
HAL Id: lirmm-02613466
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02613466v1

Submitted on 20 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Incremental Algorithm for Computing All Repairs in
Inconsistent Knowledge Bases

Bruno Yun, Madalina Croitoru

To cite this version:
Bruno Yun, Madalina Croitoru. An Incremental Algorithm for Computing All Repairs in Inconsistent
Knowledge Bases. ICCS 2020 - 25th International Conference on Conceptual Structures, Sep 2020,
Bolzano / Virtual, Italy. pp.33-47, �10.1007/978-3-030-57855-8_3�. �lirmm-02613466�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02613466v1
https://hal.archives-ouvertes.fr

An Incremental Algorithm for Computing All
Repairs in Inconsistent Knowledge Bases

Bruno Yun1 and Madalina Croitoru2

1University of Aberdeen
2University of Montpellier

Abstract. Repair techniques are used for reasoning in presence of in-
consistencies. Such techniques rely on optimisations to avoid the com-
putation of all repairs while certain applications need the generation of
all repairs. In this paper, we show that the problem of all repair com-
putation is not trivial in practice. To account for a scalable solution, we
provide an incremental approach for the computation of all repairs when
the conflicts have a cardinality of at most three. We empirically study its
performance on generated knowledge bases (where the knowledge base
generator could be seen as a secondary contribution in itself).

Keywords: Repairs · Knowledge Base · Existential Rule

1 Introduction

We place ourselves in the context of reasoning with knowledge bases (KBs) ex-
pressed using Datalog± [11] and investigate inconsistent KBs, i.e. KBs with the
inconsistency solely stemming from the factual level and a coherent ontology.
For instance, a prominent practical application in this setting is Ontology Based
Data Access (OBDA) [22] that considers the querying of multiple heterogeneous
data sources via an unifying ontology. With few exceptions [7], approaches per-
forming query answering under inconsistency in the aforementioned setting rely
on repairs [3]. Repairs, originally defined for database approaches [1] are maxi-
mal subsets of facts consistent with the ontology. Inconsistency tolerant seman-
tics [21] avoid the computational overhead of computing all repairs by various
algorithmic strategies [10]. Unfortunately, certain tasks need the repair enumer-
ation problem, such as inconsistency-based repair ranking frameworks [26] or
argumentation-based decision-making [12,25].

We focus on the problem of computing possibly some or all repairs from
Datalog± inconsistent KBs. Our proposal relies on the notion of conflict (i.e.
set of facts that trigger an inconsistency). Although approaches exist for com-
puting conflicts in SAT instances or propositional logic [16,17], there are few
works addressing conflict computation for Datalog± that come with additional
challenges given the expressivity of the language [23]. In this paper we extend
the state of the art with a computationally efficient manner to generate the set
of all repairs using an incremental algorithm adapted from stable set compu-
tation in hypergraphs [9]. To this end, we make the hypothesis that the KB

2 Yun and Croitoru

allows for bounded sized conflicts (limited here at three). Our proposed algo-
rithm, in a first step, finds the conflicts of the KBs using specific sequences of
directed hyperedges (derivations) of the Graph of Atom Dependency (GAD) [19]
leading to falsum. In the second step, we use an efficient incremental algorithm
for finding all repairs of a set of facts from the set of conflicts of a given KB.
This efficient algorithm was inspired by the problem of extending a given list
of maximal independent sets in hypergraphs when hyperedges have a bounded
dimension [9]. The aforementioned graph theoretical problem was proven to be
in the NC complexity class if the size of the hyperedges were bounded by three
[9,13] which means that the task can be efficiently solved on a parallel computer
where processors are permitted to flip coins. Please note that although conflicts
of size more than three can easily occur even when the arity of the negative
constraints is limited to two, we do not find that this condition is limiting as, in
reality, it is not unlikely to find KBs with only conflicts of size two.

Therefore, the proposed algorithm is more efficient than the approach of [23]
for two reasons: (1) We do not compute all the “causes” and “consequences”
of all the atoms and restrict ourselves to the derivations that lead to an incon-
sistency. (2) We use an efficient algorithm for incrementally computing repairs
from conflicts.

When implementing our technique we noticed two key aspects of our ap-
proach: (1) getting some repairs from a KB can be relatively easy as the average
number of repairs found during the allotted time did not change when the KB
grew and (2) finding the last repairs was comparatively harder than the first re-
pairs. Please note that although the computational problem of getting all repairs
is in EXPTIME as the number of repairs can be exponential w.r.t. the number
of facts [8], the proposed algorithm has a two fold significance: (1) it improves
upon the state of the art for the task of all repair computation and (2) it is a
viable alternative for applications that require the repair enumeration.

2 Background notions

We introduce some notions of the Datalog± language. A fact is a ground atom
of the form p(t1, . . . , tk) where p is a predicate of arity k and for every i ∈
{1, . . . , k}, ti is a constant. An existential rule is of the form r = ∀

−→
X,
−→
Y B[

−→
X,
−→
Y]→

∃
−→
ZH[

−→
Z ,
−→
X] where B (called the body) and H (called the head) are existentially

closed atoms or conjunctions of existentially closed atoms and
−→
X,
−→
Y ,
−→
Z their re-

spective vectors of variables. A rule is applicable on a set of facts F iff there
exists a homomorphism from the body of the rule to F . Applying a rule to a set
of facts (also called chase) consists of adding the set of atoms of the conclusion of
the rule to the facts according to the application homomorphism. Different chase
mechanisms use different simplifications that prevent infinite redundancies [5].
We use recognisable classes of existential rules where the chase is guaranteed to

stop [5]. A negative constraint is a rule of the form ∀
−→
X,
−→
Y B[

−→
X,
−→
Y]→ ⊥ where

B is an existentially closed atom or conjunctions of existentially closed atoms,−→
X,
−→
Y , their respective vectors of variables and ⊥ is falsum.

