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Abstract— This paper introduces a Model Predictive Control
(MPC) strategy for fully-constrained Cable-Driven Parallel
Robots. The main advantage of the proposed scheme lies in its
ability to explicitly handle cable tension limits. Indeed, the cable
tension distribution is performed as an integral part of the main
control architecture. This characteristic significantly improves
the safety of the system. Experimental results demonstrate this
advantage addressing a typical pick-and-place task with two
different scenarios: nominal cable tension limits and reduced
maximum tension. Satisfactory tracking errors were obtained in
the first scenario. In the second scenario, the desired trajectory
escapes from the workspace defined by the new set of tension
limits. The proposed MPC scheme is able to minimize the track-
ing errors without violating the tension limits. Satisfying results
were also obtained regarding robustness against uncertainties
on the payload mass.

I. INTRODUCTION

Cable-Driven Parallel Robots (CDPRs) consist mainly of
a mobile platform attached to a base by several cables. Each
cable has one end attached to the platform and the other one
wound on a winch drum. By changing the free lengths of
the cables, the platform can be displaced. CDPRs can have
a large workspace, an advantageous payload to mass ratio,
and heavy payload capabilities. Thanks to these advantages,
CDPRs can be relevant solutions in several applications [1]–
[4]. Nevertheless, the use of cables leads to reduced stiffness
and potential issues related to accuracy and vibrations. The
winches of large-dimension CDPRs use gear trains with
large reduction ratios, introducing backlash and friction.
Additionally, cables can pull but not push on the mobile
platform and cable sagging should be avoided. Therefore,
the control of large-dimension CDPRs should address several
issues inherent to these robots.

This work presents results obtained within the context
of the EU project Hephaestus [5]–[7]. This project should
deliver an industrial solution able to aid the construction and
maintenance of building facades. Therefore, safety, accuracy
and disturbance rejection capabilities are major concerns.
Moreover, the proposed solutions should be compatible with
industrial components and software.

Most of the previously published works addressing the
control of CDPRs propose model-based control schemes,
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typically including a feedforward input based on the dynam-
ics of the system [8]–[15]. In conjunction with computed
torque control, PID linear feedback control can lead to ac-
ceptable results [16]–[18]. However, improved performances
may be obtained with advanced control schemes. Several
studies successfully implemented Sliding Mode Control
(SMC) [9]–[14]. This method allies finite time convergence,
simple implementation and robustness towards uncertainties.
Nevertheless, chattering phenomenon remains an issue in
recent and advanced SMC applications [12]. Other methods
such as robust H∞ control [19], [20] and Lyapunov-based
controllers [21] were also implemented.

In the case of redundantly actuated CDPRs, there exists
infinitely many cable tensions to generate a given mobile
platform wrench. Several studies have addressed this issue,
e.g. [22]–[26]. The influence of the cable tension distribution
on the performance of the robot is particularly important
for fully-constrained CDPRs, which is the case studied in
the present paper. For instance, Jamshidifar and Khajepour
proposed in [27] a tension distribution method that optimizes
the CDPR stiffness.

In general, the control scheme of a redundantly actuated
CDPR includes both a tension distribution method and a
feedback control strategy. Alternatively, we introduced in [7]
the use of MPC to make the tension distribution an integral
part of the control strategy. Simulation results showed that
this control architecture may lead to superior performance
compared to other state-of-the-art alternatives. One of the
main advantages of MPC lies in the fact that control lim-
its may be explicitly handled [28]. This advantage is of
particular interest in the context of the control of CDPRs.
A minimum cable tension limit reflects the constraint that
cables should be kept sufficiently tightened. A maximum
cable tension is mainly related to the maximum load that
may be safely applied to the mechanical components of the
robot. The violation of this limit may lead to catastrophic
consequences.

The control strategies proposed in the above discussed
works [8]–[21] are not able to handle cable tension limits
within the main controller. These constraints are considered
after the computation of the desired wrench to be applied
on the platform. This computation is performed by the main
control strategy, which does not assess the feasibility of the
desired wrench. Hence, safety becomes a major concern if
cable tensions beyond the maximum admissible values are
necessary. To overcome this problem, we propose an MPC-
based control strategy.

