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Abstract

This paper presents Deterministic OpenMP, a new runtime for OpenMP pro-
grams, and the Little Big Processor (LBP) manycore processor design. LBP
isolates the application it runs, using its multiple cores to distribute a non in-
terruptible single parallelized computation. When run on LBP, a Deterministic
OpenMP code produces cycle by cycle deterministic computations. LBP and
Deterministic OpenMP are particularly suited to safely accelerate real time em-
bedded applications through their parallel execution. The paper reports exper-
imental results to measure the LBP performance on an FPGA based simulator
and compares LBP with a Xeon Phi 2. The instruction retired and Instruction
Per Cycle (IPC) measured in the experiment indicate that LBP performance
does not suffer from the elimination of all the high performance features in-
compatible with an embedded processor (predictors, caches). LBP performance
comes from its hardware parallelizing capability, its capacity to capture dis-
tant Instruction Level Parallelism (ILP) and from our proposed Deterministic
OpenMP runtime favoring local memory accesses.

Keywords: OpenMP, Determinism, Parallel Programming, Repeatability,
Distant ILP, Isolation

1. Introduction

OpenMP developers must correctly synchronize the parallel parts of their
applications to avoid non-determinism or unnecessary serializations.

Non-determinism makes parallel programs in general and OpenMP ones in
particular hard to debug as a bug may be non repeatable and the action of a
debugger may alter the run in a way which eliminates the emergence of the bug.

It also makes the timing of a run non repeatable. Measuring a speedup is a
complex and far from scientific process. A lot of precautions, varying from one
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platform to another, must be taken to isolate the run and eliminate as much
perturbations as possible, either from external parasites or from the measure
itself. Moreover, many runs must be done with a new measure for each. The final
measure can be the lowest achieved time (understood as a smallest parasitism),
but usually people prefer the average of all the measures (understood as an
average parasitism).

One side effect is that parallelization can hardly benefit to real time critical
applications[1] as a precise timing cannot be ensured.

In this paper, we introduce Deterministic OpenMP (section 3), Parallel In-
struction Set Computer (PISC) (section 4) and the Little Big Processor (LBP)
(section 5). They were designed to offer the performance of parallelism to safety-
critical real time embedded applications. In this domain, safety is more impor-
tant than performance and up to now, industrials have preferred to keep away
from parallelism and favor older single core in-order processors. But they need
more and more performance and the available CPUs are almost all multicore
ones today.

We show from experimental results that: (1) all the internal timings of a
Deterministic OpenMP program run on an LBP processor are repeatable, (2)
the overhead to parallelize a run is low and (3) the 64 cores and 256 threads
LBP processor, even though it has no high performance unit (to keep it aimed to
embedded applications), sustains the high demand of a matrix multiplication[2]
without saturating its hierarchical bus-based interconnect. In other words, LBP
aims to be efficient, safe and low-power.

Deterministic OpenMP is an on-going implementation of the OpenMP stan-
dard. The goal of Deterministic OpenMP is to enforce determinism through
hardware. The control of the synchronizations is no more a matter of locks,
barriers and critical sections inserted by the programmer, properly or not, but
is handled automatically by the hardware.

Some standard OpenMP programs can be run on LBP simply by replacing
the OpenMP header file by our Deterministic OpenMP one. A new runtime is
added by a preprocessor to launch the team of threads on the processor harts1.

In this paper, we define PISC, which is an extension of the RISC Instruction
Set Architecture (ISA). PISC adds a few machine instructions to fork, join and
send/receive registers directly in the hardware. We have extended the RISCV
ISA with a PISC ISA named X PAR.

LBP is a 64-core processor we have designed, to be compared with industrial
manycores like the 72-core Xeon Phi2 [3] or the 80-core Kalray Coolidge MPPA3
[4] but aiming different applications. LBP is based on a much simpler core
hardware and interconnect, implementing a new hardware-based parallelization
paradigm. As the parallelization of a run can be handled through PISC machine
instructions, it may be deployed on an LBP manycore processor without the help
of an Operating System (OS). Parallelism is available on bare-metal hardware.
Simpler versions of LBP (4 harts in 1 core or 16 harts in 4 cores) can be also

1A hart is a hardware thread, as defined in the RISCV specification document[5].
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used as high performance microcontrollers for automotive industry applications
such as autopilot helpers.

