Vincent Iampietro

David Andreu

David Delahaye

Toward the Formal Verification of HILECOP: Formalization and Implementation of Synchronously Executed Petri Nets

Keywords: Critical Digital Systems, Formal Verification, Petri Nets, HILECOP Methodology, Coq Proof Assistant

The HILECOP methodology is a process for the design of critical digital systems. In HILECOP, Petri Net (PN) models are used as a high-level formalism to specify the behavior of the designed systems. VHDL (VHSIC Hardware Description Language) code is then automatically generated from PN models to implement the digital system on Field Programmable Gate Array (FPGA) circuits. The goal of this work is to formally verify that through this model-to-text transformation, the behavior described by a PN model is preserved in the produced VHDL code, knowing that the transformed PN models are synchronously executed on the target. As a first step toward the achievement of this goal, we present our implementation of HILECOP's PN structure and semantics, which has been formalized using the Coq proof assistant. We also describe a token player program for these PNs, which has been proved sound and complete with respect to HILECOP's PN semantics.

Introduction

The safe design of critical digital systems has been widely investigated but remains relevant. The use of formal models is mandatory, with the help of their mathematical foundations, to assess the soundness of the design. However, this formalization rarely provides guarantees beyond the design itself. The formal model is frequently hand-coded by the engineer, sometimes with automatic generation of a code skeleton to be completed. While automatic generation facilitates the task and limits the risk of error, it remains to be proven that the properties highlighted on the design model are preserved on its implemented version, taking into account the impact of its execution on the target.

Although some work has been done in the field of software to automatically generate a code with guaranteed properties from an abstract model (for instance, see the B method [START_REF] Delahaye | The B-Book, Assigning Programs to Meanings[END_REF]), this is less common in the field of electronic programmable components. This is exactly the context of our work, and more precisely, we aim to produce active implantable medical devices from FPGA-type components using a reliable methodology.

Our approach relies on the HILECOP methodology [START_REF] Leroux | Handling Exceptions in Petri Net-Based Digital Architecture: From Formalism to Implementation on FPGAs[END_REF]. This methodology allows us to design digital systems using formal models with a high level of abstraction. The formalism of these models makes it possible to specify both architecture and behavior in a formalism that provides structuring, exceptionhandling, reuse, analysis, as well as readability to facilitate discussions between engineers around the design. These formal models are then transformed to VHDL code [START_REF]The IEEE Organization[END_REF], and finally synthetized on FPGA circuits.

To get a reliable methodology, we have to verify that the transformations carried out by HILECOP in the process of producing concrete code preserves the semantics of the initial models. To do so, we propose to formally prove this semantic preservation property and mechanize the corresponding proof with the help of the Coq proof assistant [START_REF]Coq[END_REF].

To achieve the formal verification of HILECOP in Coq, our approach is similar to what has been done in the context of verification of programming environments (see [START_REF] Leroy | Formal Verification of a Realistic Compiler[END_REF], for instance). The idea is to formalize the semantics of the source and target languages, and verify that the transformation preserves the semantics of any input model.

In the case of HILECOP, some specificities of the source and target languages introduce additional technical difficulties in the process of formal verification. A first difference concerns HILECOP's high-level formalism (the input language), which is quite abstract. This formalism depends on PNs, and thus is not a common programming language. Moreover, due to constraints coming from the final implementation on FPGA circuits, PNs have to be synchronously executed. This is also very specific as PNs are usually executed in an asynchronous way.

A second difference is about the VHDL language (the output language). Similarly to the PN models used in HILECOP, the VHDL language is not a common programming language as its purpose is both the structural and behavioral description of hardware circuits. Although previous work has been conducted toward the formalization of the VHDL semantics [START_REF] Kloos | Formal Semantics for VHDL[END_REF], a semantics that is able to both handle all the constructs in the generated programs, and facilitate the proof of behavior preservation, still needs to be designed.

The process of formally verifying the entire HILECOP transformation chain is a long way to go. In this paper, we present a first step, which consists in modeling the behavioral part of the input language, i.e. the part involving PNs. The modeling consists of the definition of the PN structures, as well as their synchronous evolution semantics. Both are implemented using the Coq proof assistant. In addition, to increase confidence in our implementation of the PNs semantics, we develop a token player program, which is proved to be sound and complete with respect to the PN semantics.

To the best of our knowledge, there is very little work on PN implementation and semantics in the context of formal and mechanized proofs. In [START_REF] Choppy | Experimenting Formal Proofs of Petri Nets Refinements[END_REF], a Coq implementation of place/transition PNs is thoroughly described. The goal of the implementation is to get an automated proof that a given PN is a refinement of another. The refinement relation between two PNs is a structural equivalence relation, and no implementation of the place/transition PN semantics is given in this work.

Literature regarding the verification of model-to-model transformation is divided in two approaches: the verification of structural property preservation, and the verification of semantics preservation through model transformation. Concerning the verification of structural property preservation, in [START_REF] Calegari | A Type-Theoretic Framework for Certified Model Transformations[END_REF], the authors use the Coq proof assistant to specify metamodels, models, and transformation rules from source to target (meta)models. The framework allows us to complete proofs that, given some pre-conditions on the structure of source models, the transformation rules entail necessary post-conditions regarding the structure of target models. In [START_REF] Berramla | Formal Validation of Model transformation with Coq Proof Assistant[END_REF] and [START_REF] Meghzili | On the Verification of UML State Machine Diagrams to Colored Petri Nets Transformation Using Isabelle/HOL[END_REF], verification of structural property preservation is realized over model transformation involving PNs. However, in these papers, PNs are only given as an illustrating example of models, and the authors are not interested in a thorough implementation of PNs and their semantics, since the proofs only deal with structural preservation. But to show the soundness of the code generation in HILECOP, we will also need to consider this aspect of structural equivalence between the initial PN models and the corresponding VHDL designs, even though this will probably be the easiest part of the proof.