An Incremental Algorithm for Computing All Repairs 3

Definition 1. A KB is a tuple K = (F ,R,N) where F is a finite set of facts,
R a set of rules and N a set of negative constraints.

Example 1. Let K = (F ,R,N) with F = {a(m), b(m), c(m), d(m), e(m), f(m),
g(m), h(m), i(m), j(m)}, R = {∀x(f(x)∧h(x)→ k(x)),∀x(i(x)∧ j(x)→ l(x))}
and N = {∀x(a(x) ∧ b(x) ∧ c(x) → ⊥),∀x(c(x) ∧ d(x) → ⊥),∀x(e(x) ∧ f(x) ∧
d(x)→ ⊥),∀x(e(x) ∧ f(x)→ ⊥),∀x(i(x) ∧ k(x)→ ⊥),∀x(l(x) ∧ h(x)→ ⊥)}.

In a KB K = (F ,R,N), the saturation SatR(X) of a set of facts X is the
set of atoms obtained after successively applying the set of rules R on X until
a fixed point. A set X ⊆ F is R-inconsistent iff falsum can be entailed from the
saturation of X by R∪N , i.e. SatR∪N (X) |= ⊥. A conflict of a KB is a minimal
R-inconsistent subset of facts.

Definition 2. Let us consider K = (F ,R,N). X ⊆ F is a conflict of K iff
SatR∪N (X) |= ⊥ and for every X ′ ⊂ X, SatR∪N (X ′) 6|= ⊥.

The set of all conflicts of K is denoted Conflict(K).

Example 2. [Cont’d Example 1] We have Conflict(K) = {{a(m), b(m), c(m)},
{c(m), d(m)}, {e(m), f(m)}, {f(m), h(m), i(m)}, {h(m), i(m), j(m)}}. The set
{d(m), e(m), f(m)} is not a conflict since SatR∪N ({e(m), f(m)}) |= ⊥.

To practically compute the conflicts, we use a special directed hypergraph
[14] called the Graph of Atom Dependency (GAD) and defined by [19].

Definition 3. Given a KB K = (F ,R,N), the GAD of K, denoted by GADK, is
a pair (V,D) such that V is the set of atoms in SatR∪N (F) and D = {(U,W) ∈
2V × 2V s.t. there exists r ∈ R ∪ N and a homomorphism π such that W is
obtained by applying r on U using π}.

Example 3. [Cont’d Example 1] Here, we have that V = {⊥, a(m), b(m), c(m), . . . ,
l(m)} and D = {D1, D2, . . . , D8} where D1 = ({f(m), h(m)}, {k(m)}), D2 =
({i(m)}, j(m)}, {l(m)}), D3 = ({a(m), c(m), b(m)}, {⊥}), D4 = ({c(m), d(m)},
{⊥}), D5 = ({k(m), i(m)}, {⊥}), D6 = ({h(m), l(m)}, {⊥}), D7 = ({e(m), f(m)},
{⊥}) and D8 = ({d(m), e(m), f(m)}, {⊥}).

A derivation is a sequence of rule applications such that each rule can be ap-
plied successively. A derivation for a specific atom a is a finite minimal sequence
of rule applications starting from a set of facts and ending with a rule application
that generates a. We now define the notion of fix and repair w.r.t. a set Y ⊆ 2F

of a KB K = (F ,R,N), that will be used in the proposed algorithms.

Definition 4. Let F be a set of facts, F ⊆ F is a fix of F w.r.t. Y ⊆ 2F iff
for every X ∈ Y,X ∩ F 6= ∅. A fix F of F w.r.t. Y is called a minimal fix of F
w.r.t. Y iff for all F ′ ⊂ F , it holds that F ′ is not a fix of F w.r.t. Y . The set of
all minimal fixes of F w.r.t. Y is denoted by MFix(F , Y).

The notion of KB reparation is linked to that of conflict via the minimal
fixes. We define a repair of a set of facts F w.r.t. a set Y ⊆ 2F .

4 Yun and Croitoru

Definition 5. Let F be a set of facts, X ⊆ F is a repair of F w.r.t. Y ⊆ 2F iff
there exists F ∈MFix(F , Y) such that X = F \ F .

Please note that there is a bijection between the set of repairs and the set of
minimal fixes of a set F w.r.t. a set Y ⊆ 2F . We denote the set of all repairs of
F w.r.t. Y by Repair(F , Y). Moreover, the repairs of F w.r.t. Conflict(K) are
the maximal, for set inclusion, consistent subsets of F .

3 Repairs Generation

In this section, we detail a framework for computing all maximal consistent sets
of a KB. The approach is given in Algorithm 1 and composed of two steps:

1. (Conflicts Generation) First, the GAD is constructed. Then, all conflicts
are computed by extracting the facts used in the minimal derivations for ⊥.

2. (From Conflicts to Repairs) Second, repairs of F w.r.t. Conflict(K) are
constructed using the FindAllRepairs call. The provided algorithm is efficient
for computing repairs in the case where the conflicts are at most of size 3.

