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A Real-Time Capable Forward Kinematics
Algorithm for Cable-Driven Parallel Robots
Considering Pulley Kinematics

João Cavalcanti Santos and Marc Gouttefarde

Abstract A real-time capable Forward Kinematics (FK) algorithm for Cable-
Driven Parallel Robots (CDPRs) considering the pulley kinematics is proposed.
The algorithm applies iteratively QR decomposition to solve a linearized version
of the least squares problem representing the FK. Differential kinematics delivers
an analytical expression for the Jacobian matrix of CDPRs considering the pulley
kinematics. This Jacobian matrix is used to construct the linearization of the FK
problem. Experimental and numerical results address the convergence capabilities
of the proposed algorithm.
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1 Introduction

Cable Driven Parallel Robots (CDPRs) may present several advantages compared
to rigid links parallel robots such as large workspace, high payload capabilities, re-
duced moving mass and high dynamic capabilities. Therefore, CDPRs have been
used as flight simulators [12], robotic cranes [2], large radio telescopes [13], reha-
bilitation devices [19], among others.

In spite of these advantages, positioning precision may be one prominent draw-
back of CDPRs. In comparison to rigid-link robots, the computation of the end-
effector pose relying solely on the joint (winch) positions may be troublesome
and inaccurate [10]. A solution for this issue would be the application of an ex-
ternal measurement system capturing the pose of the platform. This can be done,
for instance, using a motion-capture system Bonita developed by Vicon [4] or a
multi-cameras setup [5]. Nevertheless, the implementation of such measurement
systems within uncontrolled environments may lead to issues related to occlusions
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and lighting variations. Furthermore, these solutions also depend on additional sen-
sors, which may be costly.

Therefore, several studies sought a reliable and accurate algorithm able to com-
pute the CDPR platform pose for a given set of winch positions, i.e., Forward Kine-
matic (FK) Algorithms. The FK problem may be solved with interval analysis [1,8].
This approach allows one to find all the possible FK problem solutions, taking into
account that some cables may be slack. Even though this method is considered math-
ematically complex, real-time capability has been presented [9]. Iterative numerical
schemes are another typical approach [3, 11, 14]. In general, the FK problem is
formulated as a nonlinear optimization problem. The iterative algorithm (usually,
Levenberg-Marquadt) delivers a platform pose that locally minimize modeling er-
rors, taking the winch positions as input. To this end, a differential kinematic model
is necessary.

The previous works discussed above do not address the influence of the pulley
kinematics. Indeed, Pott showed in [15] that relevant errors may be obtained assum-
ing fixed proximal anchor points. In [17], the FK problem considering the pulley
kinematics is solved but the equations are not derived explicitly. In this paper, these
equations are obtained (in section 3) and QR decomposition is used to iteratively
solve the linearized version of the nonlinear FK problem (section 4). This lineariza-
tion is based on the differential kinematic model obtained with the differentiation of
the Inverse Kinematics (IK) model (section 2). Therefore, the contributions of this
paper may be summarized as follows: (i) an analytical expression for the differential
kinematics of CDPRs taking into account the pulley kinematics and (ii) the solution
and implementation of the resultant least squares problem using QR decomposi-
tion on a CDPR prototype operated with industry-grade control software. Section 5
presents experimental results that demonstrate its applicability in a industrial real-
time environment and numerical studies that address its convergence capability.

2 Inverse Kinematic Model

A six degree-of-freedom (DoF) CDPR is considered but the proposed algorithm can
be applied to CDPRs with fewer DoFs. The platform is driven by m cables. The
main variables and parameters of the kinematic model are introduced in Figure 1.
The position of each cable attachment point Bi on the platform is given by the vector
bi, with i = 1, ...,m. Each point Ai is a fixed point which lies on the circumference
of pulley i. Each pulley i is able to rotate around the line passing through Ai tangent
to the pulley circumference. The constant position of Ai is given by vector ai in the
fixed reference frame.