The main contribution of this paper lies in the design,



implementation and experimentation of an MPC scheme able
to explicitly handle cable tension limits as an integral part
of the control strategy. To the best of our knowledge, these
are the first experimental results obtained with an MPC
strategy applied to a 6 Degrees-of-Freedom (DOF) CDPR.
The proposed scheme is based on the authors’ previous
work [7], where only simulation results were presented. In
order to cope with the real-time application and physical
limitations of CDPRs, some improvements on the method
presented in [7] were necessary. These improvements are
described in the present paper. Experiments were performed
with a fully-constrained 6 DOF CDPR driven by 8 cables.
The experimental setup is shown in Fig. 1. Satisfying results
are obtained for a typical pick-and-place task. In order to
show the effectiveness of the proposed controller, the same
trajectory tracking problem is constrained with a maximum
tension drastically reduced. The desired trajectory escapes
from the robot workspace. The proposed MPC is able to
comply with this reduced maximum cable tension while
minimizing the cartesian error between the actual and the
desired trajectories. This is an important result related to the
safety of the operation of CDPRs.

The proposed control strategy also reduces the variations
of cable tensions. Tensions with large variations are not
physically feasible. State-of-the-art tension distribution meth-
ods [22]–[26] do not consider this issue. Therefore, large
cable tensions variations may occur, especially during the
robot initialization where the actual cable tensions are not
necessarily equal to the optimal cable tension distribution.
The proposed MPC is not prone to this issue.

Additionally, robustness towards uncertainty on the pay-
load is experimentally evaluated. A payload mass is suddenly
added to the platform mass during a vertical motion. Satisfy-
ing results were obtained with additional payloads weighing
up to 50% of the platform mass, which is a relevant test in
the context of typical load-lifting CDPR applications.

In addition to the proposed MPC strategy, this paper
also introduces an inner feedback control loop of the cable
tensions where the desired tensions are the output of the
MPC. It is a non-model-based strategy controlling motor
velocities.

Previous studies addressing the implementation of MPC in
the control of CDPRs are very few and recent. Katliar et al.
proposed a nonlinear MPC for a motion simulator in [29]. Its
performance was investigated through numerical simulations.
To the best of our knowledge, no experimental results were
published so far. The feasibility of the MPC implementation
in real time was addressed taking into account solvers
such as HPMPC [30] and qpOASES [31]. However, these
solvers are not compatible with common industrial real-
time environments. In the present paper, experimental results
were obtained with solvers developed by the authors in
the industrial real-time TwinCAT environment. As a motion
simulator control, the focus in [29] is a set of desired
accelerations and velocities. The present work is focused on
trajectory tracking, which prioritize positioning accuracy.

The recent work [32] presents simulations and experi-
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Fig. 1. View of HRPCable prototype.

mental results of an MPC scheme implemented in a hybrid
cable-driven robot. However, the studied cable-driven system
consists of a 2-DOF platform with planar movements. Only
some of the cables are controlled in tension. The remaining
cables are controlled in position. The actual tensions of these
cables are not considered in the real-time controller and the
proposed MPC strategy is used to control the vibration of the
system. In the present work, the CDPR has six DOFs, eight
cables, and each cable tension is controlled by the MPC
scheme. The focus of the present paper is motion control,
instead of vibration attenuation.

The proposed MPC strategy was implemented in the
industrial environment Beckhoff TwinCAT with a CDPR
prototype built with components typically used in industry.
The real-time implementation in TwinCAT is notably not
compatible with common libraries of matrix manipulation.
Therefore, the control scheme proposed in this paper was
implemented from scratch. Given that the implementation of
online optimization is an important constraint for real-time
applications of constrained MPC schemes [33], details on the
implementation of the numerical solutions are presented.

This paper is organized as follows. Section II briefly
presents the kinematic and dynamic modeling of the CDPR.
Section III introduces the control scheme. In Section IV, the
obtained experimental results are presented and discussed.
Conclusions are drawn in section V. Some notes on the
numerical implementation are presented in the Appendix.

II. KINEMATIC AND DYNAMIC MODELING

This section presents the model of a CDPR consisting of
an n-DOF mobile platform driven by m cables, where n ≤
m. Cable tensions τ generate the platform wrench f , where
the wrench matrix W linearly maps τ = W f [24]. Each
length li is defined as the distance between the drawing point
Ai and the attachment point Bi on the platform. The point Ai

is the drawing point defined by the pulley attached to the base
frame. The position of this point is considered constant. The
cable length vector is l =

[
l1 ... lm

]T
. The cables are

considered as being massless and their elasticity is neglected.
The platform pose is composed of the position and orien-

tation vectors: x = [pT ψT ]T . Typically, ψ consists of Euler



angles. The vectors of platform velocity and acceleration are
denoted by ẋ and ẍ, respectively1.