The LBP design aims to keep a rate of one Instruction Per Cycle (IPC)
per core with no branch predictor, no cache-coherent memory hierarchy, no
Network-on-Chip (NoC) and no memory access ordering unit (e.g. a load/store
queue). The single core throughput relies on multithreading with four harts.
When they are all active, latencies are fully hidden as the experiment reported
in section 7 indicates.

By combining Deterministic OpenMP with an LBP processor, a developer
can benefit from a 64-core 256-hart processor to safely parallelize his applica-
tions. A Deterministic OpenMP program applied many times to the same input
on LBP has an invariant number of retired instructions and most of the time,
has an invariant number of cycles and produces an unchanging set of events at
every cycle. The LBP processor can achieve cycle determinism, i.e. the cycle
by cycle ordering of events in the processor is invariant for a given program and
data. This is obtained through a perfect isolation of the application run[6]. With
cycle determinism in LBP, a run can be described by invariant statements as ”at
cycle 467171, core 55, hart 2 sends a memory request to load address 106688
from memory bank 13; at cycle 467183, it writes back the received data”2. The
statement holds for any run of the same program applied to the same data on
the same LBP processor.

Cycle determinism may be observed on a LBP run only when the program
has no interaction with the outside world. For example, a program having an
alerting temperature sensor input would depend on a non-deterministic external
event and its run would not exhibit cycle determinism (the number of cycles
of the run would not even be constant). However, even in such a situation,
the LBP run still ensures proper ordering in accordance with the referential
sequential order3 (or logical clock as defined by Lamport [7]) (a computation
depending on the non-deterministic event occurs after it, which is ensured by
the LBP hardware).

Moreover, LBP does not handle external events though interrupts. LBP is
a non interruptible processor. A computation which has to wait for an input,
being it produced by a timer as in real time applications, is not stopped and
resumed after an interrupt coming from the input device. This classic behaviour
breaks the isolation, which impacts the order of the instructions run. On LBP,
the input code position in the static code fixes a semantic which the hardware
realizes. The instructions are run in the partial order of their dependencies,
with no software synchronization like context switch and interrupts. This is
illustrated in section 6.

2taken from the tiled matrix multiplication run as reported in section 7
3the sequential order is informally defined as the one observed when the code is run se-

quentially

3



2. Related works

There are previous works on building deterministic hardware for safety crit-
ical applications [8][9]. None achieves cycle by cycle internal determinism as
LBP does through the concept of hardware parallelization. A recent paper [10]
has evaluated the capacity for OpenMP to be suited to safety critical appli-
cations, highlighting functional safety problems of non-conforming programs,
unspecified behaviors, deadlocks, race conditions and cancellations. This work
is complementary to ours which focuses on timing safety.

LBP does not use speculation to reduce latencies. Instead, LBP favours
latency hiding through multithreading and distant Instruction Level Parallelism
(ILP) exploitation to fill the core pipelines. It is worth to mention the dangers
of speculative hardware for privacy (another aspect of the secutity level required
for safety critical applications) as Spectre[12], Meltdown[11] and more recently
Spoiler[13] have shown. As LBP does not speculate, it does not speculatively
modify any internal resource (branch predictor or cache) which, in speculative
processor, can be observed by a spying application, indirectly revealing any
stored secret.

Even though LBP does not speculate, it is able to fill each core pipeline,
thanks to multithreading. Multithreading is a secure substitute to speculation
as soon as the multiple threads are all parts of the same parallelized application.
The pipeline bubbles are filled by instructions of another thread belonging to
the same computation, as a compiler would fill the delays by inserting indepen-
dent instructions in the holes. However, LBP can insert instructions from an
arbitrarily distant hart, which the compiler cannot. The OpenMP paradigm
exhibits distant ILP by its parallel pragmas, which is used by LBP to keep close
to the peak 1 IPC per cycle.

If local ILP is known to be severely bounded (with an average of 6 when
full register renaming is applied), distant ILP is also known to be unbounded,
increasing with the size of the computation. The stack used to allocated function
frames [14] and the control flow [15] are the two main obstacles to ILP. The
OpenMP parallelization eliminates the dependencies between the stack frames
and between the control flow paths for independent threads. In [16], the authors
show that when removing the stack and control dependencies (i.e. as if the
function evaluations would be done in full parallelism), the global ILP is the
sum of the functions individual ILPs, unboundly increasing with the size of the
data, i.e. the number of function calls.

