Bernard Goossens
email: goossens@univ-perp.fr

Kenelm Louetsi
email: kenelm.louetsi@univ-perp.fr

David Parello
email: david.parello@univ-perp.fr

Deterministic OpenMP and the LBP Parallelizing Manycore Processor

Keywords: OpenMP, Determinism, Parallel Programming, Repeatability, Distant ILP, Isolation

This paper presents Deterministic OpenMP, a new runtime for OpenMP programs, and the Little Big Processor (LBP) manycore processor design. LBP isolates the application it runs, using its multiple cores to distribute a non interruptible single parallelized computation. When run on LBP, a Deterministic OpenMP code produces cycle by cycle deterministic computations. LBP and Deterministic OpenMP are particularly suited to safely accelerate real time embedded applications through their parallel execution. The paper reports experimental results to measure the LBP performance on an FPGA based simulator and compares LBP with a Xeon Phi 2. The instruction retired and Instruction Per Cycle (IPC) measured in the experiment indicate that LBP performance does not suffer from the elimination of all the high performance features incompatible with an embedded processor (predictors, caches). LBP performance comes from its hardware parallelizing capability, its capacity to capture distant Instruction Level Parallelism (ILP) and from our proposed Deterministic OpenMP runtime favoring local memory accesses.

Introduction

OpenMP developers must correctly synchronize the parallel parts of their applications to avoid non-determinism or unnecessary serializations.

Non-determinism makes parallel programs in general and OpenMP ones in particular hard to debug as a bug may be non repeatable and the action of a debugger may alter the run in a way which eliminates the emergence of the bug.

It also makes the timing of a run non repeatable. Measuring a speedup is a complex and far from scientific process. A lot of precautions, varying from one platform to another, must be taken to isolate the run and eliminate as much perturbations as possible, either from external parasites or from the measure itself. Moreover, many runs must be done with a new measure for each. The final measure can be the lowest achieved time (understood as a smallest parasitism), but usually people prefer the average of all the measures (understood as an average parasitism).

One side effect is that parallelization can hardly benefit to real time critical applications [START_REF] Lee | What Is Real Time Computing? A Personal View[END_REF] as a precise timing cannot be ensured.

In this paper, we introduce Deterministic OpenMP (section 3), Parallel Instruction Set Computer (PISC) (section 4) and the Little Big Processor (LBP) (section 5). They were designed to offer the performance of parallelism to safetycritical real time embedded applications. In this domain, safety is more important than performance and up to now, industrials have preferred to keep away from parallelism and favor older single core in-order processors. But they need more and more performance and the available CPUs are almost all multicore ones today.

We show from experimental results that: (1) all the internal timings of a Deterministic OpenMP program run on an LBP processor are repeatable, [START_REF] Kirk | Programming Massively Parallel Processors, a handson approach[END_REF] the overhead to parallelize a run is low and (3) the 64 cores and 256 threads LBP processor, even though it has no high performance unit (to keep it aimed to embedded applications), sustains the high demand of a matrix multiplication [START_REF] Kirk | Programming Massively Parallel Processors, a handson approach[END_REF] without saturating its hierarchical bus-based interconnect. In other words, LBP aims to be efficient, safe and low-power.

Deterministic OpenMP is an on-going implementation of the OpenMP standard. The goal of Deterministic OpenMP is to enforce determinism through hardware. The control of the synchronizations is no more a matter of locks, barriers and critical sections inserted by the programmer, properly or not, but is handled automatically by the hardware. Some standard OpenMP programs can be run on LBP simply by replacing the OpenMP header file by our Deterministic OpenMP one. A new runtime is added by a preprocessor to launch the team of threads on the processor harts 1 .

In this paper, we define PISC, which is an extension of the RISC Instruction Set Architecture (ISA). PISC adds a few machine instructions to fork, join and send/receive registers directly in the hardware. We have extended the RISCV ISA with a PISC ISA named X PAR.

LBP is a 64-core processor we have designed, to be compared with industrial manycores like the 72-core Xeon Phi2 [START_REF] Sodani | Knights Landing: Second-Generation Intel Xeon Phi Product[END_REF] or the 80-core Kalray Coolidge MPPA3 [START_REF] De Dinechin | Consolidating High-Integrity, High-Performance, and Cyber-Security Functions on a Manycore[END_REF] but aiming different applications. LBP is based on a much simpler core hardware and interconnect, implementing a new hardware-based parallelization paradigm. As the parallelization of a run can be handled through PISC machine instructions, it may be deployed on an LBP manycore processor without the help of an Operating System (OS). Parallelism is available on bare-metal hardware. Simpler versions of LBP (4 harts in 1 core or 16 harts in 4 cores) can be also used as high performance microcontrollers for automotive industry applications such as autopilot helpers.

The LBP design aims to keep a rate of one Instruction Per Cycle (IPC) per core with no branch predictor, no cache-coherent memory hierarchy, no Network-on-Chip (NoC) and no memory access ordering unit (e.g. a load/store queue). The single core throughput relies on multithreading with four harts. When they are all active, latencies are fully hidden as the experiment reported in section 7 indicates.