Algorithm 1: Finding all maximal consistent sets of K
input : A KB K = (F ,R,N)
output: A set I of repairs of F w.r.t. Conflict(K)

1 GADK ← GADConstructor(K);
2 C ← FindAllConflicts(K, GADK);
3 Result← FindAllRepairs(K, C);
4 return Result;

Conflicts are subsets of F but there is not always a negative constraint di-
rectly triggered by the conflict (since the actual “clash” can be between the
atoms generated using rules). These two kinds of conflicts are referred to as
“conflicts” and “naive conflicts” in Rocher [23]. The use of the GAD allows to
keep track of all the rule applications and to propagate those “clashes” into F1.

FindAllConflicts takes as input a KB K and GADK and outputs the set of
all conflicts of this KB. It is based on three steps: (1) It builds the GAD. This
step has been proven to be efficient as the GAD can be constructed alongside
the chase [18]. (2) The GAD is used for finding the set of all possible minimal
derivations for ⊥. (3) For each derivation for ⊥, the facts in F that enabled the
generation of this derivation are extracted. They correspond to conflicts of K.

Example 4 (Cont’d Example 2). The set of all minimal derivations for ⊥ is
{(D2, D6), (D1, D5), (D7), (D4), (D3)}. The set of conflicts is {{h(m), i(m), j(m)},
{f(m), h(m), i(m)}, {e(m), f(m)}, {c(m), d(m)}, {a(m), b(m), c(m)}}.
1 The algorithms avoid the problem of derivation loss [19] which is important for the

completeness of our approach. Note that in Hecham et al. [19] the authors discuss
how finding all derivations for an atom is practically feasible despite the problem
being exponential for combined complexity but polynomial for data complexity.

An Incremental Algorithm for Computing All Repairs 5

3.1 From Conflicts to Repairs

Our approach for computing the set of maximal consistent sets of a KB from
the set of conflicts is composed of four algorithms: FindAllRepairs, NewMin-
imalFix, FindRepairs and SubRepair. In order to compute the repairs of F
w.r.t. the set of conflicts of K, we need to first compute the set of all mini-
mal fixes of F w.r.t. Conflict(K). FindAllRepairs computes the repairs of F
w.r.t. Conflict(K) by iteratively computing the set of all minimal fixes of F
w.r.t. Conflict(K) before converting them into repairs of F w.r.t. Conflict(K).
More precisely, FindAllRepairs repeatedly calls NewMinimalFix which returns
a new minimal fix of F w.r.t. Conflict(K) not previously found. The idea be-
hind NewMinimalF ix is that it produces new sets (U and A) depending on the
minimal fixes of F w.r.t. Conflict(K) that were previously found. A repair for
U w.r.t. A can be modified in order to return a new fix of F w.r.t. Conflict(K).
Lastly, FindRepair computes a repair for U w.r.t. a set A ⊆ 2U by relying on
SubRepair for iteratively constructing the repair. In the rest of this section, we
detail the general outline of FindAllRepairs and NewMinimalFix.

FindAllRepairs (see Algorithm 2) takes as input a KB K and its set of con-
flicts Conflict(K) and returns the set of all repairs of F w.r.t. Conflict(K). The
sets B and I contain the set of minimal fixes and repairs of F w.r.t. Conflict(K)
respectively and are initially empty. NewMinimalF ix(K, Conflict(K), B) is
called for finding a new minimal fix of F w.r.t. Conflict(K) that is not contained
in B. If NewMinimalF ix(K, Conflict(K), B) returns the empty set then B al-
ready contains all possible minimal fixes of F w.r.t. Conflict(K). Otherwise,
the new minimal fix of F w.r.t. Conflict(K) is stored in B and converted into
a repair of F w.r.t. Conflict(K) that is stored in I.

Algorithm 2: FindAllRepairs

input : A KB K = (F ,R,N) and a set of conflicts Conflict(K)
output: A set I of repairs of F w.r.t. Conflict(K)

1 B ← ∅, I ← ∅, stops← false;
2 while stops = false do
3 MF ← NewMinimalFix(K, Conflict(K), B);
4 if MF = ∅ then
5 stops = true;
6 else
7 B ← B ∪ {MF};
8 I ← I ∪ (F \MF);

9 return I;

NewMinimalFix (see Algorithm 3) takes as input a KB K, the corre-
sponding set of conflicts Conflict(K) and a set of minimal fixes B of F w.r.t.
Conflict(K) and returns the empty set if B contains all the minimal fixes
of F w.r.t. Conflict(K), otherwise it returns a new minimal fix of F w.r.t.
Conflict(K) that is not contained in B. First, the facts in F that are not in any
conflict of K are removed. By definition, these facts cannot be in a minimal fix

6 Yun and Croitoru

of F w.r.t. Conflict(K). Then, we check whether or not each fact is at least in
one element of B. If this is not the case, we can build a minimal fix of F w.r.t.
Conflict(K) that is not in B (line 6 to 10). To do so, we first pick an arbitrary
fact u that is not in any set of B. Then, we pick an arbitrary conflict Au con-
taining u and find a repair Rep of U w.r.t. A′ where A′ is the set of restricted
conflicts by U2 where U = F \ Au. The resulting U \Rep is a minimal fix of U
w.r.t. A′. It is extended to a minimal fix of F w.r.t. Conflict(K) by adding the
fact u. It can thus be added to B as the first minimal fix containing u.

