.
3. I ∈ Ti → I+ t {ψ} is the function mapping time transitions to dynamic

time intervals. A dynamic time interval is either active, then it is in I+, or
blocked, then its value is ψ. Function I denotes the current value of time
intervals in the SITPN.

4. resett ∈ Ti → B is the function mapping time transitions to time interval
reset orders (defined as Booleans).

5. ex ∈ A t F → B is the function representing the current activation (resp.
execution) state of actions (resp. functions).

6. cond ∈ C → B is the function representing the current value of conditions
(defined as Booleans).

As SITPNs, we have implemented the SITPN state structure in Coq as a
record type, i.e. the SitpnState type of List. 2. Most of the fields of this type
are functions, and for easy handling purposes, they are represented as lists of
couples. In List. 2, the DynamicTimeInterval type implements the set I+t{ψ}.

In addition, we introduce the notions of sensitization and firability:

Definition 3 (Sensitization). A transition t ∈ T is said to be sensitized by a
markingM , which is noted t ∈ sens(M), if and only if ∀p ∈ P, M(p) ≥ pre(p, t),
and ∀p ∈ P, M(p) ≥ test(p, t), and ∀p ∈ P, M(p) < inhib(p, t) or inhib(t) = 0.

Definition 4 (Firability). A transition t ∈ T is said to be firable at a state
s = <Fired,M, I, resett, ex, cond>, which is noted t ∈ firable(s), if and only if
t ∈ sens(M), and t /∈ Ti or 0 ∈ I(t), and ∀c ∈ C,C(t, c) = 1⇒ cond(c) = 1 and
C(t, c) = −1⇒ cond(c) = 0.
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In the following, we will use a simplified notation for markings: given two
markings M and M ′, the formula O(M,M ′) will be considered as equivalent to
the formula ∀p ∈ P, O(M(p),M ′(p)), where O is a binary relation between two
markings of a place.

The semantics of SITPNs is given by the following definition:

Definition 5 (SITPN Semantics). The semantics of an SITPN is the tran-
sition system < S, s0, L, env, > where:

- S is the set of states of the SITPN.
- s0 =< ∅,M0, Is, ∅, ∅ > is the initial state of the SITPN, where M0 is the
initial marking of the SITPN, and Is the partial function associating static
time intervals to transitions.

- L ⊆ Clk × N is the set of transition labels, where Clk ∈ {↑, ↓}. A label is a
couple (clk, τ) composed of a clock event clk ∈ Clk, and a time value τ ∈ N
expressing the current count of clock cycles.

- env ∈ C → N→ B is the environment function, which gives (Boolean) values
to conditions (C) depending on the count of clock cycles (N).

-  ⊆ S × L × S is the state transition relation, which is noted s l
 s′ where

s, s′ ∈ S and l ∈ L, and which is defined as follows:

• ∀τ ∈ N, s (↓,τ)
 s′, where s =< Fired,M, I, resett, ex, cond > and

s′ =< Fired′,M, I ′, resett, ex′, cond′ >, if:
(1) cond′ is the function giving the (Boolean) values of conditions that

are extracted from the environment at the clock count τ , i.e.:
∀c ∈ C, cond′(c) = env(c, τ).

(2) All the actions associated with at least one marked place in the mark-
ing M are activated, i.e.:
∀a ∈ A,

(
∃p ∈ P, M(p) > 0 ∧ A(p, a) = 1

)
⇒ ex′(a) = 1.

(3) All the actions that are only associated with unmarked places in the
marking M are deactivated, i.e.:
∀a ∈ A,

(
∀p ∈ P, M(p) = 0 ∨ A(p, a) = 0

)
⇒ ex′(a) = 0.

(4) All the time transitions that are sensitized by the marking M , and
received the order to reset their time intervals or were fired at the pre-
vious clock cycle, have their dynamic time intervals reset and decre-
mented3, i.e.:
∀t ∈ Ti, t ∈ sens(M)∧

(
resett(t) = 1∨t ∈ Fired

)
⇒ I ′(t) = Is(t)−1.

(5) All the time transitions with active dynamic time intervals that are
sensitized by the marking M , did not receive the order to reset their
dynamic time intervals, and were not fired at the previous clock cycle,
have their dynamic time intervals decremented, i.e.:
∀t ∈ Ti, t ∈ sens(M) ∧ resett(t) = 0 ∧ t /∈ Fired ∧ I(t) 6= ψ ⇒
I ′(t) = I(t)− 1.