The other aspect of work regarding the verification of model-to-model transformation deal with semantics preservation. In this domain, literature provides a lot of work on the formal verification of compilers with the Coq proof assistant [START_REF] Leroy | Formal Verification of a Realistic Compiler[END_REF][START_REF] Tan | A New Verified Compiler Backend for CakeML[END_REF][START_REF] Bourke | A Formally Verified Compiler for Lustre[END_REF]. Other work focuses on models rather than programming languages. For example, in [START_REF] Fronc | Towards a Certified Petri Net Model-Checker[END_REF], the authors deal with the verification of transformation from Colored Petri nets (CPNs) to Low Level Virtual Machine (LLVM) programs. More precisely, the authors formalize the CPN semantics through the use of two functions computing the graph of reachable states, and also describe a formal operational semantics for the LLVM language. Finally, the authors provide a proof that the generated LLVM program encodes the corresponding graph of reachable states. In [START_REF] Yang | From AADL to Timed Abstract State Machines: A Verified Model Transformation[END_REF], the authors aim to verify a transformation from Architecture Analysis and Design Language (AADL) models, which is a formalism to design systems at hardware and software levels, to Time Abstract State Machines (TASMs), which is a formalism to express concurrent systems. In this paper, a formal semantics for AADL models and TASMs is expressed in terms of Timed Transition Systems (TTSs). The authors then proves a theorem of strong simulation equivalence between the TTSs representing AADL models and the ones representing TASMs, which are generated through a model transformation. All the contributions if this paper have been mechanized using the Coq proof assistant.

The paper is organized as follows: Sec. 2 gives an overview of the HILECOP methodology; we then introduce, in Sec. 3, the PNs that are used in the input language of HILECOP; next, in Sec. 4, we present the formalization and implementation of these PNs, which has been realized in Coq; finally, in Sec. 5, we describe, still in Coq, the development of a token player, together with its soundness and completeness proofs with respect to the PN semantics. The HILECOP methodology consists of a process for the design and implementation of critical digital systems. This methodology relies on several transformations going from abstract models to concrete FPGA implementations through the production of VHDL code. Fig. 1 details the global workflow of HILECOP.

In this figure , Step 1 corresponds to the model of a digital system. This model is built with component diagrams and the behavior of each component is described by means of PNs. Fig. 2 provides an example of such model. As shown in this figure, an internal behavior and an interface outline the structure of components.

The component interface exposes places, transitions, and signals, which are references to nodes of the internal behavior, from which the components can be assembled to get the global behavior of the digital system. Next, in Fig. 1, the transformation from Step 1 to Step 2 flattens the model. The internal behaviors are connected according to the interface compositions, and embedding component structures are removed. The analysis phase, going from Step 2 to Step 1, aims to produce a model that is conflict-free (see Sec. 3.2 for more details about the definition of a conflict), bounded, and deadlock-free, using model-checking techniques. After several iterations, the model should reach soundness and is then said to be implementation-ready.

From Step 2 to Step 3, VHDL source code is then generated by means of a model-to-text transformation. This generated code describes the hardware system that will be implemented in a FPGA circuit. From Step 3 to Step 4, the VHDL compilation/synthesis and the FPGA programming are finally performed using industrial tools.

In this work, we focus on the part of the workflow in Fig 1 that is framed with dotted lines, i.e. the model-to-text transformation between Step 2 and Step 3.

In particular, we aim to prove that through this model-to-text transformation, the behavior described by the initial model is preserved in the generated VHDL code. To do so, we have to implement the structure of PNs used in the HILECOP models, together with the semantics providing the evolution rules of these PNs.

HILECOP's Petri Nets

The PNs that are used to describe the behavior of HILECOP components are Synchronously executed, extended, generalized, Interpreted, and Time Petri Nets with priorities and macro-places (SITPNs) [START_REF] Leroux | Handling Exceptions in Petri Net-Based Digital Architecture: From Formalism to Implementation on FPGAs[END_REF]. The formalism was created to deal with multiple problems at the same time: the need for model analysis, the need for a deterministic semantics for the models since we have to consider the design of safety-critical systems, and finally, the need for a synchronous semantics motivated by the final implementation of the models as hardware circuits that are synchronized with a clock signal.

In this paper, we present SITPNs but without macro-places. In this section, we assume that the reader is familiar with the basic PN formalism, and we describe the evolution mechanism of SITPNs.

Extended, Generalized, Interpreted, and Time Petri Nets

SITPNs are generalized PNs in the sense that they admit edge weights to be natural numbers. They are also extended in the sense that they introduce new kinds of edges, i.e. inhibitor and test edges, respectively represented by edges with white and black circle heads. Fig. 3.a shows an example of generalized and extended PN.

SITPNs are also time PNs, where time intervals are associated to transitions. As can be seen in Fig. 3.b, time intervals are of the form [a, b], with a ∈ N * and b ∈ N * {∞}, where N is the set of natural numbers (non negative integers). When a transition is sensitized, the two bounds of its time interval are decremented at each time step (a clock cycle in our case, see Subsec. 3.2). When the lower bound is equal to zero, then the transition has reached the firing time window and must be fired right away (the semantics of time intervals is imperative). In Fig. 3.b, the time intervals in bold are the static time intervals associated with transitions at the PN initialization, while the time intervals in italics are dynamic time intervals (when the PN is executed). A time interval is reset when an associated transition is disabled.

P0 P1 P2 T0 3 T1 2 2
(a) Extended, Generalized Petri Net SITPNs also include the notion of interpreted PNs, which is useful to express the interaction between a system and its environment. This notion of interpretation introduces three new concepts:

P 0 P 1 T 0 [2, ∞] [0 , ∞] T 1 [2, 4] [1 , 3] (b) Time Petri Net P0 a0 P1 P2 a1 T0 f0 c0 T1 f1 c1 a0: s_heater_switch ⇐ '1' c0: s_heat_sensor > 10 f0: s_open_window ⇐ '1' a1: s_heater_switch ⇐ '0' c1: s_heat_sensor < 2 f1: s_close_window ⇐ '1' (c) Interpreted Petri Net
-Continuous actions, associated to places: actions associated to a place p are activated as long as p is marked; -Functions (or discrete actions), associated to transitions: when a transition t is fired, all functions associated to t are executed; -Conditions, associated to transitions: conditions are Boolean expressions whose values depend on the environment.