The platform pose is given by the vector x =
[
pT ϕT ]T . The position of the plat-

form is p =
[
px py pz

]T . Its orientation is represented by the vector ϕ =
[
α β γ

]T .
The elements of this vector are Euler angles so that bi = p+Rz(γ)Ry(β )Rx(α)bpi,
where bpi is the vector of the platform attachment point i written in the coordinate
system Op, attached to the platform, and Rx, Ry and Rz are the rotation matrices
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around x, y and z axis, respectively. The vector of cable lengths is lll =
[
li ... lm

]T ,
where li is the length of cable i and the cable elongations are neglected. The IK
model gives the motor positions for a given pose of the platform, i.e. compute lll for
a given x. The remainder of this section recalls the IK considering the influence of
the pulley geometry. Similar models were notably presented in [3, 15].
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Fig. 1 Main geometric notation

The studied pulley geometry is illustrated in Figure 2. One drawing pulley i
among the m CDPR pulleys is considered and subscript i is dropped in the remain-
der of this section. Consider the definition of coordinate systems E0 =

[
e0

1 e0
2 e0

3
]

and E1 =
[
e1

1 e1
2 e1

3
]
. The pulley may rotate over the fixed axis e0

3 (with angle ρ). E0

is any fixed coordinate system with e0
3 aligned with the rotation axis of the pulley.

E1 rotates with the pulley and e1
3 = e0

3. E1 is thus pose dependent and its orientation
is computed in the inverse kinematics.

Define v = bi −ai, written in the CDPR fixed reference frame. Vector ai is con-
stant for a given CDPR and bi depends on the platform pose. Vector v can be written
in the coordinate system E0 as v0 = ET

0 v. The angle ρ shown in Figure 2 is obtained
as atan2(v0

2,v
0
1), with v0

1 and v0
2 the first and second components of v0. Therefore, the

coordinate system E1 is obtained as E1 = E0 Rz(ρ), where Rz is the rotation matrix
around the z axis.

The vector v1 written in the coordinate system E1 is v1 = ET
1 v =

[
v1

1 0 v1
3
]T . The

component v1
2 = 0 because the coordinate system is aligned to the pulley orientation.

Analysing the geometry presented in Figure 2, the following system of trigono-
metric equations is obtained

v1r =

[
v1

1
v1

3

]
= l f

[
sinφ
cosφ

]
+ rp

[
1− cosφ

sinφ

]
(1)
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Fig. 2 Pulley geometry and coordinate systems

where rp is the primitive radius of the pulley and l f is the length depicted in the
Figure 1. Eliminating the variable l f , the following equation is obtained:

v1
3 sinφ +(rp − v1

1)cosφ − rp = 0 (2)

The following transformations can be used to simplify (2):

sinφ =
2 tan(φ/2)

1+ tan2(φ/2)
, cosφ =

1− tan2(φ/2)
1+ tan2(φ/2)

(3)

which leads to

tan2(φ/2)(v1
1 −2rp)+ tan(φ/2)(2v1

3)− v1
1 = 0 (4)

Equation (4) can be solved as a quadratic equation in tan(φ/2). Then, using the
inverse tangent function, two solutions are obtained in the interval [−π,π]:

φ1 = 2atan




√
v1

1
2 −2v1

1rp + v1
3

2 − v1
3

v1
1 −2rp


 (5)

φ2 = 2atan


−

√
v1

1
2 −2v1

1rp + v1
3

2 − v1
3

v1
1 −2rp


 (6)

If v1
1 > 2rp (typical situation), φ1 > 0 and φ2 < 0. In this case the angle respecting

the geometry of the problem is φ1. Otherwise, φ2 should be taken.
The length l f may be easily obtained from (1) once φ is known. The cable length

li is given by
li = rp φ + l f + lci (7)
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where lci is a constant additional length. This constant additional length may take
into account the total distance between fixed pulleys for instance.

3 Differential Kinematics

The Jacobian matrix J is used in the solution of the FK problem since it relates δ lll
to δx as

δ lll = Jδx (8)

where δ (·) denotes the differential variation of (·). This section presents the analyti-
cal expression of the matrix J obtained from the equations in section 2. As in section
2, subscript i is dropped in the remainder of this section. The vector v = bi − ai is
computed as

v = p+R(ϕ)bpi −ai (9)

Differentiating this expression with respect to the platform pose, the following
equation is obtained

δv =
[
I3

∂
∂ϕ (R(ϕ)bpi)

]

︸ ︷︷ ︸
∂v
∂x

δx (10)

where

∂
∂ϕ

(R(ϕ)bpi) =

=




bpiy σ1 +bpiz σ2 bpiz cα cβ cγ −bpix cγ sβ +bpiy cβ cγ sα bpiz σ3 −bpiy σ4 −bpix cβ sγ