3. Deterministic OpenMP

A Deterministic OpenMP program is quite not distinguishable from a classic
OpenMP one[17]. Figure 1 shows an example of a Deterministic OpenMP code
to distribute and parallelize a thread function on a set of eight harts. The dif-
ference with a pure OpenMP version lies in the header file inclusion (det omp.h
instead of omp.h, in red on the figure).
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}

void main(){

int t;

/*... (1);*/

#pragma omp parallel for

#define NUM_HART 8

void thread(/*...*/){

omp_set_num_threads(NUM_HART);

#include <det_omp.h>

for (t=0; t<NUM_HART; t++)

thread(/*...*/);

/*... (2);*/

}

Figure 1: A Deterministic OpenMP program.

In a classic OpenMP implementation, the parallel for pragma builds a team
of OMP NUM THREADS threads which the OS maps on the available harts,
optionally balancing their loads. In the Gnu implementation, this is done
through the GOMP parallel function (OMP API[18]). In Deterministic OpenMP,
a team of harts -not threads- is created, each matching a unique and constant
placement on the processor. One drawback is that on LBP, load balancing is
the problem of the programmer. It is his responsability to evenly divide his
job into parallel tasks. If properly done, the efficiency is improved compared to
a dynamic load balancing handled by the OS because dynamic load balancing
implies costly thread migrations.

The Deterministic OpenMP code in figure 1 is translated into the code in
figure 2. The text in black on the figure comes from the original OpenMP source
code on figure 1. The green text is added by the translator.

The LBP parallel start function creates and starts the team of harts. It
organizes the distribution of the copies of function thread on the harts. It calls
fork on current which creates a new hart on the current core or fork on next
which creates a new hart on the next core (LBP cores are ordered). The machine
code for fork on current is given in section 4. The LBP parallel start function
fills the harts available in a core before expanding to the next one.

Functions fork on current and fork on next do not interact with the OS by
calling a forking or cloning system call. Instead, they directly use the hardware
capability to fork the fetch point, running the thread function locally and the
continuation remotely (on the same core or on the next one). Figure 3 shows
how the different copies of function thread are distributed on a 4-core and 16-hart
LBP processor (only two cores are filled by the eight iterations of the parallel
for loop in the example).

The hardware fork mechanism has two advantages over the classic OS one:
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#define NUM_HART 8

#define HART_PER_CORE 4

unsigned omp_num_threads;

typedef struct type_s{int t; /*...*/} type_t;

type_t st;

void thread ( void *arg ){

type_t *pt=(type_t *)arg;

/*...(1);*/
}
static inline void

fork_on_current(void(*f)(void*), void *data){/*p_fc(data);*/}

static inline void

fork_on_next(void(*f)(void*), void *data){/*p_fn(data);*/}

omp_num_threads=NUM_HART;

LBP_parallel_start(

/*...(2);*/
}

thread , (void *)&st);

void main(){

void LBP_parallel_start(void(*f)(void*), void *data){

type_t *pt=(type_t *)data;

unsigned nt=omp_num_threads, h, t;

for (t=0; t<nt−1; t++){

h=t%HART_PER_CORE;

pt−>t=t;

if (h<HART_PER_CORE−1) fork_on_current(f, data);

else fork_on_next(f, data);
}

pt−>t=nt−1;

f(data);
}

Figure 2: The Deterministic OpenMP translator transformation.

core 0 core 1 core 2 core 3

hart 0

hart 1

hart 2

hart 3

Figure 3: Distributing a team of threads on harts.

• it concatenates the continuation thread to the creating one in the sequen-
tial referential order, on which the hardware is able to synchronize and
connect producers and consumers,

• it places the continuation thread on a fixed hart, in the same or next core.