Example 5 (Cont’d Example 4). At step 1 in Table 1, g(m) is removed because
it is in no conflicts. Then, since

⋃
B = ∅ is included in F , an arbitrary fact u =

a(m) in F is picked. Then, an arbitrary conflict Au = {a(m), b(m), c(m)} that
contains u is selected. U = F \ Au is {d(m), e(m), f(m), h(m), i(m), j(m)} and
the restricted set of conflict by U is {{d(m)}, {e(m), f(m)}, {f(m), h(m), i(m)},
{h(m), i(m), j(m)}}. The repair of U w.r.t. A′ returned is {j(m), i(m), f(m)}
which means that {d(m), e(m), h(m)} is a minimal fix of U w.r.t.A′. We conclude
that the set {a(m), d(m), e(m), h(m)} is a minimal fix of F w.r.t. Conflict(K).
This process is repeated by iteratively selecting the facts b(m), c(m), f(m), i(m)
and j(m). As the reader can note, after step 6, we have that

⋃
B = F .

If each fact is at least in one element of B then each conflict a′ of K is a
fix of F w.r.t. B. However, if a′ is not a minimal fix of F w.r.t. B then we can
find u such that a′ \ {u} is still a fix of F w.r.t. B (line 13 to 17). We use the
previous method and find a repair Rep of U w.r.t. A′ where A′ is the restricted
set of conflicts by U with U = F \ (a′ \ {u}). U \ Rep is thus a minimal fix of
U w.r.t. A′ but also a minimal fix of F w.r.t. Conflict(K). In the example, we
skipped this as each a′ in Conflict(K) is a minimal fix of F w.r.t. B.

In the case where each fact is at least in one minimal fix of F w.r.t. B and
each conflict is a minimal fix of F w.r.t. B, we can still find new minimal fix F
w.r.t. Conflict(K) that is not in B (line 18 to 28). We first find subsets S of F
that have a size equal or less than 33, that are not be included in any conflict
of K and such that any conflict of K are not be included in S. If there is a set
S that satisfies every aforementioned conditions then it can be extended into a
minimal fix of B. If that is the case, the set Z does not contain any conflict of
K [9]. Then, we use the previous method and find a repair Rep of U w.r.t. A′
where A′ is the set of restricted conflicts by U with U = F \ (V \ Z). U \ Rep
is a minimal fix of U w.r.t. A′ but also a minimal fix of F w.r.t. Conflict(K)
(line 28) because Z does not contain any conflict of K. Note that this algorithm
relies on Algorithm 4 for finding a repair w.r.t. some restricted conflicts.

Example 6 (Cont’d Example 5). Let us consider S = {c(m), e(m)} at step 7
in Table 1. We have |S| ≤ 3, S 6⊆ a and a 6⊆ S for every a ∈ Conflict(K).

2 The set of restricted conflicts by a set U is the set containing each intersection of a
conflict with U . Namely, it is equal to {X ∩ U | X ∈ Conflict(K)}.

3 The computational problem of finding a single repair of F w.r.t. a set Y ⊆ 2F is
only in the NC complexity class when every y ∈ Y is such that |y| ≤ 3, otherwise it
has been proven to be in the RNC complexity class [6,20].

An Incremental Algorithm for Computing All Repairs 7

Algorithm 3: NewMinimalFix

input : A KB K = (F ,R,N), the corresponding set of conflicts Conflict(K)
and a set B of minimal fixes of F w.r.t. Conflict(K)

output: Either a new minimal fix of F w.r.t. Conflict(K) that is not in B or
∅ if B contains all of them

1 V ← F ;
2 for v ∈ V do
3 if there is no a ∈ Conflict(K) such that v ∈ a then
4 V ← V \ {v};

5 if
⋃

B ⊂ V then
6 u← random fact in V \

⋃
B;

7 Au ← random conflict in Conflict(K) that contains u;
8 U ← V \Au;
9 A′ ← {a ∩ U | a ∈ Conflict(K), u /∈ a};

10 return {u} ∪ (U \ FindRepair(A′, U));

11 else
12 for a′ ∈ Conflict(K) do
13 if a′ is not a minimal fix of F w.r.t. B then
14 u← fact in a′ s.t. a′ is still a fix of F w.r.t. B after its removal;
15 U ← V \ (a′ \ {u});
16 A′ ← {a ∩ U | a ∈ Conflict(K)};
17 return U \ FindRepair(A′, U);

18 for S ⊆ V, |S| ≤ 3, S 6⊆ a and a 6⊆ S, for every a ∈ Conflict(K) do
19 for v ∈ S do
20 BSv ← {X ∈ B such that B ∩ S = {v}};
21 BS0 ← {X ∈ B such that B ∩ S = ∅};
22 for {Bv | v ∈ S} ⊆

∏
v∈S BSv do

23 if Bv 6= ∅ for every v ∈ S then
24 if for every X ∈ BS0, X 6⊆

⋃
v∈S

Bv then

25 Z ← S ∪
(
V \

⋃
v∈S

Bv

)
;

26 U ← V \ Z;
27 A′ ← {a ∩ U | a ∈ Conflict(K)};
28 return U \ FindRepair(A′, U);

29 return ∅;

We have BSc(m) = {{c(m), h(m), f(m)}, {c(m), f(m), j(m)}} and BSe(m) =
{{d(m), e(m), h(m), a(m)}, {d(m), e(m), h(m), b(m)}}. Since BS0 = ∅, for every
X ∈ BS0,X 6⊆

⋃
E where E = {{d(m), e(m), h(m), a(m)}, {c(m), h(m), f(m)}} ∈

BSc(m) × BSe(m). Thus, we have Z = {c(m), e(m), b(m), i(m), j(m)}, U =
{a(m), d(m), f(m), h(m)} and A′ = {{a(m)}, {d(m)}, {f(m)}, {f(m), h(m)},
{h(m)}}. The only repair of U w.r.t. A′ is ∅. We conclude that the set U is a
minimal fix of F w.r.t. Conflict(K).