By combining Deterministic OpenMP with an LBP processor, a developer can benefit from a 64-core 256-hart processor to safely parallelize his applications. A Deterministic OpenMP program applied many times to the same input on LBP has an invariant number of retired instructions and most of the time, has an invariant number of cycles and produces an unchanging set of events at every cycle. The LBP processor can achieve cycle determinism, i.e. the cycle by cycle ordering of events in the processor is invariant for a given program and data. This is obtained through a perfect isolation of the application run [START_REF] Kotaba | Multicore In Real-Time Systems Temporal Isolation Challenges Due To Shared Resources[END_REF]. With cycle determinism in LBP, a run can be described by invariant statements as "at cycle 467171, core 55, hart 2 sends a memory request to load address 106688 from memory bank 13; at cycle 467183, it writes back the received data"2 . The statement holds for any run of the same program applied to the same data on the same LBP processor.

Cycle determinism may be observed on a LBP run only when the program has no interaction with the outside world. For example, a program having an alerting temperature sensor input would depend on a non-deterministic external event and its run would not exhibit cycle determinism (the number of cycles of the run would not even be constant). However, even in such a situation, the LBP run still ensures proper ordering in accordance with the referential sequential order3 (or logical clock as defined by Lamport [START_REF] Lamport | Time, Clocks, and the Ordering of Events in a Distributed System[END_REF]) (a computation depending on the non-deterministic event occurs after it, which is ensured by the LBP hardware).

Moreover, LBP does not handle external events though interrupts. LBP is a non interruptible processor. A computation which has to wait for an input, being it produced by a timer as in real time applications, is not stopped and resumed after an interrupt coming from the input device. This classic behaviour breaks the isolation, which impacts the order of the instructions run. On LBP, the input code position in the static code fixes a semantic which the hardware realizes. The instructions are run in the partial order of their dependencies, with no software synchronization like context switch and interrupts. This is illustrated in section 6.

Related works

There are previous works on building deterministic hardware for safety critical applications [START_REF] Zimmer | FlexPRET: A processor platform for mixed-criticality systems[END_REF] [START_REF] Ungerer | Merasa: Multicore Execution of Hard Real-Time Applications Supporting Analyzability[END_REF]. None achieves cycle by cycle internal determinism as LBP does through the concept of hardware parallelization. A recent paper [START_REF] Serrano | Towards an OpenMP Specification for Critical Real-Time Systems[END_REF] has evaluated the capacity for OpenMP to be suited to safety critical applications, highlighting functional safety problems of non-conforming programs, unspecified behaviors, deadlocks, race conditions and cancellations. This work is complementary to ours which focuses on timing safety.

LBP does not use speculation to reduce latencies. Instead, LBP favours latency hiding through multithreading and distant Instruction Level Parallelism (ILP) exploitation to fill the core pipelines. It is worth to mention the dangers of speculative hardware for privacy (another aspect of the secutity level required for safety critical applications) as Spectre [START_REF] Kocher | Spectre attacks: Exploiting speculative execution[END_REF], Meltdown [START_REF] Lipp | Meltdown: Reading Kernel Memory from User Space[END_REF] and more recently Spoiler [START_REF] Islam | SPOILER: Speculative Load Hazards Boost Rowhammer and Cache Attacks[END_REF] have shown. As LBP does not speculate, it does not speculatively modify any internal resource (branch predictor or cache) which, in speculative processor, can be observed by a spying application, indirectly revealing any stored secret.

Even though LBP does not speculate, it is able to fill each core pipeline, thanks to multithreading. Multithreading is a secure substitute to speculation as soon as the multiple threads are all parts of the same parallelized application. The pipeline bubbles are filled by instructions of another thread belonging to the same computation, as a compiler would fill the delays by inserting independent instructions in the holes. However, LBP can insert instructions from an arbitrarily distant hart, which the compiler cannot. The OpenMP paradigm exhibits distant ILP by its parallel pragmas, which is used by LBP to keep close to the peak 1 IPC per cycle.

If local ILP is known to be severely bounded (with an average of 6 when full register renaming is applied), distant ILP is also known to be unbounded, increasing with the size of the computation. The stack used to allocated function frames [START_REF] Austin | Dynamic Dependency Analysis of Ordinary Programs[END_REF] and the control flow [START_REF] Lam | Limits of Control Flow on Parallelism[END_REF] are the two main obstacles to ILP. The OpenMP parallelization eliminates the dependencies between the stack frames and between the control flow paths for independent threads. In [START_REF] Goossens | Limits of Instruction-Level Parallelism Capture[END_REF], the authors show that when removing the stack and control dependencies (i.e. as if the function evaluations would be done in full parallelism), the global ILP is the sum of the functions individual ILPs, unboundly increasing with the size of the data, i.e. the number of function calls.