In a classic OpenMP run of the code on figure 1, all the function thread
copies would become non-ordered and independent threads. In contrast in De-
terministic OpenMP, the created harts are ordered (in the iterations order)
which simplifies communications: a creating hart sends continuation values to
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the created one through direct core-to-core links.
LBP offers the programmer the possibility to map his code and data on the

computing resources according to the application structure. A producing func-
tion can be parallelized on the same set of cores and harts than the consuming
one, eliminating any non local memory access. The OS is not able to do the
same for OpenMP runs as it has no knowledge of which thread produces and
which thread consumes. The OS can only act on load balancing. The task
of good mapping in classic OpenMP is the programmer’s duty. To do his job
properly, he has to deal with his application, but also with the OS and the com-
puting and memory resources (e.g. load balancing, pagination). This leads to
difficult decisions, with a complexity proportional (if not worse) to the number
of cores.

void main(){

int t;

omp_set_num_threads(NUM_HART);

#pragma omp parallel for

for (t=0; t<NUM_HART; t++)

thread_set(v,t);

#pragma omp parallel for

for (t=0; t<NUM_HART; t++)

thread_get(v,t);

}

/*sequential part*/

void thread_set(int v[], int t){

/*init chunk t of v*/

}

void thread_get(int v[], int t){

/*use chunk t of v*/

}

#define NUM_HART 16

int v[SIZE];

#define SIZE (1<<16)

#include <det_omp.h>

memory
bank 0

core 0

memory
bank 3

core 3

hart 0

hart 1

hart 2

hart 3

memory
bank 1

core 1

memory
bank 2

core 2

Figure 4: A synchronized and placed execution of a Deterministic OpenMP code.

Figure 4 shows a code with two successive parallel parts embedded in func-
tion main (upper right). The first one initializes global vector v through function
thread set which the second part uses through function thread get. Thanks to
the sequential referential order, the second part is serialized by LBP after the
first one with no OS intervention. Thanks to the placement of the harts created
by the two parts on an aligned set of cores, all the memory accesses reference a
local memory bank. Each thread get call reads the vector elements it consumes
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from its local memory bank where the thread set call has written them. The
producing hart, the consuming hart and the data chunk they access all reside
in the same LBP core/local memory.

The consuming phase is perfectly separated from the producing one by the
hardware barrier inserted between the two parallelized loops. The hardware
ensures that the thread get loads occur after the thread set ones with no added
OS synchronizing primitive nor hardware memory coherence mechanism.

The bottom part of the figure represents 4 cores, i.e. 16 harts. Each red
arrow (on the left half of each hart representing an iteration of the first parallel
for loop) stands for a LBP fork (hart creation) of a thread set function. The
last hart in a core forks on the next core (raising diagonal red arrow).

The green arrows match the thread get function calls (second parallel for
loop). The magenta arrow (right to left raising diagonal) is the join separating
the set phase from the get one (barrier between the two parallel for). The join
sends the continuation address to the initial hart (i.e. hart 0 core 0 on the
example). The cyan arrow (multiple segments line from bottom right to top
left) is the join separating the get phase from the last sequential part of main.
The sequential referential order is materialized when following successively the
red, magenta, green and cyan arrows. The hardware memorizes the necessary
links to manage this order and uses them to synchronize harts and make them
communicate.

4. The PISC ISA

The PISC ISA extension is a set of 12 new machine instructions. A RISCV
extension named X PAR has been defined. It is summarized on figure 5.

The p swcv and p lwcv instructions (cv stands for continuation value) serve
to achieve a hardware synchronized communication between a producer and a
consumer of the same team, for example to transmit an input argument from
member to member (e.g. the iteration loop index). The consumer should be
the hart next after the producer (same or next core).

The p swre and p lwre instructions (re stands for result) serve to achieve
a hardware synchronized communication between a producer and a consumer
of different teams, with the consumer physically preceding the producer (same
or preceding core; the connection used to transmit the value is the intercore
backward link). They allow for example a team to produce a reduction value
and have its last member send it to the join hart.

The p jal instruction is a parallelized call. Instead of pushing the return
address on the stack, it sends it to an allocated continuation hart. The p jalr
instruction is the indirect variant of the p jal one. It can also be used as a return
from a parallelized hart (pseudo instruction p ret standing for p jalr zero, rs1,
rs2).