As functions and actions can be any kind of operations that have an impact on the environment of the system, their effects are measured through the values of conditions attached to the transitions of the system. The condition value controls the firing of the transition to which it is attached (no firing if the condition is false). Fig. 3.c illustrates the use of actions, functions, and conditions in an interpreted PN. In this figure, the action a 0 is activated as the place P 0 is marked. The function f 0 will also be executed at the firing of T 0 , which depends on the value of the condition c 0 . The table of Fig. 3.c presents some VHDL code associated to actions, functions, and conditions, but the expression of interpretation goes beyond the scope of VHDL.

In generalized, extended, interpreted, and time PNs, a transition is firable if it is sensitized, its conditions are true, and its time interval is ready.

Synchronous Execution and Conflict Resolution

The SITPN state evolution is synchronized with two clock events of a clock signal, namely the falling and rising edges of the signal, as represented in Fig. 4. The falling edge event, i.e. the event 1 in Fig. 4, triggers the update of the value of conditions, the activation of the actions associated to marked places, the update of the time intervals of transitions, and the selection of the transitions to be fired. The marking is then updated on the rising edge event, i.e. the event 2 in Fig. 4, so that all transitions to be fired are fired at once, and the Clock signal

1 2
Fig. 4: Evolution of a SITPN Synchronized with a Clock Signal functions associated to fired transitions are then executed. Moreover, the rising edge determines which transitions have been disabled in a transitory manner and must have their time intervals reset. Also, all the time intervals that have reached their upper bound value are marked as blocked. The case of a blocked time interval is possible, despite of the imperative semantics associated to the firing of time transitions, i.e. transitions with a time interval. If a time transition is bound to a condition that is always false, then it cannot be fired even though its time interval is ready, and as long as this situation holds, the time interval is decremented at each clock cycle, until it eventually gets blocked. The semantics of synchronous execution requires that all transitions are fired at the same time, while in asynchronous PNs, transitions are fired one at a time. However, we cannot allow two transitions sensitized by the same token to be fired at the same time, since we must preserve the balance between resource consumption and transition firing. Transitions that have a common input place are in structural conflict. Moreover, transitions are in effective conflict if they are in structural conflict and if the firing of one of them disables the others. To solve effective conflicts, priorities are introduced between transitions and allow us to compute a firing order in case the marking would not provide enough tokens to fire all the transitions involved in the conflict.

Formalization and Implementation of SITPNs

In this section, we formally present the structure of SITPNs, together with their semantics, and present some parts of the corresponding implementation realized using the Coq proof assistant [START_REF]Coq[END_REF]. Due to lack of space, we purposely omit to present the metatheoretical principles underlying the Coq system. The interested reader can refer to [START_REF] Paulin-Mohring | Introduction to the Coq Proof-Assistant for Practical Software Verification[END_REF] for a thorough introduction to the concepts of Coq.

SITPN Data Structure

Let us introduce some notations that we use to formalize SITPNs. Let I + be the set of intervals of positive integers, where An SITPN is defined as follows (this definition is mainly based on the similar definition given in [START_REF] Leroux | Complex Digital System Design: A Methodology and Its Application to Medical Implants[END_REF]): Definition 1 (SITPN). A synchronously executed, extended, generalized, interpreted, and time Petri net with priorities is a tuple <P, T, pre, test, inhib, post, M 0 , , A, C, F, A, C, F, I s >, where we have:

1. P = {P 0 , . . . , P n }, a set of places. 2. T = {T 0 , . . . , T m }, a set of transitions. 3. pre ∈ P → T → N, the function associating a weight to place-transition edges that are not inhibitor or test edges. ∀p ∈ P , ∀t ∈ T , pre(p, t) = 0 if no such pre edge exists from place p to transition t. 4. test ∈ P → T → N, the function associating a weight to test edges. ∀p ∈ P , ∀t ∈ T , test(p, t) = 0 if no test edge exists from place p to transition t. 5. inhib ∈ P → T → N, the function associating a weight to inhibitor edges.

∀p ∈ P , ∀t ∈ T , inhib(t, p) = 0 if no inhibitor edge exists from place p to transition t. 6. post ∈ T → P → N, the function associating a weight to transition-place edges. ∀t ∈ T , ∀p ∈ P , post(t, p) = 0 if no such post edge exists from transition t to place p. 7. M 0 ∈ P → N, the initial marking of the SITPN. 8. , the irreflexive, anti-symmetric, and transitive priority relation, which represents the firing priority between transitions. 9. A = {a 0 , . . . , a n }, a set of continuous actions. 10. C = {c 0 , . . . , c n }, a set of conditions. 11. F = {f 0 , . . . , f n }, a set of functions (discrete actions). 12. A ∈ P → A → B, the function associating actions to places. ∀p ∈ P , ∀a ∈ A, A(p, a) = 1, if a is associated to p, A(p, a) = 0 otherwise. 13. F ∈ T → F → B, the function associating functions to transitions. F is defined in the same manner as A. From this definition, SITPNs have been implemented in Coq as a record type, i.e. the Sitpn type of List. 1. In this code, the types Place, Trans, Action, Condition, and IFunction are actually aliases for the type of natural numbers (nat in Coq). The fields places and transs respectively represent the set of places and transitions of the PN. The fields pre, test, and inhib are functions returning the weight of place-transition edges, respectively for regular, test, and inhibitor edges. In the same way, the field post deals with output edges. The field initial_marking corresponds to the initial marking of the PN.