3 Note that decrementing dynamic time intervals allows us to manage local times (by
“local”, we mean local to a given transition).
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(6) All the time transitions verifying the same conditions as above, but
with blocked dynamic time intervals, keep their dynamic time inter-
vals blocked, i.e.:
∀t ∈ Ti, t ∈ sens(M) ∧ resett(t) = 0 ∧ t /∈ Fired ∧ I(t) = ψ ⇒
I ′(t) = I(t).

(7) All the time transitions that are not sensitized by the marking M
have their dynamic time intervals reset and decremented, i.e.:
∀t ∈ Ti, t /∈ sens(M)⇒ I ′(t) = Is(t)− 1.

(8) All the transitions both firable and still sensitized by the residual
marking, which is the marking resulting from the firing of all higher
priority transitions, are fired, i.e.:
∀t ∈ firable(s′), t ∈ sens

(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t ∈ Fired′,

where Pr(t) = {ti | ti � t ∧ ti ∈ firable(s′)}.
(9) All the firable transitions that are not sensitized by the residual mark-

ing are not fired, i.e.:
∀t ∈ firable(s′), t /∈ sens

(
M −

∑
ti∈Pr(t) pre(ti)

)
⇒ t /∈ Fired′.

(10) All the transitions that are not firable are not fired, i.e.:
∀t ∈ T, t /∈ firable(s′)⇒ t /∈ Fired′.

• ∀τ ∈ N, s′ (↑,τ) s′′, where s′ =< Fired′,M ′, I ′, reset′t, ex
′, cond′ > and

s′′ =< Fired′,M ′′, I ′′, reset′′t , ex
′′, cond′ >, if:

(11) M ′′ is the new marking resulting from the firing of all the transitions
contained in Fired′, i.e.:
M ′′ = M ′ −

∑
ti∈Fired′

(
pre(ti)− post(ti)

)
.

(12) All the time transitions that are not sensitized by the transient mark-
ing, which is the marking resulting from the retrieval of tokens from
the input places of fired transitions, receive the order to reset their
dynamic time intervals, i.e.:
∀t ∈ Ti, t /∈ sens

(
M ′ −

∑
ti∈Fired′ pre(ti)

)
⇒ reset′′(t) = 1.

(13) All the time transitions that are sensitized by the transient marking
receive no reset order, i.e.:
∀t ∈ Ti, t ∈ sens

(
M ′ −

∑
ti∈Fired′ pre(ti)

)
⇒ reset′′(t) = 0.

(14) Dynamic time intervals are blocked for all time transitions that have
reached the upper bound of their dynamic time intervals and were
not fired at this clock cycle, i.e.:
∀t ∈ Ti, upper(I ′(t)) = 0 ∧ t /∈ Fired′ ⇒ I ′′(t) = ψ.

(15) Dynamic time intervals are unchanged for all the time transitions
that have not reached the upper bound of their dynamic time intervals
or were fired at this clock cycle, i.e.:
∀t ∈ Ti, upper(I ′(t)) 6= 0 ∨ t ∈ Fired′ ⇒ I ′′(t) = I ′(t).

(16) All the functions associated with fired transitions are executed, i.e.:
∀f ∈ F ,

(
∃t ∈ Fired′, F(t, f) = 1

)
⇒ ex′′(f) = 1.

(17) All the functions associated with none of the fired transitions are not
executed, i.e.:
∀f ∈ F ,

(
∀t ∈ Fired′, F(t, f) = 0

)
⇒ ex′′(f) = 0.
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The SITPN semantics describes how an SITPN goes from one state to another
at each occurrence of a falling or rising edge of the clock signal. The clock signal
is always alternating consecutively between falling and rising edges. A clock cycle
is determined by the period between two falling edges or two rising edges. Also,
the count of clock cycles τ is incremented at each clock cycle.

In Def. 5, Rules (1), (2), and (3) deal with interpretation. Rules (4), (5), (6),
and (7) deal with dynamic time intervals and their update on falling edge. On
falling edge, the dynamic time interval decrementing represents the beginning
of a new clock cycle. Rules (8), (9), and (10) deal with the computation of
transitions to be fired at the next rising edge. In Rules (8) and (9), the marking
M −

∑
ti∈Pr(t) pre(ti) is the residual marking obtained when all higher priority

transitions of a given transition t have consumed tokens in their input places. If
a transition t is sensitized by such a residual marking, it means that even after
the firing of all its higher priority transitions, enough tokens are left for the firing
of t at the same clock event.