8 Yun and Croitoru

Step New elements of B New elements of I

1 {d, e, h, a} {b, c, f, g, i, j}
2 {d, e, h, b} {a, c, f, g, i, j}
3 {e, h, c} {a, b, d, f, g, i, j}
4 {c, h, f} {a, b, d, e, g, i, j}
5 {c, e, i} {a, b, d, f, g, h, j}
6 {c, f, j} {a, b, d, e, g, h, i}
7 {a, d, f, h} {b, c, e, g, i, j}
8 {b, d, f, h} {a, c, e, g, i, j}
...

...
...

Table 1. List of minimal fixes and repairs for F w.r.t. Conflict(K) found at each step.

3.2 Generating a Repair Efficiently

We show how to efficiently find a single repair of U w.r.t.A ⊆ 2U when |a| ≤ 3 for
every a ∈ A. The problem of finding a single repair is in the NC complexity class
(but as soon as |a| > 3, it falls into the RNC complexity class [6,20]). FindRepair
gradually build a repair by successively finding subrepairs C of large size with
SubRepair and by restricting U and A4. We now detail the general outline of
the two algorithms FindRepair and SubRepair.

FindRepair (see Algorithm 4) takes as input a set of facts U and a set
A ⊆ 2U and returns a repair of U w.r.t. A. We first initialise the algorithm with
A′ = A, V ′ = U and I = ∅ (I will eventually be the repair of U w.r.t. A). As
long as the set A′ is not empty, we update A′ and V ′ by removing the facts
found in a large subset of a repair of V ′ w.r.t. A′. The two for-loop at line 10
and 13 remove supersets and sets of size one that may arise in A′. The reason
behind the removal of supersets is that they do not change the sets of repairs
obtained. Furthermore, at line 14, we remove facts that are in a set of size one
in A′ because they cannot be in any repairs. Finally, when A′ = ∅, I is returned
with the remaining facts in V ′.

SubRepair (see Algorithm 5) is used for finding a large subrepair of U w.r.t.
A ⊆ 2U . This algorithm uses two constants d0 and d1. When these constants
are initialised with d0 = 0.01 and d1 = 0.25, [13] showed that SubRepair returns
either a subrepair j such that |j ∪N(j,A, U)| ≥ d0 × p

log(p) or a subrepair that

is at least of size d0 × p
log(p) where p is the size of V ′. SubRepair maintains a

collection of sets J initialised with sets of the form {v} for all facts v ∈ U such
that {v} is not a set in A. The sets in J are subrepairs and will remain mutually
disjoint throughout the algorithm. The algorithm iteratively checks if there is a
set in J that is large enough to be returned and if not, it will select which sets of J
should be merged and merge them (lines 12 to 21). However, merging subrepairs
does not always produce a subrepair, that is why it removes some facts after the
merging. Although the procedure for finding a matching M of Q at line 18 is not
described, the reader can find it in [15]. Note that the functions N and D are
defined as N(C,A, U) = {u ∈ U \C | ∃a ∈ A, a\C = {u}} and D(C,C ′,A, U) =

4 A subrepair of U w.r.t. A is a subset of a repair of U w.r.t. A.

An Incremental Algorithm for Computing All Repairs 9

Algorithm 4: FindRepair

input : A set of facts U and a set A ⊆ 2U such that |a| ≤ 3 for every a ∈ A
output: A repair of U w.r.t. A

1 A′ ← A, V ′ ← U, I ← ∅;
2 while A′ 6= ∅ do
3 C ← SubRepair(V ′,A′);
4 I ← I ∪ C;
5 V ′ ← V ′ \ C;
6 for a′ ∈ A′ do
7 a′ ← a′ ∩ V ′;

8 for a′ ∈ A′ do
9 if there exists a′′ ∈ A′ such that a′′ ⊂ a′ then

10 A′ ← A′ \ {a′};

11 for a′ ∈ A′ do
12 if |a′| = 1 then
13 V ′ ← V ′ \ a′;
14 A′ ← A′ \ {a′};

15 return I ∪ V ′;

(N(C,A, U)∩C ′)∪(N(C ′,A, U)∩C). It has been proven that SubRepair runs in
O(log2n) time on n+m processors and since FindRepair makes at most O(log2n)
calls to SubRepair (because the subrepairs have a minimal size), FindRepair runs
in time O(log4n) on n+m EREW processors.

Example 7 (Cont’d Example 6). Suppose that U = {d(m), e(m), f(m), h(m), i(m),
j(m)} andA = {{d(m)}, {e(m), f(m)}, {f(m), h(m), i(m)}, {h(m), i(m), j(m)}},
SubRepair returns the set {j(m)}. We remove j(m) from V ′ and A′. Thus,
V ′ = {d(m), e(m), f(m), h(m), i(m)} and A′ = {{d(m)}, {e(m), f(m)}, {f(m),
i(m), h(m)}, {h(m), i(m)}}. {f(m), i(m), h(m)} and {d(m)} are removed from
A′ because they are respectively a superset and a set of size one. The same pro-
cess is repeated and FindRepair returns {i(m), j(m), f(m)}. Here, the condition
|j ∪N(j,A, U)| ≥ c0×p

log(p) is always satisfied with d0 = 0.01.

The approach is correct since (1) FindAllConflicts returns the set of all con-
flicts, (2) FindAllRepairs returns the set of all repairs of F w.r.t. Conflict(K)
[9] and (3) FindRepair returns a repair of U w.r.t. A ⊆ 2U [13].