Deterministic OpenMP

A Deterministic OpenMP program is quite not distinguishable from a classic OpenMP one [START_REF] Openmp | OpenMP Application Programming Interface[END_REF]. Figure 1 shows an example of a Deterministic OpenMP code to distribute and parallelize a thread function on a set of eight harts. The difference with a pure OpenMP version lies in the header file inclusion (det omp.h instead of omp.h, in red on the figure). In a classic OpenMP implementation, the parallel for pragma builds a team of OMP NUM THREADS threads which the OS maps on the available harts, optionally balancing their loads. In the Gnu implementation, this is done through the GOMP parallel function (OMP API [START_REF]GOMP on-line documentation[END_REF]). In Deterministic OpenMP, a team of harts -not threads-is created, each matching a unique and constant placement on the processor. One drawback is that on LBP, load balancing is the problem of the programmer. It is his responsability to evenly divide his job into parallel tasks. If properly done, the efficiency is improved compared to a dynamic load balancing handled by the OS because dynamic load balancing implies costly thread migrations.

The Deterministic OpenMP code in figure 1 is translated into the code in figure 2. The text in black on the figure comes from the original OpenMP source code on figure 1. The green text is added by the translator.

The LBP parallel start function creates and starts the team of harts. It organizes the distribution of the copies of function thread on the harts. It calls fork on current which creates a new hart on the current core or fork on next which creates a new hart on the next core (LBP cores are ordered). The machine code for fork on current is given in section 4. The LBP parallel start function fills the harts available in a core before expanding to the next one.

Functions fork on current and fork on next do not interact with the OS by calling a forking or cloning system call. Instead, they directly use the hardware capability to fork the fetch point, running the thread function locally and the continuation remotely (on the same core or on the next one). Figure 3 shows how the different copies of function thread are distributed on a 4-core and 16-hart LBP processor (only two cores are filled by the eight iterations of the parallel for loop in the example).

The hardware fork mechanism has two advantages over the classic OS one: • it concatenates the continuation thread to the creating one in the sequential referential order, on which the hardware is able to synchronize and connect producers and consumers,

#
• it places the continuation thread on a fixed hart, in the same or next core.

In a classic OpenMP run of the code on figure 1, all the function thread copies would become non-ordered and independent threads. In contrast in Deterministic OpenMP, the created harts are ordered (in the iterations order) which simplifies communications: a creating hart sends continuation values to the created one through direct core-to-core links.

LBP offers the programmer the possibility to map his code and data on the computing resources according to the application structure. A producing function can be parallelized on the same set of cores and harts than the consuming one, eliminating any non local memory access. The OS is not able to do the same for OpenMP runs as it has no knowledge of which thread produces and which thread consumes. The OS can only act on load balancing. The task of good mapping in classic OpenMP is the programmer's duty. To do his job properly, he has to deal with his application, but also with the OS and the computing and memory resources (e.g. load balancing, pagination). This leads to difficult decisions, with a complexity proportional (if not worse) to the number of cores. Figure 4 shows a code with two successive parallel parts embedded in function main (upper right). The first one initializes global vector v through function thread set which the second part uses through function thread get. Thanks to the sequential referential order, the second part is serialized by LBP after the first one with no OS intervention. Thanks to the placement of the harts created by the two parts on an aligned set of cores, all the memory accesses reference a local memory bank. Each thread get call reads the vector elements it consumes from its local memory bank where the thread set call has written them. The producing hart, the consuming hart and the data chunk they access all reside in the same LBP core/local memory.

The consuming phase is perfectly separated from the producing one by the hardware barrier inserted between the two parallelized loops. The hardware ensures that the thread get loads occur after the thread set ones with no added OS synchronizing primitive nor hardware memory coherence mechanism.

The bottom part of the figure represents 4 cores, i.e. 16 harts. Each red arrow (on the left half of each hart representing an iteration of the first parallel for loop) stands for a LBP fork (hart creation) of a thread set function. The last hart in a core forks on the next core (raising diagonal red arrow).

The green arrows match the thread get function calls (second parallel for loop). The magenta arrow (right to left raising diagonal) is the join separating the set phase from the get one (barrier between the two parallel for). The join sends the continuation address to the initial hart (i.e. hart 0 core 0 on the example). The cyan arrow (multiple segments line from bottom right to top left) is the join separating the get phase from the last sequential part of main. The sequential referential order is materialized when following successively the red, magenta, green and cyan arrows. The hardware memorizes the necessary links to manage this order and uses them to synchronize harts and make them communicate.

The PISC ISA

The PISC ISA extension is a set of 12 new machine instructions. A RISCV extension named X PAR has been defined. It is summarized on figure 5.

The p swcv and p lwcv instructions (cv stands for continuation value) serve to achieve a hardware synchronized communication between a producer and a consumer of the same team, for example to transmit an input argument from member to member (e.g. the iteration loop index). The consumer should be the hart next after the producer (same or next core).