The application of Newton-Euler formalism leads to the
dynamics of the platform as [34]

M(x) ẍ + C(x, ẋ) ẋ = g(x) + f (1)

where matrices M and C are given by

M(x) =

[
mp I3 −mp ĉ
mp ĉ H

]
,C(x, ẋ) ẋ =

[
mp ω̂ ω̂ c
ω̂Hω

]
(2)

The scalar mp denotes the platform mass and IN is the
identity matrix of dimension N . c =

[
cx cy cz

]T
is

the vector going from the platform geometric center to its
center of mass. Matrices ω̂ and ĉ are the skew-symmetric
matrices associated to ω and c, respectively, with ω the
angular velocity of the platform. The matrix H is defined as
H = I+mp ĉ ĉT where I is the platform inertia matrix rel-
ative to its center of mass. The vector of gravitational forces
is given by g(x) = mp g

[
0 0 −1 −cy cx 0

]T
.

No external measurement system is used in this work to
estimate the CDPR mobile platform pose. Therefore, the
pose and velocity of the platform are estimated based on
the positions and velocities of the motors. Positions and
velocities of the motors provide the values of l and l̇. Since
the number of cables is greater than number of platform
DOFs (m ≥ n), the forward kinematic problem is over
constrained. Consequently, the pose of the platform can be
calculated as the vector x minimizing the difference between
the lengths calculated from the motor angular positions and
those consistent with the kinematic model. This method is
presented in [35] and briefly discussed in the Appendix.

III. CONTROL DESIGN

The proposed control scheme is introduced in this section.
The MPC is introduced in III-A and the cable tension control
in III-B. The overall control scheme is illustrated in the block
diagram of Fig. 2.

A. Model Predictive Control (MPC)

The proposed control scheme is based on [7]. Some mod-
ifications are introduced and discussed hereafter. Consider
the discrete-time system with time-step ∆t

y(t+ ∆t) = A(t) y(t) + B(t) τ (t) + v(t) (3)

which represents an approximation of the continuous model
(1) with y(t+∆t) =

[
x(t+ ∆t)T ẋ(t+ ∆t)T

]T
. Matrices

v, A and B are functions of x and ẋ. These matrices are
defined in [7].

For a given sequence of cable tensions
{τ (t), ..., τ

(
t + (hp−1) ∆t

)
}, the recursive application of

(3) leads to a sequence of states {y(t+∆t), ...,y(t+hp ∆t)}
within an horizon {t+ ∆t, ..., t+hp∆t}, where the positive

1Since angular velocity is not equal to the time derivative of the vector of
Euler angles, it is worth to note that ẋ = S(ψ) dx/dt, with an orientation-
dependent matrix S. Similarly, ẍ = S d2x/dt + Ṡ dx/dt, with Ṡ the
element-wise time derivative of S. Moreover, in general, the matrix −WT

does not map velocities dx/dt into l̇.
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Fig. 2. Overview of the proposed control scheme

integer hp denotes the prediction horizon. The proposed
MPC scheme finds the optimum sequence of cable tensions
within the prediction horizon with respect to a cost function
J .

The matrices v, A and B are function of the pose and
velocity of the platform. Considering that the interval of
time hp∆t is sufficiently small and assuming low velocities,
the latter assumption being valid since this work focuses
on large-dimension CDPRs moving at low velocities, the
variation of these matrices may be disregarded. The linear
time-varying system (3) is thus approximated as a lin-
ear time-invariant system over the prediction horizon, i.e.,
A(t + i∆t) = A(t), B(t+i∆t) = B(t) and v(t+i∆t) =
v(t) for i = 1, ..., hp.

The proposed MPC scheme considers different values
of τ for the first hc vectors of cable tensions over
the prediction horizon, with hc 6 hp. The positive
integer hc is called the control horizon. The remaining
vectors of cable tensions are considered equal to the
last one, i.e., τ (t + k∆t) = τ

(
t + (hc − 1)∆t

)
for

hc 6 k 6 hp. The vectors of future predicted states,
desired states and cable tensions are, respectively,
Y(t) =

[
y(t+ ∆t)T ... y(t+ hp ∆t)T

]T
,

Yd(t) =
[
yd(t+ ∆t)T . . . yd(t+ hp ∆t)

]T
and

U(t) =
[
τ (t)T ... τ (t+ (hc − 1) ∆t)T

]T
, where

yd(t) =
[
xd(t)T ẋd(t)T

]T
is the desired state at time t.