4 Evaluation

Since the benchmarks of [10] was too large to be handled by the algorithm with
a reasonable duration, we created a generator for Datalog± KBs as follows:

1. (Facts Generation) We generates N1 facts with a fixed probability p0 of
generating a new predicate. The arity of the predicates are randomly picked
between two fixed constants c0 and c1. We used the idea that some constants

10 Yun and Croitoru

Algorithm 5: SubRepair

input : A set of facts U and a set A ⊆ 2U such that |a| ≤ 3 for every a ∈ A
output: A subrepair of U w.r.t. A

1 Q← ∅, p← |U |, J ← ∅;
2 for u ∈ U do
3 if {u} /∈ A then
4 J ← J ∪ {{u}};

5 stops← false;
6 while stops = false do
7 for j ∈ J do
8 if |j ∪N(j,A, U)| ≥ d0 × p

log(p)
then

9 stops← true;
10 result← j;

11 if stops = false then
12 for j ∈ J do
13 for j′ ∈ J do

14 if |D(j, j′,A, U)| ≤ d1×p
|J|×log(p)

then

15 Q← Q ∪ {{j, j′}};

16 M ← matching of Q of size d
(

1
4
− 2 d0

d1

)
× |J |e;

17 for {j, j′} ∈M do
18 J ← J \ j;
19 J ← J \ j′;
20 J ← J ∪ {(j ∪ j′) \D(j, j′,A, U)};

21 return result;

only appear at a specific position in a predicate. Thus, we linked multiple
positions of atoms into groups that share a distinct pool of constants with a
probability p1. The size of each pool of constants is increased such that for
every predicate predi, the product of the size of all the pools of constants of
positions in predicate predi is superior to the number of atoms with predicate
predi. Last, we created the necessary constants and “filled” the positions of
atoms with constants from the corresponding pool of constants such that N1

distinct facts are generated.

2. (Rules Generation) We generate N2 rules and the number of atoms in the
head and body of each rule is picked between four fixed constants c2, c3, c4
and c5 respectively. In order to avoid infinite rule applications, we only use
new predicates in the head of the rules. We used the idea that rules should be
split in levels such that a rule in level i can be applied to the N1 original facts
but also to the atoms generated by the all the rules in the level j < i. Thus,
we split the rules randomly in each level such that |Li| ≥ 1 for i ∈ {1, . . . , c6}
and |

⋃
1≤i≤c6

Li| = N2 where c6 is a constant corresponding to the maximum

level of a rule. In order to build the rules in level one, we randomly “filled” the

An Incremental Algorithm for Computing All Repairs 11

body of the rules with the N1 ground atom that were previously generated.
The heads of the rules are filled with atoms with new predicates but, within
the same rule, there is a probability p0 that the same predicate is reused.
The positions of the new predicates in the head of a rule r1 are also linked
to the position of the predicates in the body of r1 with a probability p2. At
this point, the atoms in the heads of the rules are also filled with constants
from the corresponding pool of constants and each rule contains only ground
atoms. Variables are added into the bodies of the rules by replacing constants
with a probability p3. There is a probability p4 that a variable is reused when
replacing a constant at a position belonging to the same group. Each constant
in the heads of the rules is replaced by a variable that is used in the body at
a position that belongs to the same group with a probability p5. The process
is repeated for the rules in level superior to one by filling the bodies of the
rules with the N1 original facts and the atoms in the head of the rules in
inferior levels instead of only the original facts.

3. (Negative constraints Generation) We generate N3 negative constraints
and the number of atoms in the body of each negative constraint is randomly
fixed between two fixed constants c7 and c8. In order to generate the negative
constraints, one has to be careful not to make the set of rules incoherent,
i.e. the union of the set of rules with the set of negative constraints has
to be satisfiable. GADK = (V,D) is constructed on the KB with the facts
and rules generated according to the aforementioned steps. For each ground
atom v ∈ V , we compute the set Wv =

⋃
S∈Sv

⋃
Di∈S

U(Di) where Sv is the set

of all possible derivations for v and Di is a rule application in S. Thus, in
order to create a negative constraint neg1 of size K, we first pick an atom
v1 in V and add it in the body of neg1. We then remove Wv1 from V and
pick an atom v2 in V \Wv1 such that every atom in the body of neg1 does
not belong to Wv2 , we add v2 to the body of neg1 and remove Wv2 from
V \Wv1 . The process is repeated until the body of neg1 reaches the size K.

In order to generate a set of different KBs, we decided to vary some parame-
ters and fix others. Namely: N1 varies between 10, 100, 1000 and 10000, p1 varies
between 0 and 0.05, N2 varies between 10, 100 and 200, c6 varies between 1 and
3 and N3 varies between 20, 40 and 60. The other parameters were fixed such
that p0 = 0.5, p2 = 0.05, c1 = 3, c0 = c2 = c4 = 1, c3 = c5 = 2, p3 = 0.7 and
p4 = p5 = 0.8 . This resulted in the generation of 144 different combinations of
the parameters and a total of 720 different KBs since we generated 5 different
KBs for each combination. The generated KBs are in DLGP format [4], the tool
for generating the KBs and the tool for computing all the repairs are all available
online at: https://gite.lirmm.fr/yun/Generated-KB.