The p swre and p lwre instructions (re stands for result) serve to achieve a hardware synchronized communication between a producer and a consumer of different teams, with the consumer physically preceding the producer (same or preceding core; the connection used to transmit the value is the intercore backward link). They allow for example a team to produce a reduction value and have its last member send it to the join hart.

The p jal instruction is a parallelized call. Instead of pushing the return address on the stack, it sends it to an allocated continuation hart. The p jalr instruction is the indirect variant of the p jal one. It can also be used as a return from a parallelized hart (pseudo instruction p ret standing for p jalr zero, rs1, rs2).

The p fc and p fn instructions serve to allocate a new hart, either on the same core or on the next one. The p merge and p set are instructions used to manipulate hart identities. They are used to prepare and propagate the first team member identity to allow the join from the last team member back to the first.

The p syncm instruction serves to synchronize memory accesses within a hart. In a hart, loads and stores are unordered. The hardware provides no control on the out-of-order behaviour of loads and stores. For example, to ensure a load depending on a store is run after it, a p syncm instruction should be inserted between them. The p syncm acts by blocking the fetch (as soon as it is decoded) until all the in flight memory accesses of the hart are done.

More details on PISC can be found at URL [19]. Figures 6, 7 and 8 show the machine instructions compiled for the Deterministic OpenMP code on figure 2. The target processor is assumed to be bare-metal (no OS). The LBP processor implemented in the FPGA directly starts running the main function and stops when the p ret instruction is met (with register ra=0 and register t0=-1, meaning exit).

Figure 6 shows the compiled PISC RISCV code for the main function. Registers ra and t0 play a special role. Register ra has its normal usage: it holds the return address. When LBP parallel start is called, ra receives the future team join address (labeled rp on the figure). Register t0 holds the current hart number set with the p set instruction and propagated along the team members through register transmission (t0 contains a value combining the hosting core and the current hart identity in the core). The LBP parallel start function creates the team of harts to run the parallelized loop. It returns to rp label when a p ret4 instruction in the last created team member is reached. The ending hart sends ra to hart t0 (i.e. core 0, hart 0 in the example), which resumes the run at rp label.

There are four types of team member endings (continuation after a p ret instruction) according to the received ra and t0:

1. ra is null and t0 is not the current hart: the hart ends, 2. ra is null and t0 is the current hart: the hart waits for a join, 3. ra is null and t0 is -1: the process exits, 4. ra is not null: the hart ends and sends ra to the t0 hart which restarts fetch (the parallel section ends and is continued by a sequential one).

The p ret instructions are committed in-order (in the sequential referential order) to implement a hardware separation barrier between a team of concurrent harts and the following sequential OpenMP section. The barrier is implemented as a hardware signal transmitted from hart to hart along the team members. Hence, the harts are released in order (each hart commits its p ret only when it has received the ending hart signal from its predecessor; it sends its own ending hart signal to its successor after this commit).

Figure 7 shows how function LBP parallel start calls the last occurrence of function thread with a RISCV jalr a0 indirect call instruction. This last call is run by the last created team member on the last allocated hart (i.e. no fork). The same hart runs the code after the return point at rp2 label. The ending p ret instruction joins with the following sequential ending part of main (team member ending type 4 with ra being not null). The fork on current function called in LBP parallel start (figure 2) is a fork protocol composed of the machine instructions presented on figure 8. The code allocates a new hart on the current core (p fc X PAR machine instruction; the allocated hart identity is saved to the destination register t6), sends registers to the allocated hart (three p swcv X PAR instructions; a1 holds a pointer on the data argument), starts the new hart (p jalr X PAR instruction; a0 holds the thread address) which receives the transmitted registers (three matching p lwcv X PAR instructions; the join address is restored from stack to ra, the join core/hart to t0 and the data pointer to a1). The seven first instructions (in red; down to the p jalr) are run by the forking hart and the three last ones (in blue) are run by the forked hart. The p jalr instruction calls the thread function on the local hart and sends the return address5 to the allocated hart, which starts fetching at the next cycle. After the p jalr instruction has been issued, the function called and the code after return are run in parallel by two different harts.

The p syncm X PAR instruction synchronizes the send/receive transmission protocol (p swcv and p lwcv pairs). The sending hart is blocked until all memory writes are done (ra, t0 and a1 registers saved on the allocated hart stack). The allocated hart starts only when its arguments have been copied on its stack by the allocating hart.

The LBP parallelizing processor

The cores

Figure 9 shows the general structure of the 64-core LBP processor as it is implemented on the FPGA (the global shared memory is presented on figure 13) 6 . Cores are represented by blue squares labeled c. Links between cores are represented by magenta and blue arrows. Dashed lines represent optional extensions, either to have a larger manycore or to connect multiple LBP chips. There are 64 ordered cores. The first core in order (core 0) is surrounded by a red rectangle (top of the figure). Its successor is just aside, on the left. The last core (core 63) is surrounded by a green rectangle (at the right of core 0). The line of cores has a serpentine shape. The last core is not connected to the first one. Hence, teams may only expand along successive cores until the last one, no further (a line of cores in a chip can be extended by connecting a second chip; a line of chips can be built to unboundingly extend the line of cores; the first core is the first one of the first chip and the last core is the last one of the last chip as on figure 15).