The s_intervals field implements the partial function I s . s_intervals returns an option of type TimeInterval, which is the type implementing the I + set. The option type allows us to implement partial functions in Coq, where all functions must be total (the None/Some constructors are used to represent the elements that are respectively members and not members of the domain). The fields conditions, actions, and functions respectively implement the set of Listing 1: The Coq Structure for SITPNs

P 0 P 1 T 0 T 1 T 2 T 3 P 2 T 4 T 5
Priority groups : As an alternative to the priority relation introduced in Def. 1, the priorities between transitions are implemented by the priority_groups field, which contains a list of lists of transitions ordered by level of firing priority. Fig. 5 shows how priority groups are computed from the structure of the PN and the definition of the priority relation (represented by the dotted arrows). To build priority groups, we have to build conflict groups first by gathering all the transitions that have an input place in common. If the intersection of two conflict groups is not empty, then the two conflict groups are merged into one. For example, in Fig. 5, the conflict groups {T 0 , T 1 , T 2 } and {T 2 , T 3 } have to be merged. When all the conflict groups have been identified and built, an ordering of transitions that conforms with the definition of the priority relation is applied to each conflict group. This allows us to determine the firing order and create priority groups. If the priority relation is only partially defined for a given conflict group, then the translation into a priority group is not possible. In the following, we only consider models for which the priority relation defines a total order over the transitions of each conflict group.

[T 3 , T 2 , T 1 , T 0] [T 5 , T 4]

SITPN Semantics

Before describing the semantics of SITPNs, we need to introduce some preliminary definitions and notations. In the rest of the section, each definition refers to an implicit SITPN <P, T, pre, test, inhib, post, M 0 , , A, C, F, A, C, F, I s >.

An SITPN state is defined as follows:

Definition 2 (SITPN State). An SITPN state is a tuple <F ired, M, I, reset t , ex, cond>, where:

1. F ired ⊆ T is a set of transitions.

2. M ∈ P → N is the current marking of the SITPN. 3. I ∈ T i → I + {ψ} is the function mapping time transitions to dynamic time intervals. A dynamic time interval is either active, then it is in I + , or blocked, then its value is ψ. Function I denotes the current value of time intervals in the SITPN. 4. reset t ∈ T i → B is the function mapping time transitions to time interval reset orders (defined as Booleans). 5. ex ∈ A F → B is the function representing the current activation (resp. execution) state of actions (resp. functions). 6. cond ∈ C → B is the function representing the current value of conditions (defined as Booleans).

As SITPNs, we have implemented the SITPN state structure in Coq as a record type, i.e. the SitpnState type of List. 2. Most of the fields of this type are functions, and for easy handling purposes, they are represented as lists of couples. In List. 2, the DynamicTimeInterval type implements the set I + {ψ}.

In addition, we introduce the notions of sensitization and firability:

∈ C, C(t, c) = 1 ⇒ cond(c) = 1 and C(t, c) = -1 ⇒ cond(c) = 0.
In the following, we will use a simplified notation for markings: given two markings M and M , the formula O(M, M) will be considered as equivalent to the formula ∀p ∈ P, O(M (p), M (p)), where O is a binary relation between two markings of a place.

The semantics of SITPNs is given by the following definition:

Definition 5 (SITPN Semantics). The semantics of an SITPN is the transition system < S, s 0 , L, env, > where:

-S is the set of states of the SITPN.

- -⊆ S × L × S is the state transition relation, which is noted s l s where s, s ∈ S and l ∈ L, and which is defined as follows:

s 0 =< ∅, M 0 , I s , ∅, ∅ >
• ∀τ ∈ N, s (↓,τ) s , where s =< F ired, M, I, reset t , ex, cond > and received the order to reset their time intervals or were fired at the previous clock cycle, have their dynamic time intervals reset and decremented3 , i.e.:

s =< F ired , M, I , reset t , ex , cond >, if: (1)
∀t ∈ T i , t ∈ sens(M)∧ reset t (t) = 1∨t ∈ F ired ⇒ I (t) = I s (t)-1. (5
) All the time transitions with active dynamic time intervals that are sensitized by the marking M , did not receive the order to reset their dynamic time intervals, and were not fired at the previous clock cycle, have their dynamic time intervals decremented, i.e.:

∀t ∈ T i , t ∈ sens(M) ∧ reset t (t) = 0 ∧ t / ∈ F ired ∧ I(t) = ψ ⇒ I (t) = I(t) -1.
(6) All the time transitions verifying the same conditions as above, but with blocked dynamic time intervals, keep their dynamic time intervals blocked, i.e.:

∀t ∈ T i , t ∈ sens(M) ∧ reset t (t) = 0 ∧ t / ∈ F ired ∧ I(t) = ψ ⇒ I (t) = I(t). (7
F(t, f) = 0 ⇒ ex (f) = 0.
The SITPN semantics describes how an SITPN goes from one state to another at each occurrence of a falling or rising edge of the clock signal. The clock signal is always alternating consecutively between falling and rising edges. A clock cycle is determined by the period between two falling edges or two rising edges. Also, the count of clock cycles τ is incremented at each clock cycle.

In Def. 5, Rules (1), (2), and (3) deal with interpretation. Rules (4), (5), (6), and (7) deal with dynamic time intervals and their update on falling edge. On falling edge, the dynamic time interval decrementing represents the beginning of a new clock cycle. Rules (8), [START_REF] Leroux | Complex Digital System Design: A Methodology and Its Application to Medical Implants[END_REF], and [START_REF] Leroy | Formal Verification of a Realistic Compiler[END_REF] deal with the computation of transitions to be fired at the next rising edge. In Rules (8) and (9), the marking M -ti∈P r(t) pre(t i) is the residual marking obtained when all higher priority transitions of a given transition t have consumed tokens in their input places. If a transition t is sensitized by such a residual marking, it means that even after the firing of all its higher priority transitions, enough tokens are left for the firing of t at the same clock event.