4.1 Evaluation Results

The algorithm for finding the repairs was launched on each KB with a timeout
after 10 minutes. We recorded both the time for finding each repair and the time

https://gite.lirmm.fr/yun/Generated-KB

12 Yun and Croitoru

for the conflict computation. We made the following observations: (1) On KBs
with 10 facts, the tool successfully terminated with a total median time of 418
ms and an average of 11.7 repairs. Although all instances with 100, 1000 and
10000 facts did not finish before the timeout, the program returned an average
number of 86.5 repairs by KB and this number seems to be independent of the
number of facts. (2) The last repairs are harder to find: Across all KBs, the first
repair takes an average of 763 ms to be computed whereas the last found repair
took an average of 64461 ms. Lastly, finding all the conflicts takes a small part
of the total computational time as it amounts to only an average of 12.8% of the
total time. (3) On the one hand, the parameter c6 does not impact the average
number of repairs (66.8 with c6 = 1 and 68.7 with c6 = 3) but the median time
for finding the conflicts does slightly increase (479 ms with c6 = 1 and 800 ms
with c6 = 3). On the other hand, we noticed a sharp increase in the average
time for finding the conflicts when the parameter N3 is increased (888.1 ms for
N3 = 20, 1477.5 ms for N3 = 40 and 3737.7 ms for N3 = 60).

4.2 Conclusion

We showed an efficient incremental algorithm that allows for some or all repairs
computation and empirically evaluated the proposed algorithm with a bench-
mark on inconsistent KBs expressed using Datalog±. We empirically showed
that our approach is able to find the first repairs after a reasonable amount
of time. We argue that our approach is useful for applications where an enu-
meration, even partial, of the repairs is necessary. For example, in life science
applications such as biodegradable packaging selection [24] or wheat transfor-
mation [2] the repairs are used by the experts in order to enrich the KB with
further information. In this setting, enumerating the set of repairs could be of
practical value.

Last but not least, let us also highlight that the paper also provides a knowl-
edge base generator, a contribution in itself for the OBDA community.

Acknowledgement

The second author acknowledges the support of the Docamex project, funded
by the French Ministry of Agriculture.

References

1. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent Query Answers in Incon-
sistent Databases. In: Proceedings of the Eighteenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, May 31 - June 2, 1999,
Philadelphia, Pennsylvania, USA. pp. 68–79 (1999), http://doi.acm.org/10.

1145/303976.303983

http://doi.acm.org/10.1145/303976.303983
http://doi.acm.org/10.1145/303976.303983

An Incremental Algorithm for Computing All Repairs 13

2. Arioua, A., Croitoru, M., Buche, P.: DALEK: A Tool for Dialectical Explana-
tions in Inconsistent Knowledge Bases. In: Computational Models of Argument
- Proceedings of COMMA 2016, Potsdam, Germany, 12-16 September, 2016. pp.
461–462 (2016), https://doi.org/10.3233/978-1-61499-686-6-461

3. Baget, J.F., Benferhat, S., Bouraoui, Z., Croitoru, M., Mugnier, M.L., Papini, O.,
Rocher, S., Tabia, K.: A General Modifier-Based Framework for Inconsistency-
Tolerant Query Answering. In: Principles of Knowledge Representation and Rea-
soning: Proceedings of the Fifteenth International Conference, KR 2016, Cape
Town, South Africa, April 25-29, 2016. pp. 513–516 (2016)

4. Baget, J.F., Gutierrez, A., Leclère, M., Mugnier, M.L., Rocher, S., Sipieter, C.:
DLGP: An extended Datalog Syntax for Existential Rules and Datalog+/- Version
2.0 (Jun 2015)

5. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential vari-
ables: Walking the decidability line. Artif. Intell. 175(9-10), 1620–1654 (2011)

6. Beame, P., Luby, M.: Parallel Search for Maximal Independence Given Minimal
Dependence. In: Proceedings of the First Annual ACM-SIAM Symposium on Dis-
crete Algorithms, 22-24 January 1990, San Francisco, California, USA. pp. 212–218
(1990)

7. Benferhat, S., Bouraoui, Z., Croitoru, M., Papini, O., Tabia, K.: Non-Objection
Inference for Inconsistency-Tolerant Query Answering. In: Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016,
New York, NY, USA, 9-15 July 2016. pp. 3684–3690 (2016)

8. Bienvenu, M.: On the Complexity of Consistent Query Answering in the Presence
of Simple Ontologies. In: Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada. (2012), http:
//www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4928

9. Boros, E., Elbassioni, K.M., Gurvich, V., Khachiyan, L.: An Efficient Incremen-
tal Algorithm for Generating All Maximal Independent Sets in Hypergraphs of
Bounded Dimension. Parallel Processing Letters 10(4), 253–266 (2000)

10. Bourgaux, C.: Inconsistency Handling in Ontology-Mediated Query Answer-
ing. Ph.D. thesis, Université Paris-Saclay, Paris (Sep 2016), https://tel.

archives-ouvertes.fr/tel-01378723

11. Cal̀ı, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: A Fam-
ily of Logical Knowledge Representation and Query Languages for New Applica-
tions. In: Proceedings of the 25th Annual IEEE Symposium on Logic in Computer
Science, LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom. pp. 228–242
(2010). https://doi.org/10.1109/LICS.2010.27, https://doi.org/10.1109/LICS.