Each core is directly connected to its successor (blue arrow). Each core is indirectly connected to any predecessor through a unidirectional line (magenta arrows). The direct connections (blue arrows) are used to allocate harts (fork with p fc or p fn), send continuation values (p swcv) and propagate ending hart signals (p ret). The backward line (magenta arrows) is used to send join addresses (p ret), function results and reduction values (send a result with p swre).

The pipeline

Figure 10 shows the LBP core pipeline. It has a classic five stages out-oforder organization. Each stage selects one active hart at every cycle as shown on figures 11 and 12. In one cycle, a core fetches one instruction for the selected fetching hart, renames one instruction of the selected renaming hart, issues one instruction of the selected issuing hart, writes back one result to the register file of the selected writing hart and commits one instruction for the selected committing hart. The five selections are independent from each other.

A hart may be selected to fetch if its pc is full (a thread is running), if it has not been suspended and if the fetched instruction may be saved in the decode stage instruction buffer (labeled ib on figure 11)(the buffer remains full until the hart is selected for decode/rename).

In particular, a hart is suspended after fetch until the next pc is known, at best after the decoding which produces nextP C as shown on figure 10 (pc + 1 or the target of an unconditional direct branch). During the suspension, other active harts on the core are selected. LBP hides branch latency through multithreading instead of eliminating it through prediction (because every hart is suspended after fetch, at least two full harts are necessary to fill the pipeline). A hart may be selected for renaming if its instruction buffer is full with a fetched instruction, if there are available resources to do the renaming (renaming table labeled rt on figure 11, decode/rename stage) and there is a free entry in the hart reorder buffer (labeled rob in the commit stage on figure 12). Once renamed an instruction is saved in the hart instruction table (labeled it in the issue stage) and in the hart reorder buffer. A hart may be selected for issue if it has at least one ready instruction in its instruction table (renamed instructions wait in the hart instruction table until the sources are ready; there is one table per hart) and if the result buffer of the hart in the write back stage is empty (labeled rb in the write back stage; hence, a multicycle computation blocks the hart for issue until the result has been written back, releasing the result buffer). Once issued, the renamed instruction reads its renamed sources in the renaming register file (labeled rrf), crosses a single or multiple cycle functional unit (labeled f u) and saves the result in the hart result buffer.

A hart may be selected for write back if its result buffer is full and the commit buffer of the hart is empty (labeled cb). The selected result is written to the renaming register file of the hart. The written back instruction is notified as terminated in the hart reorder buffer.

A hart may be selected for commit if its reorder buffer tail entry is terminated. If the instruction is a hart ending p ret, the ending hart signal must have been received from the preceding hart.

The pipeline has the minimum hardware to make the out-of-order engine work (to keep each core as simple as possible, which allows either to maximize the number of cores on the die for a high performance manycore or to build a very low-cost parallelizing microcontroller with one core and 4 harts). A consequence is that a hart may have to wait in multiple situations: to fetch the pc is unknown (after a branch; this is frequent), to decode because there is no renaming register available to rename the destination (this is rare) or to issue because the result buffer is occupied (waiting for a computation in progress or waiting to be selected for write back; this is frequent in programs with a lot of memory accesses and/or a lot of multiplications/divisions). However, our experiments have shown that when the 4 harts are active, the core pipeline achieves a rate close to the peak of one instruction per cycle.

There is a situation in which an instruction can wait for issue for millions of cycles. When a p lwre instruction in a consuming hart ch has to load a result which is to be sent by an asynchronous producing hart ph (e.g. ph inputs a data to be sent to ch by a matching p swre instruction). Hart ch p lwre instruction waits in its instruction table until hart ph issues its p swre instruction which sends the input data on the intercore backward link. Once the data has reached the destination hart ch, it fills the ch result buffer, allowing the consuming p lwre instruction to issue. This synchronization of asynchronous harts through producing and consuming instructions having a read-after-write dependency (on the implicit result buffer) is the main reason why LBP cores are moved by an out-of-order engine. Traditionally, out-of-order issue serves to capture the local ILP within a hart. In LBP, the out-of-order mechanic mainly serves to synchronize producers and consumers from different harts.

Even though harts are interleaved in the pipeline on a cycle by cycle basis, this interleaving keeps deterministic as it only involves harts belonging to the same application.

The memory

Figure 13 shows the LBP memory organization. Each core is associated to a set of memory banks (red square labeled m). There are three banks per core. One bank holds the code, another holds local data (a stack) and the last one is used as a shared global memory.

The shared banks have two access ports. One port is used for a local access and the other port is used for distant accesses through a hierarchy of routers which interconnect the banks 7 .