Regarding the rising edge rules, Rule (11) computes the marking resulting
from the firing of transitions of the Fired′ set, which has been determined at
the previous clock event. Rules (12) and (13) describe how reset orders are
determined based on the sensitization of transitions by the transient marking.
The transient marking, represented by the expression M ′ −

∑
ti∈Fired′ pre(ti),

results from the retrieval of tokens from the input places of transitions of the
Fired′ set. If a transition is disabled by the transient marking, then its dynamic
time interval must be reset at the next clock cycle. Rules (14) and (15) determine
which dynamic time intervals have reached their upper bounds and became
blocked. Rules (16) and (17) deal with the execution of functions. Functions
are executed when the corresponding transitions are fired4.

We implement the SITPN semantics in Coq as an inductive relation, whose
we show an excerpt in List. 3. The SitpnSemantics type describes the behavior
of the state transition relation. It consists of two cases parameterized by an
instance of the Clock type, which has also two constructors falling_edge and
rising_edge. The parameters tau and Clock represent the label of the state
transition relation. The env function, which provides values to the conditions at
tau, is also a parameter of the relation.

Due to lack of space, we only provide the code of some rules for the second
case of the SITPN semantics, i.e. some rules of state evolution on rising edge.
More precisely, we give the code of Rules (11), (12), (14), and (16). Note that
to access the fields of record types, such as Sitpn and SitpnState, we use the
prefix notation. For example, given s of type SitpnState, we write (marking s)
and (fired s) to respectively access the marking and fired fields of s.

The implementation of Rule (11) expresses the computation of the marking
M ′ at the state s′, i.e. (marking s’), according to the marking M and the
list of fired transitions at the state s, i.e. (marking s) and (fired s) respec-
tively. As markings are lists of couples (each couple consists of a place and its

4 The execution of actions and functions affects the environment of the SITPN, which
gives feedbacks through the values provided to the conditions.
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1 Inductive SitpnSemantics (sitpn : Sitpn) (s s’ : SitpnState) (tau : nat)
2 (env : Condition → nat → bool) : Clock → Prop :=
3 | SitpnSemantics_falling_edge : (* Rules 1 to 10 *)
4 ... → SitpnSemantics sitpn s s’ tau env falling_edge
5 | SitpnSemantics_rising_edge :
6 (** Premises **)
7 (* Ensures the consistency of sitpn, s and s’. *)
8 IsWellDefinedSitpn sitpn →
9 IsWellDefinedSitpnState sitpn s →

10 IsWellDefinedSitpnState sitpn s’ →
11 (* Rule 11 *)
12 (forall (p : Place) (n : nat),
13 In (p, n) (marking s) →
14 In (p, n − (pre_sum sitpn p (fired s)) + (post_sum sitpn p (fired s)))
15 (marking s’)) →
16 (* Rule 12 *)
17 (forall (t : Trans) (transient_marking : list (Place ∗ nat)),
18 Permutation (places sitpn) (fs transient_marking) →
19 (forall (p : Place) (n : nat),
20 In (p, n) (marking s) →
21 In (p, n − pre_sum sitpn p (fired s)) transient_marking) →
22 In t (transs sitpn) →
23 s_intervals sitpn t <> None →
24 ∼IsSensitized sitpn transient_marking t →
25 In (t, true) (reset s’)) →
26 (* Rule 14 *)
27 (forall (t : Trans) (dyn_itval : DynamicTimeInterval),
28 In (t, dyn_itval) (d_intervals s) →
29 HasReachedUpperBound dyn_itval →
30 ∼In t (fired s) →
31 In (t, blocked) (d_intervals s’)) →
32 (* Rule 16 *)
33 (forall (f : IFunction),
34 In f (functions sitpn) →
35 (exists (t : Trans), In t (fired s) ∧ (has_function sitpn t f) = true) →
36 In (f, true) (exec_f s’)) →
37 (** Conclusion **)
38 SitpnSemantics sitpn s s’ tau env rising_edge.

Listing 3: The Semantics of SITPNs in Coq

number of tokens), contents of markings are expressed by the mean of the In
relation5. The pre_sum and post_sum functions implement the sum expression∑
ti∈Fired

(
pre(ti)−post(ti)

)
used in Rule (11). Regarding Rule (12), we express

the transient marking in the same way as the marking M ′ in Rule (11), i.e. with
the In relation and the pre_sum function. The Permutation relation ensures the
well-definition of the list transient_marking, by checking that all the places of
the SITPN are referenced in the transient marking. In the implementation of
Rule (14), the line (In (t,dyn_itval) (d_intervals s)) implicitly implies
that t ∈ Ti. This is a consequence of the well-definition of object s, which is
asserted by the premise (IsWellDefinedSitpnState sitpn s).