−bpiy σ3 −bpiz σ4 bpiz cα cβ sγ −bpix sβ sγ +bpiy cβ sα sγ bpiz σ3 −bpiy σ2 +bpix cβ cγ

bpiy cα cβ −bpiz cβ sα −bpix cβ −bpiz cα sβ −bpiy sα sβ 0




with

σ1 = (sα sγ + cα cγ sβ ), σ2 = (cα sγ − cγ sα sβ ) (11)

σ3 = (cγ sα − cα sβ sγ), σ4 = (cα cγ + sα sβ sγ) (12)

and cθ = cosθ and sθ = sinθ . Defining v0r =
[
v0

1 v0
2
]T and E0r =

[
e0

1 e0
2
]
, one may

write

v0r = ET
0r v = l0

[
cosρ
sinρ

]
(13)

with l0 the length depicted in Figure 2. Differentiating (13) and isolating δρ , this
equation leads to the derivative of ρ with respect to x

δρ =

(
1
l0

[
−sinρ cosρ

]
ET

0r
∂v
∂x

)

︸ ︷︷ ︸
∂ρ
∂x

δx (14)
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Defining

RT
zr(ρ) =

[
cosρ sinρ 0

0 0 1

]

equation (1) may be rewritten as follows

v1r = RT
zr(ρ)ET

0 v = l f

[
sinφ
cosφ

]
+ rp

[
1− cosφ

sinφ

]
(15)

Differentiating this equation, the following relation is obtained

∂v1r
∂x︷ ︸︸ ︷(

DRz(ρ)ET
0 v

∂ρ
∂x

+RT
zr(ρ)ET

0
∂v
∂x

)
δx =

=

(
rp

[
sinφ
cosφ

]
+ l f

[
cosφ
−sinφ

])
δφ +

[
sinφ
cosφ

]
δ l f

(16)

with

DRz(ρ) =
[
−sinρ cosρ 0

0 0 0

]
(17)

The differential δφ can be isolated in (16) leading to the derivative of φ

δφ =

(
1
l f

[
cosφ −sinφ

] ∂v1r

∂x

)

︸ ︷︷ ︸
∂φ
∂x

δx (18)

Moreover, this expression can be substituted for δφ in (16) and δ l f is thereby
obtained as

δ l f =

([
sinφ cosφ

] ∂v1r

∂x
− rp

∂φ
∂x

)

︸ ︷︷ ︸
∂ l f
∂x

δx (19)

Differentiation of (7) leads to

δ li =
(

rp
∂φ
∂x

+
∂ l f

∂x

)

︸ ︷︷ ︸
∂ li
∂x

δx (20)

Finally, the computations detailed above can be applied to each kinematic chain
i = 1, ...,m, and the derivatives are concatenated to form the expression of the Jaco-
bian matrix
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Forward Kinematics of CDPRs 7

δ lll =




δ l1
...

δ lm


=




∂ l1
∂x
...

∂ lm
∂x




︸ ︷︷ ︸
J

δx (21)

4 Forward Kinematic Model

The FK consists in computing the platform pose for a given set of winch motor
positions. In the case of redundant CDPRs with m > n, n being the number of de-
grees of freedom of the mobile platform, the kinematic model is overdetermined.
In general, due to modeling and measurement inaccuracies, it is impossible to find
a platform pose that satisfies exactly the kinematic constraints set by the m kine-
matic chains. Therefore, the FK may be formulated as the problem of minimizing
the error between the measured cable lengths and the cable lengths computed by the
IK (eq. (7)). Let lllm be the set of measured cable lengths and l̂ll(x) the cable lengths
obtained with the IK model for a given pose x. The error to be minimized is defined
as e(x) = ‖l̂ll(x)− lllm‖2, where the 2-norm is denoted by ‖·‖2. Therefore, for a given
lllm, the FK Algorithm should produce the solution x∗ = argminx ‖l̂ll(x)− lllm‖2.