2010.27

12. Croitoru, M., Vesic, S.: What Can Argumentation Do for Inconsistent Ontology
Query Answering? In: Scalable Uncertainty Management - 7th International Con-
ference, SUM 2013, Washington, DC, USA, September 16-18, 2013. Proceedings.
pp. 15–29 (2013)

13. Dahlhaus, E., Karpinski, M., Kelsen, P.: An Efficient Parallel Algorithm for Com-
puting a Maximal Independent Set in a Hypergraph of Dimension 3. Inf. Pro-
cess. Lett. 42(6), 309–313 (1992). https://doi.org/10.1016/0020-0190(92)90228-N,
https://doi.org/10.1016/0020-0190(92)90228-N

14. Gallo, G., Longo, G., Pallottino, S.: Directed Hypergraphs and Applications. Dis-
crete Applied Mathematics 42(2), 177–201 (1993). https://doi.org/10.1016/0166-
218X(93)90045-P, https://doi.org/10.1016/0166-218X(93)90045-P

https://doi.org/10.3233/978-1-61499-686-6-461
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4928
http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4928
https://tel.archives-ouvertes.fr/tel-01378723
https://tel.archives-ouvertes.fr/tel-01378723
https://doi.org/10.1109/LICS.2010.27
https://doi.org/10.1109/LICS.2010.27
https://doi.org/10.1109/LICS.2010.27
https://doi.org/10.1016/0020-0190(92)90228-N
https://doi.org/10.1016/0020-0190(92)90228-N
https://doi.org/10.1016/0166-218X(93)90045-P
https://doi.org/10.1016/0166-218X(93)90045-P
https://doi.org/10.1016/0166-218X(93)90045-P

14 Yun and Croitoru

15. Goldberg, M.K., Spencer, T.H.: A New Parallel Algorithm for the Max-
imal Independent Set Problem. SIAM J. Comput. 18(2), 419–427 (1989).
https://doi.org/10.1137/0218029, https://doi.org/10.1137/0218029

16. Grégoire, É., Mazure, B., Piette, C.: Boosting a Complete Technique to Find MSS
and MUS Thanks to a Local Search Oracle. In: IJCAI 2007, Proceedings of the
20th International Joint Conference on Artificial Intelligence, Hyderabad, India,
January 6-12, 2007. pp. 2300–2305 (2007), http://ijcai.org/Proceedings/07/
Papers/370.pdf

17. Grégoire, É., Mazure, B., Piette, C.: Using local search to find MSSes
and MUSes. European Journal of Operational Research 199(3), 640–646
(2009). https://doi.org/10.1016/j.ejor.2007.06.066, https://doi.org/10.1016/j.
ejor.2007.06.066

18. Hecham, A.: Defeasible reasoning for existential rules. (Raisonnement de-
faisable dans les règles existentielles). Ph.D. thesis (2018), https://tel.

archives-ouvertes.fr/tel-01904558

19. Hecham, A., Bisquert, P., Croitoru, M.: On the Chase for All Provenance Paths
with Existential Rules. In: Rules and Reasoning - International Joint Conference,
RuleML+RR 2017, London, UK, July 12-15, 2017, Proceedings. pp. 135–150 (2017)

20. Kelsen, P.: On the Parallel Complexity of Computing a Maximal Independent Set
in a Hypergraph. In: Proceedings of the 24th Annual ACM Symposium on The-
ory of Computing, May 4-6, 1992, Victoria, British Columbia, Canada. pp. 339–
350 (1992). https://doi.org/10.1145/129712.129745, https://doi.org/10.1145/

129712.129745

21. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-Tolerant
Semantics for Description Logics. In: Web Reasoning and Rule Systems - Fourth
International Conference, RR 2010, Bressanone/Brixen, Italy, September 22-24,
2010. Proceedings. pp. 103–117 (2010)

22. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.:
Linking Data to Ontologies. J. Data Semantics 10, 133–173 (2008)

23. Rocher, S.: Interrogation tolérante aux incohérences. Tech. rep., Université de
Montpellier (2013)

24. Tamani, N., Mosse, P., Croitoru, M., Buche, P., Guillard, V., Guillaume, C.,
Gontard, N.: Eco-Efficient Packaging Material Selection for Fresh Produce: In-
dustrial Session. In: Hernandez, N., Jäschke, R., Croitoru, M. (eds.) Graph-Based
Representation and Reasoning: 21st International Conference on Conceptual Struc-
tures, ICCS 2014, Iaşi, Romania, July 27-30, 2014, Proceedings, pp. 305–310.
Springer International Publishing, Cham (2014)

25. Yun, B., Bisquert, P., Buche, P., Croitoru, M.: Arguing About End-of-Life of Pack-
agings: Preferences to the Rescue. In: Metadata and Semantics Research - 10th In-
ternational Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016,
Proceedings. pp. 119–131 (2016)

26. Yun, B., Vesic, S., Croitoru, M., Bisquert, P.: Inconsistency Measures for Repair
Semantics in OBDA. In: Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm,
Sweden. pp. 1977–1983 (2018). https://doi.org/10.24963/ijcai.2018/273, https:

//doi.org/10.24963/ijcai.2018/273

https://doi.org/10.1137/0218029
https://doi.org/10.1137/0218029
http://ijcai.org/Proceedings/07/Papers/370.pdf
http://ijcai.org/Proceedings/07/Papers/370.pdf
https://doi.org/10.1016/j.ejor.2007.06.066
https://doi.org/10.1016/j.ejor.2007.06.066
https://doi.org/10.1016/j.ejor.2007.06.066
https://tel.archives-ouvertes.fr/tel-01904558
https://tel.archives-ouvertes.fr/tel-01904558
https://doi.org/10.1145/129712.129745
https://doi.org/10.1145/129712.129745
https://doi.org/10.1145/129712.129745
https://doi.org/10.24963/ijcai.2018/273
https://doi.org/10.24963/ijcai.2018/273
https://doi.org/10.24963/ijcai.2018/273

	An Incremental Algorithm for Computing All Repairs in Inconsistent Knowledge Bases