5 (In a l) means that the element a is in the list l.
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When defining instances of Sitpn and SitpnState, because of the permis-
siveness of the data structures used in our implementation (mostly lists), there
may be some inconsistencies (places not referenced in markings, transitions with
no edges, etc.). We therefore define the predicate IsWellDefinedSitpn, as well
as the relation IsWellDefinedSitpnState, to prevent these inconsistencies, and
to provide a safe basis for proofs. Also, these inconsistencies are the causes of the
errors that may be returned by our token player (see List. 4), which may occur
when computing the state of a given SITPN (if this SITPN is not well-defined
or if the computation is performed from a not well-defined state).

5 A Verified Token Player for SITPNs

In this section, we describe the algorithm of a token player for SITPNs, along
with its implementation in Coq. We then outline the soundness and completeness
proofs of this token player with respect to the SITPN semantics. Building a token
player that follows the formalized and mechanized SITPN semantics is a way to
assess our implementation of the semantics. Moreover, it also provides the users
of the SITPN formalism with a verified and therefore reliable token player.

5.1 A Token Player for SITPNs

An token player for SITPNs is a program taking an SITPN and its initial state as
parameters and returning an ordered list of SITPN states corresponding to the
evolution of the SITPN over n clock cycles. Before describing the Coq implemen-
tation of such a token player, we first present the algorithms (using imperative
pseudo-code) that allows us to compute of a new state for an SITPN after one
clock cycle. Algo. 1 computes the SITPN state after the falling edge of the clock,
while Algo. 2 computes the SITPN state after the rising edge of the clock. Due
to lack of space, we only provide, in List. 4, the Coq implementation of Algo. 2.
In Algos. 1 and 2, the variables for SITPNs and SITPN states are records re-
spectively of type Sitpn and SitpnState (see Lists. 1 and 2). The assignment
of values to variables and record fields is performed with the “←” operator.

Algo. 1 computes of a new state s’ for sitpn starting from state s with respect
to the falling edge semantics defined in Def. 5. At the beginning of the algorithm,
the new state s’ is initialized with state s (Line 2). The fields of state s’ are then
overrided by the computation of new condition, action state, time interval values
and a new list of transitions to be fired.

The function getConditionValues (Line 3) provides a list of couples (c, v),
where c is a condition of the SITPN, and v its current (Boolean) value at time t,
computed by the env function. The function getConditionValues implements
Rule (1) of the SITPN semantics.

The function getActionStates (Line 4) returns a list of couples (a, v), where
a is an action of the SITPN, and v its current Boolean-valued activation state.
For each action, the function tries to find a place with a marking greater than
zero with which this action is associated. If such a place exists then the action
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Algorithm 1: falling_edge(sitpn, s, t, env)
Data: sitpn, an SITPN. s, the state of sitpn before the falling edge of the clock. t,

the current count of clock cycles. env, the function that provides condition
values at each clock cycle.

Result: s’, the new state of sitpn after the falling edge of the clock.
1 begin
2 s’ ← s
3 (cond_values s’) ← getConditionValues(sitpn, t, env)
4 (exec_a s’) ← getActionStates(sitpn, s)
5 (d_intervals s’) ← updateTimeIntervals(sitpn, s)
6 (fired s’) ← mapFire(sitpn, s’)
7 return s’

Algorithm 2: rising_edge(sitpn, s)
Data: sitpn, an SITPN. s, the state of sitpn before the rising edge of the clock.
Result: s’, the new state of sitpn after the rising edge of the clock.

1 begin
2 s’ ← s

3 transient_marking ← mapUpdateMarkingPre(sitpn, s)
4 (reset’, d_intervals’) ← getBlItvalsAndResetOrds(sitpn, s, transient_marking)
5 (reset s’) ← reset’
6 (d_intervals s’) ← d_intervals’
7 (marking s’) ← mapUpdateMarkingPost(sitpn, s’)
8 (exec_f s’) ← getFunctionStates(sitpn, s’)
9 return s’

is marked as activated. The function getActionStates implements Rules (2)
and (3) of the SITPN semantics.