Regarding the rising edge rules, Rule [START_REF] Meghzili | On the Verification of UML State Machine Diagrams to Colored Petri Nets Transformation Using Isabelle/HOL[END_REF] computes the marking resulting from the firing of transitions of the F ired set, which has been determined at the previous clock event. Rules (12) and (13) describe how reset orders are determined based on the sensitization of transitions by the transient marking.

The transient marking, represented by the expression M -ti∈F ired pre(t i), results from the retrieval of tokens from the input places of transitions of the F ired set. If a transition is disabled by the transient marking, then its dynamic time interval must be reset at the next clock cycle. Rules (14) and (15) determine which dynamic time intervals have reached their upper bounds and became blocked. Rules (16) and (17) deal with the execution of functions. Functions are executed when the corresponding transitions are fired 4 .

We implement the SITPN semantics in Coq as an inductive relation, whose we show an excerpt in List. 3. The SitpnSemantics type describes the behavior of the state transition relation. It consists of two cases parameterized by an instance of the Clock type, which has also two constructors falling_edge and rising_edge. The parameters tau and Clock represent the label of the state transition relation. The env function, which provides values to the conditions at tau, is also a parameter of the relation.

Due to lack of space, we only provide the code of some rules for the second case of the SITPN semantics, i.e. some rules of state evolution on rising edge. More precisely, we give the code of Rules (11), (12), [START_REF]Coq[END_REF], and [START_REF] Yang | From AADL to Timed Abstract State Machines: A Verified Model Transformation[END_REF]. Note that to access the fields of record types, such as Sitpn and SitpnState, we use the prefix notation. For example, given s of type SitpnState, we write (marking s) and (fired s) to respectively access the marking and fired fields of s.

The implementation of Rule [START_REF] Meghzili | On the Verification of UML State Machine Diagrams to Colored Petri Nets Transformation Using Isabelle/HOL[END_REF] expresses the computation of the marking M at the state s , i.e. (marking s'), according to the marking M and the list of fired transitions at the state s, i.e. (marking s) and (fired s) respectively. As markings are lists of couples (each couple consists of a place and its Listing 3: The Semantics of SITPNs in Coq number of tokens), contents of markings are expressed by the mean of the In relation 5 . The pre_sum and post_sum functions implement the sum expression ti∈F ired pre(t i)-post(t i) used in Rule [START_REF] Meghzili | On the Verification of UML State Machine Diagrams to Colored Petri Nets Transformation Using Isabelle/HOL[END_REF]. Regarding Rule [START_REF] Paulin-Mohring | Introduction to the Coq Proof-Assistant for Practical Software Verification[END_REF], we express the transient marking in the same way as the marking M in Rule [START_REF] Meghzili | On the Verification of UML State Machine Diagrams to Colored Petri Nets Transformation Using Isabelle/HOL[END_REF], i.e. with the In relation and the pre_sum function. The Permutation relation ensures the well-definition of the list transient_marking, by checking that all the places of the SITPN are referenced in the transient marking. In the implementation of Rule [START_REF]Coq[END_REF], the line (In (t,dyn_itval) (d_intervals s)) implicitly implies that t ∈ T i . This is a consequence of the well-definition of object s, which is asserted by the premise (IsWellDefinedSitpnState sitpn s).

When defining instances of Sitpn and SitpnState, because of the permissiveness of the data structures used in our implementation (mostly lists), there may be some inconsistencies (places not referenced in markings, transitions with no edges, etc.). We therefore define the predicate IsWellDefinedSitpn, as well as the relation IsWellDefinedSitpnState, to prevent these inconsistencies, and to provide a safe basis for proofs. Also, these inconsistencies are the causes of the errors that may be returned by our token player (see List. 4), which may occur when computing the state of a given SITPN (if this SITPN is not well-defined or if the computation is performed from a not well-defined state).

A Verified Token Player for SITPNs

In this section, we describe the algorithm of a token player for SITPNs, along with its implementation in Coq. We then outline the soundness and completeness proofs of this token player with respect to the SITPN semantics. Building a token player that follows the formalized and mechanized SITPN semantics is a way to assess our implementation of the semantics. Moreover, it also provides the users of the SITPN formalism with a verified and therefore reliable token player.

A Token Player for SITPNs

An token player for SITPNs is a program taking an SITPN and its initial state as parameters and returning an ordered list of SITPN states corresponding to the evolution of the SITPN over n clock cycles. Before describing the Coq implementation of such a token player, we first present the algorithms (using imperative pseudo-code) that allows us to compute of a new state for an SITPN after one clock cycle. Algo. 1 computes the SITPN state after the falling edge of the clock, while Algo. 2 computes the SITPN state after the rising edge of the clock. Due to lack of space, we only provide, in List. 4, the Coq implementation of Algo. 2. In Algos. 1 and 2, the variables for SITPNs and SITPN states are records respectively of type Sitpn and SitpnState (see Lists. 1 and 2). The assignment of values to variables and record fields is performed with the "←" operator.

Algo. 1 computes of a new state s' for sitpn starting from state s with respect to the falling edge semantics defined in Def. 5. At the beginning of the algorithm, the new state s' is initialized with state s (Line 2). The fields of state s' are then overrided by the computation of new condition, action state, time interval values and a new list of transitions to be fired.

The function getConditionValues (Line 3) provides a list of couples (c, v), where c is a condition of the SITPN, and v its current (Boolean) value at time t, computed by the env function. The function getConditionValues implements Rule (1) of the SITPN semantics.

The function getActionStates (Line 4) returns a list of couples (a, v), where a is an action of the SITPN, and v its current Boolean-valued activation state. For each action, the function tries to find a place with a marking greater than zero with which this action is associated. If such a place exists then the action Algorithm 1: falling_edge(sitpn, s, t, env) Data: sitpn, an SITPN. s, the state of sitpn before the falling edge of the clock. t, the current count of clock cycles. env, the function that provides condition values at each clock cycle. Result: s', the new state of sitpn after the falling edge of the clock. The function updateTimeIntervals (Line 5) implements Rules (4), (5), (6) and [START_REF] Kloos | Formal Semantics for VHDL[END_REF] of the SITPN semantics. The function iterates over the elements of the list (d_intervals s), which are couples (t, ti), where t is a time transition and ti is its associated dynamic time intervals, and updates the value of each dynamic time interval according to the current state of the corresponding transition.