The p fc and p fn instructions serve to allocate a new hart, either on the
same core or on the next one.
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syntax

p_lwcv rd, offset

p_swcv rs1, rs2, offset

p_lwre rd, offset

p_swre rs1, rs2, offset

p_jal rd, rs1, offset

semantic

restore rd from local stack at offset

save rs2 on rs1 hart stack at offset (allocated hart)

restore rd from local result buffer number offset

save rs2 to rs1 hart (any prior hart) result buffer number offset

send pc+4 to rs1 hart (allocated hart)
clear rd
goto pc+offset

if rs1==0 && rs2==−1: exit
if rs1==0 && rs2!=current hart: end current hart

send ending hart signal to next hart
if rs1==0 && rs2==current hart: keep current hart waiting

p_set rd, rs1

p_syncm

p_jalr rd, rs1, rs2

p_fc rd

p_fn rd

p_merge rd, rs1, rs2

rd=(rs1&0x0000ffff) | ((4*core+hart)<<16) | 0x80000000

stop fetch until all decoded memory accesses in local hart are run

if rs1!=0: send rs1 to rs2 hart (join hart)

send pc+4 to rs2 hart (allocated hart)
clear rd
goto rs1

rd=(4*c+allocated hart)
allocate a free pc on current core (fork)

allocate a free pc on next core (fork)

rd=(rs1&0x7fff0000) | (rs2&0x0000ffff)

rd=(4*(c+1)+allocated hart)

p_jalr zero, rs1, rs2
(p_ret) send ending hart signal to next hart

Figure 5: The X PAR RISCV PISC ISA extension.

The p merge and p set are instructions used to manipulate hart identities.
They are used to prepare and propagate the first team member identity to allow
the join from the last team member back to the first.

The p syncm instruction serves to synchronize memory accesses within a
hart. In a hart, loads and stores are unordered. The hardware provides no
control on the out-of-order behaviour of loads and stores. For example, to
ensure a load depending on a store is run after it, a p syncm instruction should
be inserted between them. The p syncm acts by blocking the fetch (as soon as
it is decoded) until all the in flight memory accesses of the hart are done.

More details on PISC can be found at URL [19].
Figures 6, 7 and 8 show the machine instructions compiled for the Determin-

istic OpenMP code on figure 2. The target processor is assumed to be bare-metal
(no OS). The LBP processor implemented in the FPGA directly starts running
the main function and stops when the p ret instruction is met (with register
ra=0 and register t0=-1, meaning exit).

Figure 6 shows the compiled PISC RISCV code for the main function. Reg-
isters ra and t0 play a special role. Register ra has its normal usage: it holds

9



main : l i t0 ,−1 #t0 = ex i t code
addi sp , sp ,−8 #a l l o c a t e two words on l o c a l s tack
sw ra , 0 ( sp ) #save reg . ra on l o c a l stack , o f f s e t 0
sw t0 , 4 ( sp ) #save reg . t0 on l o c a l stack , o f f s e t 4
p s e t t0 #t0 = 4∗ core+hart ( current hart i d en t i t y )
l i a0 , thread #a0 = thread func t i on po in te r
l i a1 , data #a1 = po inte r on data s t ruc tu r e
j a l LBP pa r a l l e l s t a r t

rp : / ∗ . . . ( 2 ) ∗ /
lw ra , 0 ( sp ) #re s t o r e ra from l o c a l stack , o f f s e t 0
lw t0 , 4 ( sp ) #re s t o r e t0 from l o c a l stack , o f f s e t 4
addi sp , sp , 8 #f r e e two words on l o c a l s tack
p re t #ra==0 && t0==−1 => e x i t

Figure 6: The PISC RISCV code for the main function.

the return address. When LBP parallel start is called, ra receives the future
team join address (labeled rp on the figure). Register t0 holds the current hart
number set with the p set instruction and propagated along the team members
through register transmission (t0 contains a value combining the hosting core
and the current hart identity in the core). The LBP parallel start function cre-
ates the team of harts to run the parallelized loop. It returns to rp label when a
p ret4 instruction in the last created team member is reached. The ending hart
sends ra to hart t0 (i.e. core 0, hart 0 in the example), which resumes the run
at rp label.

There are four types of team member endings (continuation after a p ret
instruction) according to the received ra and t0:

1. ra is null and t0 is not the current hart: the hart ends,

2. ra is null and t0 is the current hart: the hart waits for a join,

3. ra is null and t0 is -1: the process exits,

4. ra is not null: the hart ends and sends ra to the t0 hart which restarts
fetch (the parallel section ends and is continued by a sequential one).

The p ret instructions are committed in-order (in the sequential referential
order) to implement a hardware separation barrier between a team of concurrent
harts and the following sequential OpenMP section. The barrier is implemented
as a hardware signal transmitted from hart to hart along the team members.
Hence, the harts are released in order (each hart commits its p ret only when it
has received the ending hart signal from its predecessor; it sends its own ending
hart signal to its successor after this commit).