The lengths of the vectors Y, Yd and U are 2nhp, 2nhp
and mhc, respectively. Future states are derived applying
(3) recursively, which leads, over the prediction horizon, to

Y(t) = D(t) y(t) + E(t) U(t) + F(t) (4)

with D(t) and F(t) defined as in [7]. These matrices are
updated every sampling time. Matrix E is given by

E =



B 0 . . . 0

AB B 0
...

A2B AB
. . . 0

...
...

...
AhcB Ahc−1B . . . B

...
...

...
...

Ahp−1B ... Ahp−hc+1B
∑hp−hc

i=0 Ai B


where the dependence on t was omitted and the size of the
matrix E is 2nhp ×mhc.



Better performance is obtained with the proposed MPC
scheme for larger values of hp and hc. Nevertheless, in real-
time applications, these values are constrained due to com-
putation time limits. The influence of hc on the computation
time is larger than the influence of hp. Therefore, a small
reduction of hc may lead to an important augmentation of
hp. For this reason, whereas simulations results presented in
[7] consider hp = hc (matrix E as in [7]), the present work
applies hc < hp. This is the first improvement applied to the
MPC scheme of [7].

The cost function considered by the MPC scheme includes
(i) the predicted errors, (ii) the magnitude of the cable ten-
sions and (iii) the variation of the cable tensions. Simulations
in [7] include (i) and (ii), but do not include (iii). This is
the main difference between the control scheme used in [7]
and the present one. The minimization of the cable tensions
variation (iii) is important mainly because large variations of
cable tensions are not physically feasible. This issue is also
relevant during the initialization of the robot. If the initial
cable tensions are not close to an optimum cable tension
distribution, the MPC will automatically find a smooth
transition between these sets of cable tensions. Hence, the
inclusion of (iii) to the cost function J represents the second
improvement applied to the MPC scheme proposed in [7].
Weighted expressions of (i), (ii) and (iii) may be respectively
given as follows

JY (y,U) = (Yd −Y)TKY (Yd −Y) (5)

JU (U) = UTKUU (6)

JD(U) = k∆u

hc−1∑
i=0

∆u(t+ i∆u)T ∆u(t+ i∆t) (7)

where KY and KU are positive definite diagonal weighting
matrices and k∆u is a positive scalar. The vector of the
variation of cable tensions can be expressed as

∆u(t+ i∆t) = τ (t+ i∆t)− τ
(
t+ (i− 1)∆t

)
(8)

Note that the variations of cable tensions are given by

∆U(t) = Q U(t)− z(t) (9)

with

Q =



Im 0 . . .

−Im Im 0 . . .

0 −Im Im . . .

...
. . . . . . . . . 0

0 . . . . . . −Im Im


, z(t) =


τ (t− ∆t)

0

...
0



and ∆U(t) =
[
∆u(t)T ... ∆u(t+ (hc − 1) ∆t)T

]T
.

Note that z depends on the measured cable tensions. Alter-
natively, the desired cable tension obtained for t −∆t may
be used. The sizes of Q and z are mhc×mhc and mhc×1,
respectively.

Defining KD = k∆u Ihc.m, JD can be rewritten as

JD = UTQTKD Q U− 2 zTKDQ U + zTKD z. (10)

Using (4), the overall cost function J(y,U) is defined
as the sum of JY , JU and JD disregarding the terms
independent of U:

J(y,U) = UT

Hc︷ ︸︸ ︷
(ETKY E + KU + QTKD Q) U+

+ 2
(
(D y + F−Yd)TKY E− zTKDQ

)︸ ︷︷ ︸
dT

U

The proposed MPC consists on computing the optimal se-
quence of cable tensions by solving the following Quadratic
Programming problem in real-time

U∗ = arg min
U

1

2
UTHcU + dTU

s.t. τmin 6 U 6 τmax

(11)

where τmin and τmax are the minimum and maximum
admissible cable tensions, respectively. The optimal solution
U∗(t) = [τT

d (t), τT
d (t + ∆t), ..., τT

d (t + (hc − 1)∆t)]T

represents the optimal control inputs over the control horizon.
The output of the MPC scheme is the next desired cable
tension τd(t). This procedure is repeated at each sampling
time, updating matrices Hc and d in function of y and τ .
The Cartesian velocity ẋMPC predicted by the MPC is used
in the cable tension control. This vector is obtained with
y(t+ ∆t) = A(t) y(t) + B(t) τd(t) + v(t).