The function mapFire computes the list of transitions to be fired at this cycle of evolution. In the body of the function, all the transitions are checked, proceeding priority group by priority group. A residual marking, as described in Rules (8) and (9) of the semantics, is computed for each priority group. The residual marking contributes to the selection of transitions to be fired. If a transition trans, in a given priority group, is firable and sensitized by the residual marking, then it is selected as a transition to be fired, and a new residual marking is computed by withdrawing the appropriate number of tokens from the input places of trans.

For a given sitpn at a current state s, Algo. 2 computes a new state s' with respect to the evolution semantics defined for the rising edge event of a clock signal. The function mapUpdateMarkingPre (Line 3) implements the first 1 Definition sitpn_rising_edge (sitpn : Sitpn) (s : SitpnState) : Listing 4: The Implementation of Algo. 2 in Coq part of the firing process and returns a transient marking, result of the retrieval of tokens from the input places of the transitions of the (fired sitpn) list, i.e. the transitions to be fired at this clock cycle. The firing process is not done all at once as we need the transient marking to determine which dynamic time intervals must be reset at the next clock cycle. This is done by the function getBlItvalsAndResetOrds (Line 4), which both assigns reset orders for transitions either disabled by the transient marking or fired at this clock cycle, and determines which dynamic time intervals are blocked. This function returns a couple (ro, ti), where ro is a list of reset orders and ti is a list of dynamic time intervals, and the returned values ro and ti are then assigned to the corresponding fields of the new SitpnState instance s' (Lines 5 and 6). This function implements Rules (12), (13), [START_REF]Coq[END_REF], and (15) of the SITPN semantics. The function mapUpdateMarkingPost (Line 7) produces new tokens in the output places of transitions that are in the list (fired sitpn), which is the end of the firing process. The functions mapUpdateMarkingPre and mapUpdateMarkingPost implements Rule [START_REF] Meghzili | On the Verification of UML State Machine Diagrams to Colored Petri Nets Transformation Using Isabelle/HOL[END_REF] of the SITPN semantics. Finally, the function getFunctionStates (Line 8) computes the state of functions based on the list of fired transitions (fired sitpn). This function implements Rule (16) and (17) of the SITPN semantics.

List. 4 provides the Coq implementation of Algo. 2, of which it is almost a strict transcription. Note that the functions map_update_marking_pre/post, and get_blocked_itvals_and_reset_orders may produce errors (i.e., the constructor None of the type option).

The main function is the function sitpn_cycle, which is not presented here, and which executes in sequence the functions sitpn_falling_edge and sitpn_rising_edge. These two functions are respective implementations of Algos. 1 and 2. The function sitpn_cycle computes a complete evolution cycle for a given Sitpn structure, and computes a couple of states corresponding to the states of the SITPN after the falling and rising edges of the clock signal.

Soundness and Completeness of our Token Player

To improve the confidence in our implementation of the SITPN semantics, which will be used later in the proof that the HILECOP methodology preserves the behavior of its models (see Sec. 1), the soundness and completeness of the function sitpn_cycle with respect to the SITPN semantics have been proved. Only an overview of the proof is given here, and the interested reader can access to the full source code6 to get all the details of the formalization.

Proof of Soundness

The following theorem states the soundness of the function sitpn_cycle, i.e. the two states s' and s" returned by the function comply with the SITPN semantics: As the function sitpn_cycle is divided into two parts, i.e. the call to the functions sitpn_falling_edge and sitpn_rising_edge, the proof is divided into two parts as well, with two intermediary lemmas. The first lemma states that the function sitpn_falling_edge returns a SITPN state that conforms with the falling edge semantics: Proving this lemma is equivalent to proving that the functions called in the function sitpn_falling_edge, which implement the functions of Algo. 1, imply a part of the rules of the SITPN semantics. Auxiliary lemmas have therefore been proved for each of these functions:

-The function getConditionValues implies Rule (1); -The function getActionStates implies Rules (2) and (3); -The function updateTimeIntervals implies Rules (4), (5), [START_REF] Fronc | Towards a Certified Petri Net Model-Checker[END_REF], and (7); -The function mapFire implies Rules (8), [START_REF] Leroux | Complex Digital System Design: A Methodology and Its Application to Medical Implants[END_REF], and [START_REF] Leroy | Formal Verification of a Realistic Compiler[END_REF].

The second intermediary lemma states that the function sitpn_rising_edge returns a SITPN state that conforms with the rising edge semantics: Just as with Lem. 1, the proof consists in proving that the functions used in the function sitpn_rising_edge imply some rules of the semantics.

Most of the functions that are used in the functions sitpn_falling_edge and sitpn_rising_edge iterate over the structure of the fields of the SITPN and SITPN state structures. For instance, the function updateTimeIntervals iterates over the list of dynamic time intervals of the SITPN state s (see Algo. 1). Proving that a function implies some rules of the semantics is therefore naturally done by structural induction on the field which the function iterates over.

Proof of Completeness

The completeness theorem is expressed as follows: s" ⇒ (sitpn_cycle sitpn s env τ) = Some (s', s").

The proof of this theorem follows similar patterns as the proof of Thm. 1. In particular, as the function sitpn_cycle is partial, we have to prove that, thanks to the hypothesis of well-definition assumed over the parameters sitpn and s, error cases never occur (i.e. sitpn_cycle never returns None).

Conclusion

In this paper, we have introduced the HILECOP methodology, a process for the design of critical digital systems. Due to the specific context of critical applications, we have proposed to formally verify this methodology, which is motivated by a need for reliability. To do so, we have focused, in this paper, on the formalization of the high level modeling language of HILECOP, which relies in particular on SITPNs to model the behavior of components. This formalization has been implemented using the Coq proof assistant, and we have also provided a token player, which has been proved sound and complete with respect to the semantics of SITPNs. The full implementation is significant and has about 20,000 lines of code, including 250 lemmas and 18,000 lines of proof.