The function updateTimeIntervals (Line 5) implements Rules (4), (5), (6)
and (7) of the SITPN semantics. The function iterates over the elements of the
list (d_intervals s), which are couples (t, ti), where t is a time transition and
ti is its associated dynamic time intervals, and updates the value of each dynamic
time interval according to the current state of the corresponding transition.

The function mapFire computes the list of transitions to be fired at this
cycle of evolution. In the body of the function, all the transitions are checked,
proceeding priority group by priority group. A residual marking, as described
in Rules (8) and (9) of the semantics, is computed for each priority group.
The residual marking contributes to the selection of transitions to be fired. If a
transition trans, in a given priority group, is firable and sensitized by the residual
marking, then it is selected as a transition to be fired, and a new residual marking
is computed by withdrawing the appropriate number of tokens from the input
places of trans.

For a given sitpn at a current state s, Algo. 2 computes a new state s’
with respect to the evolution semantics defined for the rising edge event of a
clock signal. The function mapUpdateMarkingPre (Line 3) implements the first
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1 Definition sitpn_rising_edge (sitpn : Sitpn) (s : SitpnState) :
2 option SitpnState :=
3 match map_update_marking_pre sitpn (marking s) (fired s) with
4 | Some transient_marking ⇒
5 match get_blocked_itvals_and_reset_orders sitpn s (d_intervals s)
6 transient_marking [] [] with
7 | Some (reset’, d_intervals’) ⇒
8 match map_update_marking_post sitpn transient_marking (fired s) with
9 | Some final_marking ⇒

10 let exec_f’ := get_function_states sitpn s (functions sitpn) [] in
11 Some (mk_SitpnState (fired s) final_marking d_intervals’ reset’
12 (cond_values s) (exec_a s) exec_f’)
13 (* Error raised by map_update_marking_post. *)
14 | None ⇒ None
15 end
16 (* Error raised by get_blocked_itvals_and_reset_orders. *)
17 | None ⇒ None
18 end
19 (* Error raised by map_update_marking_pre. *)
20 | None ⇒ None
21 end.

Listing 4: The Implementation of Algo. 2 in Coq

part of the firing process and returns a transient marking, result of the re-
trieval of tokens from the input places of the transitions of the (fired sitpn)
list, i.e. the transitions to be fired at this clock cycle. The firing process is
not done all at once as we need the transient marking to determine which
dynamic time intervals must be reset at the next clock cycle. This is done
by the function getBlItvalsAndResetOrds (Line 4), which both assigns re-
set orders for transitions either disabled by the transient marking or fired at
this clock cycle, and determines which dynamic time intervals are blocked.
This function returns a couple (ro, ti), where ro is a list of reset orders and
ti is a list of dynamic time intervals, and the returned values ro and ti are
then assigned to the corresponding fields of the new SitpnState instance s’
(Lines 5 and 6). This function implements Rules (12), (13), (14), and (15) of the
SITPN semantics. The function mapUpdateMarkingPost (Line 7) produces new
tokens in the output places of transitions that are in the list (fired sitpn),
which is the end of the firing process. The functions mapUpdateMarkingPre and
mapUpdateMarkingPost implements Rule (11) of the SITPN semantics. Finally,
the function getFunctionStates (Line 8) computes the state of functions based
on the list of fired transitions (fired sitpn). This function implements Rule (16)
and (17) of the SITPN semantics.

List. 4 provides the Coq implementation of Algo. 2, of which it is almost
a strict transcription. Note that the functions map_update_marking_pre/post,
and get_blocked_itvals_and_reset_ordersmay produce errors (i.e., the con-
structor None of the type option).
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The main function is the function sitpn_cycle, which is not presented
here, and which executes in sequence the functions sitpn_falling_edge and
sitpn_rising_edge. These two functions are respective implementations of Al-
gos. 1 and 2. The function sitpn_cycle computes a complete evolution cycle
for a given Sitpn structure, and computes a couple of states corresponding to
the states of the SITPN after the falling and rising edges of the clock signal.

5.2 Soundness and Completeness of our Token Player

To improve the confidence in our implementation of the SITPN semantics, which
will be used later in the proof that the HILECOP methodology preserves the be-
havior of its models (see Sec. 1), the soundness and completeness of the function
sitpn_cycle with respect to the SITPN semantics have been proved. Only an
overview of the proof is given here, and the interested reader can access to the
full source code6 to get all the details of the formalization.