B. Cable Tension Control

As illustrated in Fig. 2, the desired cable tensions τd
are computed by the proposed MPC scheme and form the
input to the inner control loop. The CDPR winch motors
are controlled in velocity. The desired motor velocity q̇d is
obtained with a PI controller with a feedforward term, as
follows

q̇d(t) = P
(
τd(t)− τ (t)

)
+ I

∫ t

t0

(
τd(t)− τ (t)

)
dt+ q̇ff

where q̇ff is the feedforward term obtained by applying the
inverse differential kinematics with Cartesian velocity equals
to ẋMPC .

IV. REAL-TIME EXPERIMENTAL RESULTS

A. Experimental platform and implementation details

The control scheme introduced in Section III is experi-
mented on HRPCable, a 6-DOF CDPR driven by 8 cables,
installed in LIRMM facilities. Figure 1 shows this exper-
imental setup. The corresponding CAD model is shown in
Fig. 4. The footprint of this robot is 10 x 4 x 3 (m) and, in the
experiments reported in this paper, the cables are arranged so
as to fully constrain the mobile platform. Winches are driven
by motors Beckhoff AM8061. The servo drives AX5112 are
driven through EtherCAT communication by an industrial PC
C6920 equipped with 2.4GHz i7 core processor. The motor
reduction is performed by a two stage gear train Beckhoff
AG2210 with a reduction ratio of 25. Load pins Sensy 5300
1T SL positioned in the axes of the routing pulleys measure
the cable tensions. The platform is a cube with length equal
to 1 m and total mass equal to mp = 23 kg.



Fig. 3. Pick-and-place task results with τmax = 400 N. The actual pose
is shown in continuous lines and the desired one in dashed lines.

Fig. 4. Pick-and-place path and CAD view of HRPCable.

The control scheme introduced in Section III has been
implemented in an industrial PC and developed in TwinCAT,
using C++ language. TwinCAT is a software from Beckhoff
commonly used in the industry which turns PC-based sys-
tems into real-time controllers using Microsoft Windows ker-
nel. In order to guarantee real-time performances, TwinCAT
is not compatible with standard C++ libraries, including basic
libraries such as math.h. This issue generally mitigates the
application of MPC with constraints in industrial robotics.
The control methods described in the previous sections were
thus programmed from scratch. Some notes on the numerical
implementation are presented in the Appendix.

In the experiments reported below, the control parameters
are the following: hp = 6, hc = 3, KU = 3.3× 10−3Ihc.m,
k∆u = 0.3. Matrix KY is diagonal and positive definite.
Diagonal elements are repeated for every set of 12 elements
(size of y). These 12 elements are equal to 2×107, 2×107,
3.3×107, 2×107, 2×107, 2×107, 1.2×10−3, 0.6×10−3,

Cable tension limits

Fig. 5. Pick-and-place task results with τmax = 260 N. the actual pose
is depicted in continuous lines and the desired pose in dashed lines.

0.6×10−3, 0.6×10−3, 1.3×10−3, 0.6×10−3. These gains
have been tuned manually.

B. Pick-and-Place task

The first scenario considered is a typical pick-and-place
task. Figure 4 shows the sequence of the six desired platform
poses defining the pick-and-place trajectory. The trajectory
between each subsequent pair of desired poses is defined
with a 5th degree polynomial. In the following, the results
obtained with nominal cable tension constraints and with
reduced τmax are compared. The reader is invited to watch
the attached video, which compares these two cases.

1) Nominal Constraints: Figure 3 shows the experimental
results obtained with τmax = 400 N and τmin = 100 N. The
proposed controller is able to keep the translation errors (TE)
smaller than 4.5 mm and the orientation errors (OE) smaller
than 0.3◦.

2) Reduced Maximum Tension: Figure 5 shows the ex-
perimental results obtained with τmax = 260 N and
τmin = 100 N. The proposed MPC finds poses as close as
possible to desired poses complying with these cable tension
limits. Translation errors reach values greater than 250 mm
and orientation errors are close to 8◦. Strictly complying with
the cable tension limits while minimizing the Cartesian errors
in following the desired trajectory is the main advantage
of the proposed controller. The control strategies proposed
in [8]–[21] combined with some of the tension distribution
schemes in [22]–[27] would fail to fulfill this objective since
the main controller would demand an unfeasible wrench.