As perspectives, we need to complete the formalization and implementation of the high level modeling language of HILECOP. In particular, we have to deal with macroplaces, which are a way to handle exceptions in a PN [START_REF] Leroux | Handling Exceptions in Petri Net-Based Digital Architecture: From Formalism to Implementation on FPGAs[END_REF] and in HILECOP models in particular, and which remain to be integrated into our implementation.

The process of formally verifying the entire HILECOP transformation chain is a long way to go. The next step is to deal with the target language, i.e. VHDL, where the idea is to give a synchronous operational semantics to VHDL, based on previous work of formalization [START_REF] Kloos | Formal Semantics for VHDL[END_REF]. The implementation of this semantics in Coq is a work in progress.

The final step of our work will be to implement the model-to-text transformation from HILECOP PN models to VHDL code, and to prove that this transformation preserves the semantics of the input models.

t e x t t r a n s f o r m a t i o n 3 c o m p i l a t i o n / s y n t h e s i s FPGA implementation 4 Fig. 1 :Fig. 2 :

 3412 Fig. 1: Workflow of the HILECOP Methodology

Fig. 3 :

 3 Fig. 3: Interpreted and Time Petri Nets

 [a, b] ∈ I + , and a ∈ N * and b ∈ N * {∞}. Let us also add that given an interval I = [a, b] ∈ I + and a positive integer θ ∈ N * , Iθ = [aθ, bθ] if b = ∞ and Iθ = [aθ, b] otherwise. Moreover, lower(I) (resp. upper(I)) denotes the lower (resp. upper) bound of interval I.

 [START_REF]Coq[END_REF]. C ∈ T → C → {-1, 0, 1}, the function associating conditions to transitions.∀t ∈ T , ∀c ∈ C, C(t, c) = 1, if c is associated to t, C(t, c) = -1,if c is associated to t, C(t, c) = 0 otherwise. 15. I s ∈ T → I + , the partial function associating static time intervals to transitions. T i denotes the definition domain of I s , i.e. the set of time transitions.

1 2 places : list Place; 3 transs : list Trans; 4 pre:

 234 Record Sitpn : Set := mk_Sitpn { Place → Trans → nat; 5 test : Place → Trans → nat; 6 inhib : Place → Trans → nat; 7 post : Trans → Place → nat; 8 initial_marking : Place → nat;9 priority_groups : list (list Trans); 10 s_intervals : Trans → option TimeInterval; 11 conditions : list Condition; 12 actions : list Action; 13 functions : list IFunction; 14 has_condition : Trans → Condition → bool; 15 has_action : Place → Action → bool; 16 has_function : Trans → IFunction → bool; 17 }.

Fig. 5 :

 5 Fig. 5: Computation of Priority Groups of a Petri Net

1

 Record SitpnState : Set := mk_SitpnState { 2 fired : list Trans; 3 marking : list (Place * nat);

4 d_intervals:

 4 list (Trans * DynamicTimeInterval); 5 reset : list (Trans * bool); 6 exec_a : list (Action * bool);

7 exec_f: 9 }. Listing 2 :

 792 list (IFunction * bool);8 cond_values : list (Condition * bool); The Coq Structure for SITPN state

 is the initial state of the SITPN, where M 0 is the initial marking of the SITPN, and I s the partial function associating static time intervals to transitions. -L ⊆ Clk × N is the set of transition labels, where Clk ∈ {↑, ↓}. A label is a couple (clk, τ) composed of a clock event clk ∈ Clk, and a time value τ ∈ N expressing the current count of clock cycles. -env ∈ C → N → B is the environment function, which gives (Boolean) values to conditions (C) depending on the count of clock cycles (N).

 cond is the function giving the (Boolean) values of conditions that are extracted from the environment at the clock count τ , i.e.: ∀c ∈ C, cond (c) = env(c, τ). (2) All the actions associated with at least one marked place in the marking M are activated, i.e.: ∀a ∈ A, ∃p ∈ P, M (p) > 0 ∧ A(p, a) = 1 ⇒ ex (a) = 1. (3) All the actions that are only associated with unmarked places in the marking M are deactivated, i.e.: ∀a ∈ A, ∀p ∈ P, M (p) = 0 ∨ A(p, a) = 0 ⇒ ex (a) = 0. (4) All the time transitions that are sensitized by the marking M , and

1 2 (6 (12 (15 (

 261215 Inductive SitpnSemantics (sitpn : Sitpn) (s s' : SitpnState) (tau : nat) env : Condition → nat → bool) : Clock → Prop := 3 | SitpnSemantics_falling_edge : (* Rules 1 to 10 *) 4 ... → SitpnSemantics sitpn s s' tau env falling_edge 5 | SitpnSemantics_rising_edge : forall (p : Place) (n : nat), 13 In (p, n) (marking s) → 14 In (p, n -(pre_sum sitpn p (fired s)) + (post_sum sitpn p (fired s))) marking s')) → 16 (* Rule 12 *) 17 (forall (t : Trans) (transient_marking : list (Place * nat)), 18 Permutation (places sitpn) (fs transient_marking) → 19 (forall (p : Place) (n : nat), 20 In (p, n) (marking s) → 21 In (p, n -pre_sum sitpn p (fired s)) transient_marking) → 22 In t (transs sitpn) → 23 s_intervals sitpn t <> None → 24 ∼IsSensitized sitpn transient_marking t → 25 In (t, true) (reset s')) → 26 (* Rule 14 *) 27 (forall (t : Trans) (dyn_itval : DynamicTimeInterval), 28 In (t, dyn_itval) (d_intervals s) → 29 HasReachedUpperBound dyn_itval → 30 ∼In t (fired s) → 31 In (t, blocked) (d_intervals s')) → 32 (* Rule 16 *) 33 (forall (f : IFunction), 34 In f (functions sitpn) → 35 (exists (t : Trans), In t (fired s) ∧ (has_function sitpn t f) = true) → 36 In (f, true) (exec_f s')) → 37 (** Conclusion **) 38 SitpnSemantics sitpn s s' tau env rising_edge.