Each core has a bidirectional access to a level one router (green rectangle labeled r1 and shared by four cores). Each r1 router is connected to a level two r2 router (shared by four r1). Eventually, r2 routers are connected through a level three router r3. The pattern is extensible (for example to extend the shared memory out of the LBP chip or for future extensions of an LBP manycore).

Each r1 router is able to handle one access per link per cycle (i.e. 8 transactions with the connected cores plus 4 transactions with the connected memory banks; the router has the necessary internal buffers to pipeline the transactions from core to memory and back to core). Every cycle, each r2 router is able to receive 4 incoming requests from the 4 connected r1, send 4 outgoing request results to the 4 r1, propagate one request to r3 and receive one request result from r3. Eventually, every cycle the r3 router is able to propagate 4 requests and 4 results to/from the 4 connected r2.

Figure 14 shows the superposition of figures 9 and 13 which makes the LBP manycore design (a LBP processor can be built from any subset of the 64 core design; for example, a 16-core LBP has no r3 router, a 4-core has no r2 nor r3 and a single core LBP has no router at all). Figure 15 shows four interconnected LBP chips with their pinout and a shared last level memory (e.g. DRAM controller and DDR4 DIMM).

LBP is non interruptible

LBP cores are not interruptible. Each hart pc has no external input. Figure 16 shows a Deterministic OpenMP application to be run on a microcontroller connected to 4 sensors and an actuator. A fusion of the 4 values obtained from the sensors is sent to the actuator. The sensors are assumed to respond in any non-deterministic order. However, the ordering of the input values in the fusion computation static code (e.g. The run is distributed on four harts with the fork on current function of the det omp.h runtime (labeled h0 to h3 on the right part of the figure). Hence, the four possible inputs are simultaneously monitored. The monitoring is an active wait of each input machine instruction on the input controller. The team of four harts joins back to h0. The last team member sends the fused value f to h0 which is output to the actuator. Hart h0 loops and starts a new team of harts to input. Figure 17 shows an example of an I/O system connected to a 4-core LBP.

Two of the 16 harts are used as I/O controllers. The input controller is hart 3 of core 3 (rightmost core, lower hart, labeled in cont). The output controller is hart 0 of core 0 (leftmost core, upper hart, labeled out cont). The input controller is connected to the input devices (e.g. the four sensors). It polls the input ports mapped on the shared memory bank. Once a value is present, the input controller sends it to the requesting core, using the intercore backward link (X PAR instruction p swre; input value travels from the input controller to the hart requesting an input).

To request an input (as do the set input function calls in the figure 16 example), a hart (hart 1 in core 2 on figure 17) writes a request in the input controller memory through the r1 router (RISCV standard sw store word instruction; the written word identifies the requesting hart). To input (as the get sensor function calls), it runs a p lwre instruction which matches the controller p swre one. The p swre and p lwre pair are asynchronously fetched and renamed but orderly issued. The p swre instruction is issued after the input data has been received and loaded in the register to be sent. The p lwre instruction is issued when the hart result buffer is full, i.e. when the travelling input data has been written into the destination hart. This synchronization is done by the cores out-of-order engines from the register or the result buffer read-after-write dependencies.

The output controller works the same way. To request an output (as the set output function call), a hart (hart 2 in core 1 on figure 17) writes a request in the output controller memory. To output (as the set actuator function call), the hart sends the data to be output with a p swre instruction. The data is saved in the output controller result buffer. A matching p lwre instruction is issued by the output controller to receive the data, which is written to the output device by a store word instruction. This is very different from the interrupt based classic I/O implementation in which the I/O response time is very hard to bound (interrupt handler + thread wake up + thread running, where the interruption may be interrupted by another I/O). On LBP, once the data is available to the input controller, within a few cycles it is received by the requesting hart. The response time is very short (a few cycles) and easy to bound.

Among the input devices can be timers. On classical hardware/OS, external timers are not highly reliable because of the imprecise lag between the very precise periodic signal and its impact on the piece of software which it clocks.

Internal timers are prefered if times close to the internal clock are to be measured (e.g. the exact latency in cycles of a run composed of a few tens or a few hundreds of instructions). The LBP I/O system, based on the producer to consumer dependency and their automatic synchronization by the out-of-order engine, reduces to a few cycles the internal reaction delay after an input, making external timing systems adapted to be used as very precise external clocks for real time softwares.

The LBP I/O pattern is suited to distributed I/Os. A team of harts can collaborate to input pieces of a structured data from an input controller or to output a structured result chunk by chunk through an output controller. The intercore backward link connecting the cores acts as a stream either filling the team of harts or draining them.

The LBP I/O pattern is also suited to build a Direct Memory Access (DMA) unit, using one hart as an input controller to fill all the shared memory banks with a structured data distributed to the computing harts. The synchronization of the DMA with the using harts is done through p swre and p lwre pairs of X PAR instructions rather than though interrupts.

A matrix multiplication program example experiment

Figure 18 shows a Deterministic OpenMP program to multiply integer matrices. Except for the det omp.h reference in red, the remaining of the text is standard OpenMP code and can be compiled with gcc -fopenmp.