Proof of Soundness The following theorem states the soundness of the func-
tion sitpn_cycle, i.e. the two states s’ and s” returned by the function comply
with the SITPN semantics:

Theorem 1. ∀sitpn ∈ SITPN , ∀s,s’, s” ∈ S, ∀τ ∈ N, ∀env ∈ C → N→ B,
(sitpn_cycle sitpn s env τ) = Some (s’, s”) ⇒ s

(↓,τ)
 s’

(↑,τ)
 s”.

As the function sitpn_cycle is divided into two parts, i.e. the call to the
functions sitpn_falling_edge and sitpn_rising_edge, the proof is divided
into two parts as well, with two intermediary lemmas. The first lemma states
that the function sitpn_falling_edge returns a SITPN state that conforms
with the falling edge semantics:

Lemma 1. ∀sitpn ∈ SITPN , ∀s, s’ ∈ S, ∀τ ∈ N, ∀env ∈ C → N→ B,
(sitpn_falling_edge sitpn s env τ) = Some s’ ⇒ s

(↓,τ)
 s’.

Proving this lemma is equivalent to proving that the functions called in the
function sitpn_falling_edge, which implement the functions of Algo. 1, imply
a part of the rules of the SITPN semantics. Auxiliary lemmas have therefore
been proved for each of these functions:

- The function getConditionValues implies Rule (1);
- The function getActionStates implies Rules (2) and (3);
- The function updateTimeIntervals implies Rules (4), (5), (6), and (7);
- The function mapFire implies Rules (8), (9), and (10).

The second intermediary lemma states that the function sitpn_rising_edge
returns a SITPN state that conforms with the rising edge semantics:
6 The full code is available at:
https://github.com/viampietro/sitpns.

https://github.com/viampietro/sitpns
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Lemma 2. ∀sitpn ∈ SITPN , ∀s, s’ ∈ S, ∀τ ∈ N, ∀env ∈ C → N→ B,
(sitpn_rising_edge sitpn s) = Some s’ ⇒ s

(↑,τ)
 s’.

Just as with Lem. 1, the proof consists in proving that the functions used in
the function sitpn_rising_edge imply some rules of the semantics.

Most of the functions that are used in the functions sitpn_falling_edge
and sitpn_rising_edge iterate over the structure of the fields of the SITPN
and SITPN state structures. For instance, the function updateTimeIntervals
iterates over the list of dynamic time intervals of the SITPN state s (see Algo. 1).
Proving that a function implies some rules of the semantics is therefore naturally
done by structural induction on the field which the function iterates over.

Proof of Completeness The completeness theorem is expressed as follows:

Theorem 2. ∀sitpn ∈ SITPN , ∀s,s’, s” ∈ S, ∀τ ∈ N, ∀env ∈ C → N→ B,
s

(↓,τ)
 s’

(↑,τ)
 s” ⇒ (sitpn_cycle sitpn s env τ) = Some (s’, s”).

The proof of this theorem follows similar patterns as the proof of Thm. 1. In
particular, as the function sitpn_cycle is partial, we have to prove that, thanks
to the hypothesis of well-definition assumed over the parameters sitpn and s,
error cases never occur (i.e. sitpn_cycle never returns None).

6 Conclusion

In this paper, we have introduced the HILECOP methodology, a process for the
design of critical digital systems. Due to the specific context of critical applica-
tions, we have proposed to formally verify this methodology, which is motivated
by a need for reliability. To do so, we have focused, in this paper, on the formal-
ization of the high level modeling language of HILECOP, which relies in particular
on SITPNs to model the behavior of components. This formalization has been
implemented using the Coq proof assistant, and we have also provided a token
player, which has been proved sound and complete with respect to the semantics
of SITPNs. The full implementation is significant and has about 20,000 lines of
code, including 250 lemmas and 18,000 lines of proof.

As perspectives, we need to complete the formalization and implementation of
the high level modeling language of HILECOP. In particular, we have to deal with
macroplaces, which are a way to handle exceptions in a PN [8] and in HILECOP
models in particular, and which remain to be integrated into our implementation.

The process of formally verifying the entire HILECOP transformation chain
is a long way to go. The next step is to deal with the target language, i.e. VHDL,
where the idea is to give a synchronous operational semantics to VHDL, based
on previous work of formalization [7]. The implementation of this semantics in
Coq is a work in progress.

The final step of our work will be to implement the model-to-text trans-
formation from HILECOP PN models to VHDL code, and to prove that this
transformation preserves the semantics of the input models.
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