1 begin 2 s' ← s 3 (4 (5 (6 (

 123456 cond_values s') ← getConditionValues(sitpn, t, env) exec_a s') ← getActionStates(sitpn, s) d_intervals s') ← updateTimeIntervals(sitpn, s) fired s') ← mapFire(sitpn, s')7 return s'Algorithm 2: rising_edge(sitpn, s) Data: sitpn, an SITPN. s, the state of sitpn before the rising edge of the clock. Result: s', the new state of sitpn after the rising edge of the clock.

1 begin 2 s' ← s 3 transient_marking 4 (5 (6 (7 (8 (

 12345678 ← mapUpdateMarkingPre(sitpn, s) reset', d_intervals') ← getBlItvalsAndResetOrds(sitpn, s, transient_marking) reset s') ← reset' d_intervals s') ← d_intervals' marking s') ← mapUpdateMarkingPost(sitpn, s') exec_f s') ← getFunctionStates(sitpn, s') 9 return s' is marked as activated. The function getActionStates implements Rules (2) and (3) of the SITPN semantics.

2 option SitpnState := 3 match 4 | 7 | 9 | 12 (14 |

 234791214 map_update_marking_pre sitpn (marking s) (fired s) with Some transient_marking ⇒ 5 match get_blocked_itvals_and_reset_orders sitpn s (d_intervals s) 6 transient_marking [] [] with Some (reset', d_intervals') ⇒ 8 match map_update_marking_post sitpn transient_marking (fired s) with Some final_marking ⇒ 10 let exec_f' := get_function_states sitpn s (functions sitpn) [] in 11 Some (mk_SitpnState (fired s) final_marking d_intervals' reset' cond_values s) (exec_a s) exec_f') 13 (* Error raised by map_update_marking_post. *) None

Theorem 1 .(

 1 ∀sitpn ∈ SITPN , ∀s,s', s" ∈ S, ∀τ ∈ N, ∀env ∈ C → N → B, (sitpn_cycle sitpn s env τ) = Some (s', s") ⇒ s

Lemma 1 .

 1 ∀sitpn ∈ SITPN , ∀s, s' ∈ S, ∀τ ∈ N, ∀env ∈ C → N → B, (sitpn_falling_edge sitpn s env τ) = Some s' ⇒ s (↓,τ) s'.

Lemma 2 .

 2 ∀sitpn ∈ SITPN , ∀s, s' ∈ S, ∀τ ∈ N, ∀env ∈ C → N → B, (sitpn_rising_edge sitpn s) = Some s' ⇒ s (↑,τ) s'.

Theorem 2 .

 2 ∀sitpn ∈ SITPN , ∀s,s', s" ∈ S, ∀τ ∈ N, ∀env ∈ C → N → B, s (↓,τ) s' (↑,τ)

) All the time transitions that are not sensitized by the marking M have their dynamic time intervals reset and decremented, i.e.: ∀t ∈ T i , t / ∈ sens(M) ⇒ I (t) = I s (t) -1. (8) All the transitions both firable and still sensitized by the residual marking, which is the marking resulting from the firing of all higher priority transitions, are fired, i.e.: ∀t ∈ f irable(s), t ∈ sens M -ti∈P r(t) pre(t i) ⇒ t ∈ F ired , where P r(t) = {t i | t i t ∧ t i ∈ f irable(s)}. (9) All the firable transitions that are not sensitized by the residual mark-(15) Dynamic time intervals are unchanged for all the time transitions that have not reached the upper bound of their dynamic time intervals or were fired at this clock cycle, i.e.: ∀t ∈ T

	(16) All the functions associated with fired transitions are executed, i.e.:
	∀f ∈ F, ∃t ∈ F ired , F(t, f) = 1 ⇒ ex (f) = 1.
	(17) All the functions associated with none of the fired transitions are not
	executed, i.e.:
	∀f ∈ F, ∀t ∈ F ired ,

ing are not fired, i.e.: ∀t ∈ f irable(s), t / ∈ sens M -ti∈P r(t) pre(t i) ⇒ t / ∈ F ired . (10) All the transitions that are not firable are not fired, i.e.: ∀t ∈ T, t / ∈ f irable(s) ⇒ t / ∈ F ired . • ∀τ ∈ N, s (↑,τ) s , where s =< F ired , M , I , reset t , ex , cond > and s =< F ired , M , I , reset t , ex , cond >, if: (11) M is the new marking resulting from the firing of all the transitions contained in F ired , i.e.: M = M -ti∈F ired pre(t i) -post(t i) . (12) All the time transitions that are not sensitized by the transient marking, which is the marking resulting from the retrieval of tokens from the input places of fired transitions, receive the order to reset their dynamic time intervals, i.e.: ∀t ∈ T i , t / ∈ sens M -ti∈F ired pre(t i) ⇒ reset (t) = 1. (13) All the time transitions that are sensitized by the transient marking receive no reset order, i.e.: ∀t ∈ T i , t ∈ sens M -ti∈F ired pre(t i) ⇒ reset (t) = 0. (14) Dynamic time intervals are blocked for all time transitions that have reached the upper bound of their dynamic time intervals and were not fired at this clock cycle, i.e.: ∀t ∈ T i , upper(I (t)) = 0 ∧ t / ∈ F ired ⇒ I (t) = ψ. i , upper(I (t)) = 0 ∨ t ∈ F ired ⇒ I (t) = I (t).

Note that decrementing dynamic time intervals allows us to manage local times (by "local", we mean local to a given transition).

The execution of actions and functions affects the environment of the SITPN, which gives feedbacks through the values provided to the conditions.

The full code is available at: https://github.com/viampietro/sitpns.