This program (the base) has been run on three sizes of a vivado HLS simulation (Xilinx High Level Synthesis tool, version 2019.2) of the LBP processor (4, 16 and 64 cores). Four other versions have also been implemented and run on the simulated LBP: copy, distributed, d+c and tiled. The different codes are shown at URL [19].

The aim of the experience is to show that the LBP design is able to fill the harts pipelines with instructions all along the run, thanks to the high level of distant ILP exhibited by the Deterministic OpenMP parallelization, despite the multiple latencies each hart has to wait for. A second goal is to verify that the shared memory interconnection is dimensioned proportionally to the number of harts. As the number of cores is increased in LBP, the distant memory access requests are more frequent and have a longer latency. The experience should check that the hardware is able to sustain a high proportion of distant accesses without stalling the harts, i.e. keeping the IPC as close as possible to its peak.

Each run multiplies a matrix X with h lines and h/2 columns and a matrix Y with h/2 line and h columns, where h is the number of harts (i.e. 16, resp. 64 and resp. 256 for a 4, resp. 16 and resp. 64 core LBP processor).

The copy code copies a line of matrix X in the local stack to avoid its multiple accesses in the shared memory. The distributed code distributes and interleaves the three matrices evenly on the memory banks (four lines of X, two lines of Y and four lines of Z in each bank), to avoid the concentration of memory accesses on the same banks (which happens if matrix Y is not distributed). What matters is the number of cycles, i.e. the duration of the run. The IPC is an indication whether the parallelization is effective. However, a high IPC does not mean that useful work is done. The number of retired instructions is important to see the overcost of parallelization.

On a 4-core LBP (figure 19), even though the tiled version has the highest IPC (3.67 for a peak at 4), the base version is better as it is twice faster. The innermost loop has seven instructions (two loads, one multiplication, one On a 16-core LBP (figure 20), the fastest is the copy version. The base version achieves a poor 12.7 IPC when the copy version IPC is over 15 (for a peak of 16), saving more than 10000 cycles (16% faster). The overhead is moderate (14500 instructions, i.e. 1.5%).

On the 64-core LBP (figure 21), the tiled version is the best because it saves many long distance communications and because it distributes the remaining ones more evenly over time and space. It is twice faster than the distributed version and four times faster than the base version (1.18M cycles vs 2.08M and 4.14M). The IPC is 61.7 (for a peak of 64), showing that the LBP interconnect is strong enough to handle the high demand. The tiling overhead is not negligible (73M instructions versus 59M for the base version, i.e. +23%).

The 64-core LBP is not as fast as the Xeon Phi2 (1.18M cycles vs 391K, 3 times more). Firstly, there is no vector unit in LBP, which explains that the Xeon runs 32M instructions and LBP runs 73M, i.e. 2.28 times more. Secondly, LBP peak performance is 1 IPC per core when the Xeon peak is 6 (2 int, 2 mem and 2 vector ops per cycle). Hence, LBP reaches 0.96 IPC per core (96% of 1 IPC peak) and the Xeon reaches 1.28 IPC per core (81.86/64 ; 21% of 6 IPC peak). LBP is aiming embedded applications and should keep low-power and energy efficient, which the Xeon Phi2 is not.

Conclusion and Perspectives

Safety critical real time applications can benefit from parallel manycore processors, if a high level of determinism is ensured to guarantee repeatable timings, as on the LBP processor. Moreover, the reported experiment shows that a low-power manycore processor can be built for the embedded high performance computations. The design of the LBP processor is suited to either offer parallelism to microcontrollers or to safely accelerate computations through their parallelization and capture the distant ILP by hundreds of distributed harts.

Deterministic OpenMP is standard OpenMP with a new runtime. For the programmer, the difference resides in the new det omp.h header file and the hardware placement of code and data according to the program structure. The main difference between OpenMP classic runtime and Deterministic OpenMP new one comes from the ordering of harts in a parallel team. This ordering is optional in standard OpenMP but mandatory in Deterministic OpenMP because the hardware synchronization which ensures safety relies on the referential sequential order. As an example, a producing hart has to precede a consuming one in the referential sequential order to exhibit the read-after-write dependency linking the producer to the consumer. In Deterministic OpenMP, a later hart cannot send anything to a prior one (a data cannot go back in time).

In a future work, we will extend the actual 8-core FPGA implementation of LBP to fit a 16 core and two levels of routers on the Xilinx ZCU106 development board. We will also complete the Deterministic OpenMP translator to automatize the translation of standard OpenMP codes into our LBP specific machine code.

It is also interesting to study an adaptation of LBP to the particular context of High Performance Computing (HPC). The forking mechanism which creates teams of harts on a line topology could be slightly modified to allow the start of a new team on a new LBP chip, taking advantage of the incompletely used fields in the X PAR instruction set. The links connecting the cores could be duplicated or super links connecting chips could be added to allow more direct communications between distant harts. A deterministic version of MPI [START_REF] Lyndon | The MPI Message Passing Interface Standard[END_REF] could even be proposed, built around ordered communicators where a sender always precedes its receiver(s) (i.e. the sender rank is lower than all its receivers ranks).