C. Robustness against payload uncertainties

In many applications of CDPRs, the platform should pick
and release weights. In order to validate the applicability of
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Fig. 6. Robustness test results with an additional payload.
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Fig. 7. Illustration of the robustness test.

the proposed control strategy in such tasks, it is important
to evaluate its robustness against uncertainties on the lifted
mass. To this end, the experiment illustrated in Fig. 7 is
proposed. The results are presented in Fig. 6. An additional
mass of 11.5 kg was used. This mass represents 50% of the
platform mass mp. The controller is able to keep the tracking
errors smaller than 6 mm and 0.14◦, despite this uncertainty.

V. CONCLUSION

This paper introduces an MPC scheme for CDPRs. Exper-
imental results on a fully-constrained 6-DOF CDPR show
that the proposed control strategy is able to perform a
trajectory keeping reduced errors while complying with cable
tension limits. The real-time control was implemented in an
industrial software and hardware environment to enable ap-
plicability of the proposed scheme in industry. The proposed
MPC is able to address the cable tension limits explicitly,
integrating the redundancy resolution within the main con-
troller. As a result, cable tension limits are not violated
even for reduced maximum cable tensions. Indeed, when
a desired pose cannot be reached with some given tension
limits, the proposed MPC is able to find a trajectory as close
as possible to the desired one while strictly respecting the
tension limits. Experiments also show its robustness against
payload uncertainties.

APPENDIX
An important part of the present work lies in the nu-

merical implementation of the proposed control strategy in
a real-time industrial software environment. This appendix
addresses some details of this implementation.

The Forward Kinematic algorithm used in this work is
slightly different from the state-of-the-art published methods.
Indeed, QR decomposition are used to iteratively solve the
linearized version of the Forward Kinematic problem as
described in [35].

Regarding the solution of (11), an adapted Active Set
method is used [36]. The Active Set method solves a
simplified version of (11) taking a subset of the constraints
as equality constraints at each iteration (see [36] for further
details). The resulting subproblem in a given iteration can be
written as

min
U

1

2
UTHcU + dTU

s.t.
{
ui = τmin, for i ∈M
uj = τmax, for j ∈ N

(12)

withM⊂ {1, ...,mhc}, N ⊂ {1, ...,mhc} andM ∩ N =
∅. Take A = (M∪N ) and F = {1, ...,mhc} − (M ∪ N ).
For notation simplicity, let us consider that F = {1, ..., nf},
M = {nf + 1 , ... , nf + nm } and N =
{ hc m − nn + 1 , ... , hc m }, with nf the number of
elements of F , nm the number of elements of M and nn
the number of elements of N . Hc, U and d in (12) can be
written as follows

Hc =

[
Hf H1

HT
1 H2

]
; U =

Uf

Um

Un

 ; d =

df

dm

dn


where size(Hf ) = (nf , nf ), size(H1) = (nf , nm + nn),
size(H2) = (nm + nn, nm + nn), size(Uf ) = (nf , 1),
size(Um) = (nm, 1) and size(Un) = (nn, 1). Note that
each element of Um is equal to τmin and each ele-
ment of Un is equal to τmax. The solution of (12) is
(U∗)T =

[
(U∗f )T UT

m UT
n

]
, with U∗f the vector that

solves Hf Uf = −df −H1

[
UT

m UT
n

]T
.

It is worth noting that Hf is symmetric and positive
definite. As a consequence, Hf may be factorized with
Cholesky decomposition such that Hf = L LT , with L lower
triangular. Cholesky decomposition is about a factor of two
faster than alternative methods for solving linear equations
and is extremely stable numerically [37]. The optimum is
obtained from two successive back substitution procedures:
L s = −df −H1

[
UT

m UT
n

]T
, and then LTU = s.

Before starting the next iteration of the Active Set method,
components of U∗f should comply with cable tension limits.
Each element ui of the vector U used in the next iteration
is obtained as a saturation of the corresponding element u∗i
of U∗

ui = min
(

max(u∗i , τmin), τmax

)
(13)

The vector U is used as input for the next iteration of the
Active Set method changing the set of active constraints, as
described in [36].
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