In general, the function e(x) = ‖l̂ll(x)− lllm‖2 possesses several local minima. The
proposed FK algorithm takes an initial guess xg and find a x∗ that locally minimizes
the function e(x). The proposed algorithm assumes that xg is sufficiently close to
the current platform pose and consists of an iterative scheme. For an iteration k
with platform pose xk, the next iteration takes xk+1 = xk +∆xk. Considering the
approximation ∆ l̂ll ≈ J(xk)∆x, a reasonable choice for ∆xk is

∆xk = argmin
∆x

∥∥∥J(xk)∆x−
(
lllm − l̂ll(xk)

)∥∥∥
2

(22)

The minimization problem (22) is a Linear Least Squares problem. The solu-
tion of (22) might be computed solving J(xk)

T J(xk)∆x = J(xk)
T
(
lllm − l̂ll(xk)

)
for

∆x. However, this solution may lead to numerical instability [16]. Accordingly, this
problem is typically solved using SVD or QR factorizations [6, 16]. The SVD may
be preferred because of its greater diagnostic capability in pathological cases. Nev-
ertheless, QR factorization presents faster computing time. The latter being critical
in real-time applications, the QR factorization is preferred. Therefore, the Jacobian
matrix J is decomposed using the QR factorisation such that J = QR, with Q or-
thogonal and R upper triangular. The solution of (22) is then obtained from the back
substitution of the system R∆x = QT

(
l̂ll(xk)− lllm

)
. Note that the proposed algo-

rithm does not present numerical damping. For the studied scenarios, this was not
necessary.

Once ∆xk is obtained, the next pose xk+1 = xk+∆xk is computed. This procedure
is repeated until ‖∆x‖2 < ε , for ε the desired tolerance.
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5 Experimental Results

The proposed FK algorithm has been implemented in the HRPCable prototype
shown in Figure 3. This prototype has a 6-DoF platform fully constrained by 8
cables. The control was programmed in C++ and runs in an industrial PC Beckhoff
C6920 equipped with 2.4GHz i7 core processor. The platform pose control loop
runs at 125 Hz. An inner feedback loop running at 2 kHz control the cable tensions,
the latter being measured by means of force sensors (load pins) placed in the draw-
ing pulleys. Figure 3 depicts the performed trajectory. The threshold ε was defined
as ε = 1×10−6.

1st and 6th poses

2nd pose

3rd pose

4th pose

5th pose

Cables

Platform
Winches

Pulleys with 

force sensors

Fig. 3 HRPCable prototype and its CAD view presenting the performed trajectory

In addition to the components shown in Figure 3, a Metris K600 camera system
is used to measure the pose (6-DoF) of the platform in real time with a precision
of 70 µm. The measurements obtained with the K600 camera system were used as
reference to compare with the estimations obtained with the proposed FK algorithm.
These results are shown in Figure 4. This figure also shows the necessary number
of iterations during the trajectory.

For a given pair of vectors x∗ and lll∗ consistent with the constraints presented in
section 2, strictly evaluating the capability (denoted here as convergence capability)
of an FK iterative algorithm to quickly and reliably find x∗ for given lll∗ is not a
trivial task and is out of the scope of this paper. The FK problem of a Stewart-Gough
platform (topologically very similar to CDPRs) may have up to 40 solutions [18] and
redundant configurations do not necessarily present a reduced number of possible
solutions compared to the non-redundant case [7]. Therefore, it is necessary to prove
that the algorithm is able to converge to x∗, and not just to one of the (potentially)
many x that are consistent with lll∗. Nevertheless, it is still interesting to address this
capability as follows.

The FK algorithm has been applied to IK solutions corresponding to more than
30× 103 poses equally spaced across the workspace keeping the initial guess con-
stant equal to xg =

[
0 0 .8 0 0 0

]T for all the poses. The workspace of the prototype
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Fig. 4 Experimental results: Solid lines represent the poses estimated with the proposed FK algo-
rithm and dashed lines represent the poses measured by the Metris K600 camera system

is a 4× 2× 1.4 m3 (x, y, z) cuboid, considering −10◦ 6 γ 6 10◦, α = β = 0. The
algorithm obtained a pose with errors smaller than the proposed tolerance within 7
iterations for all these poses.

6 Conclusions

The present work introduced an explicit expression for the Jacobian matrix of CD-
PRs considering the pulley kinematics. Furthermore, a Forward Kinematics (FK)
algorithm has been implemented based on this explicit expression. The Jacobian ma-
trix is used to linearize the FK problem formulating it as a least squares problem, the
latter being solved iteratively by means of QR decomposition. The algorithm was
implemented in a prototype with industrial real-time environment. The proposed al-
gorithm was successfully tested in numerous poses distributed in the workspace of
the robot. Nevertheless, the measured position and orientation accuracy indicates
that there is room for improvements.
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