Figure 1 :

 1 Figure 1: A Deterministic OpenMP program.

Figure 2 :Figure 3 :

 23 Figure 2: The Deterministic OpenMP translator transformation.

Figure 4 :

 4 Figure 4: A synchronized and placed execution of a Deterministic OpenMP code.

Figure 5 :

 5 Figure 5: The X PAR RISCV PISC ISA extension.

Figure 6 :

 6 Figure 6: The PISC RISCV code for the main function.

Figure 7 :

 7 Figure 7: The PISC RISCV code for the end of the LBP parallel start function.

Figure 8 :

 8 Figure 8: The PISC RISCV forking protocol.

Figure 9 :

 9 Figure 9: The 64 cores of the LBP processor.

Figure 10 :

 10 Figure 10: The core pipeline.

Figure 11 :

 11 Figure 11: Fetch and decode/rename stages.

Figure 12 :

 12 Figure 12: Issue, write back and commit stages.

Figure 13 :

 13 Figure 13: The memory of the LBP processor.

Figure 14 :

 14 Figure 14: The LBP processor.

 (s[0] + s[1] + s[2] + s[3])/4)) fixes the ordering of the evaluation (left to right in C) which ensures a deterministic result.

Figure 15 :Figure 16 :

 1516 Figure 15: Four interconnected LBP chips.

Figure 17 :

 17 Figure 17: The I/O system connected to a 4-core/16-hart LBP processor.

Figure 18 :

 18 Figure 18: A Deterministic OpenMP matrix multiplication program.

Figure 19 :

 19 Figure 19: Number of cycles, IPC and retired instructions for the matrix multiplication five versions on a 4-core LBP (16 harts).

Figure 20 :

 20 Figure 20: Number of cycles, IPC and retired instructions for the matrix multiplication five versions on a 16-core LBP (64 harts).

Figure 21 :

 21 Figure 21: Number of cycles, IPC and retired instructions for the matrix multiplication five versions on a 64-core LBP (256 harts).

define NUM_HART 8 #define HART_PER_CORE 4 unsigned omp_num_threads; typedef struct type_s{int t; /*...*/} type_t; type_t st; void thread (void *arg){ type_t *pt=(type_t *)arg; /*...(1);*/ } static inline void fork_on_current(void(*f)(void*), void *data){/*p_fc(data);*/} static inline void fork_on_next(void(*f)(void*), void *data){/*p_fn(data);*/} omp_num_threads=NUM_HART; LBP_parallel_start(/*...(2);*/ } thread , (void *)&st); void main(){ void LBP_parallel_start(void(*f)(void*), void *data){ type_t *pt=(type_t *)data; unsigned nt=omp_num_threads, h, t; for (t=0; t<nt-1; t++){ h=t%HART_PER_CORE; pt->t=t; if (h<HART_PER_CORE-1) fork_on_current(f, data); else fork_on_next(f, data); } pt->t=nt-1; f(data); }

 The c+d

	#include <stdio.h>	
	#include <det_omp.h>	
	#define LINE_X	16
	#define COLUMN_X	8
	#define LINE_Y	COLUMN_X
	#define COLUMN_Y	16
	#define LINE_Z	LINE_X
	#define COLUMN_Z	COLUMN_Y
	#define NUM_HART	16
	int X[LINE_X*COLUMN_X]={[0...LINE_X*COLUMN_X-1]=1};
	int Y[LINE_Y*COLUMN_Y]={[0...LINE_Y*COLUMN_Y-1]=1};
	int Z[LINE_Z*COLUMN_Z];
	void thread(int t){	
	int i, j, k, l, tmp;	
	for (l=0, i=t*LINE_Z/NUM_HART; l<LINE_Z/NUM_HART; l++, i++)
	for (j=0; j<COLUMN_Z; j++)
	tmp=0;	
	for (k=0; k<COLUMN_X; k++)
	tmp+=*(X+(i*COLUMN_X+k)) * *(Y+(k*COLUMN_Y+j));
	*(Z+(i*COLUMN_Z+j))=tmp;
	}	
	}	
	void main(){	
	int t;	
	omp_set_num_threads(NUM_HART);
	#pragma omp parallel for
	for (t=0; t<NUM_HART; t++) thread(t);
	}	

A hart is a hardware thread, as defined in the RISCV specification document[START_REF] Waterman | The RISC-V Instruction Set Manual[END_REF].

taken from the tiled matrix multiplication run as reported in section 7

the sequential order is informally defined as the one observed when the code is run sequentially

p ret is a pseudo-instruction to end a hart (p jalr zero,ra,t0)

pc+4 points on the p lwcv instruction just following the p jalr one

The FPGA implementation uses a small FPGA which limits the processor to 8 cores

The routers are not yet implemented on the FPGA but simulated for the reported experiment