Figure 7 shows how function LBP parallel start calls the last occurrence of
function thread with a RISCV jalr a0 indirect call instruction. This last call is
run by the last created team member on the last allocated hart (i.e. no fork).
The same hart runs the code after the return point at rp2 label. The ending
p ret instruction joins with the following sequential ending part of main (team
member ending type 4 with ra being not null).

4p ret is a pseudo-instruction to end a hart (p jalr zero,ra,t0)
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addi sp , sp ,−8 #a l l o c a t e two words on l o c a l s tack
sw ra , 0 ( sp ) #save reg . ra on stack , o f f s e t 0
sw t0 , 4 ( sp ) #save reg . t0 on stack , o f f s e t 4
p s e t t0 #t0 = 4∗ core+hart ( current hart i d en t i t y )
j a l r a0 #a0 i s the po in te r on func t i on thread

rp2 : lw ra , 0 ( sp ) #re s t o r e reg . ra from stack , o f f s e t 0
lw t0 , 4 ( sp ) #re s t o r e reg . t0 from stack , o f f s e t 4
addi sp , sp , 8 #f r e e two words on l o c a l s tack
p re t #ra !=0 => end and send ra to t0 hart

Figure 7: The PISC RISCV code for the end of the LBP parallel start function.

The fork on current function called in LBP parallel start (figure 2) is a fork
protocol composed of the machine instructions presented on figure 8. The code
allocates a new hart on the current core (p fc X PAR machine instruction; the
allocated hart identity is saved to the destination register t6), sends registers
to the allocated hart (three p swcv X PAR instructions; a1 holds a pointer on
the data argument), starts the new hart (p jalr X PAR instruction; a0 holds
the thread address) which receives the transmitted registers (three matching
p lwcv X PAR instructions; the join address is restored from stack to ra, the
join core/hart to t0 and the data pointer to a1).

p f c t6 #t6 = a l l o c a t e d hart number (4∗ core+hart )
p swcv ra , t6 , 0 #save ra on t6 hart stack , o f f . 0
p swcv t0 , t6 , 4 #save t0 on t6 hart stack , o f f . 4
p swcv a1 , t6 , 8 #save a1 on t6 hart stack , o f f . 8 ( data )
p merge t0 , t0 , t6#merge reg . t0 and t6 in to t0
p syncm #block f e t ch un t i l mem. a c c e s s e s are done
p j a l r ra , t0 , a0#c a l l thread l o c a l l y , s t a r t pc+4 remotely
p lwcv ra , 0 #re s t o r e ra from stack , o f f . 0
p lwcv t0 , 4 #re s t o r e t0 from stack , o f f . 4
p lwcv a1 , 8 #re s t o r e a1 from stack , o f f . 8 ( data )

Figure 8: The PISC RISCV forking protocol.

The seven first instructions (in red; down to the p jalr) are run by the forking
hart and the three last ones (in blue) are run by the forked hart. The p jalr
instruction calls the thread function on the local hart and sends the return
address5 to the allocated hart, which starts fetching at the next cycle. After the
p jalr instruction has been issued, the function called and the code after return
are run in parallel by two different harts.

The p syncm X PAR instruction synchronizes the send/receive transmission
protocol (p swcv and p lwcv pairs). The sending hart is blocked until all memory
writes are done (ra, t0 and a1 registers saved on the allocated hart stack). The
allocated hart starts only when its arguments have been copied on its stack by
the allocating hart.

5pc+4 points on the p lwcv instruction just following the p jalr one
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Figure 9: The 64 cores of the LBP processor.

5. The LBP parallelizing processor

5.1. The cores

Figure 9 shows the general structure of the 64-core LBP processor as it is
implemented on the FPGA (the global shared memory is presented on figure
13)6. Cores are represented by blue squares labeled c. Links between cores
are represented by magenta and blue arrows. Dashed lines represent optional
extensions, either to have a larger manycore or to connect multiple LBP chips.
There are 64 ordered cores. The first core in order (core 0) is surrounded by a

6The FPGA implementation uses a small FPGA which limits the processor to 8 cores
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red rectangle (top of the figure). Its successor is just aside, on the left. The last
core (core 63) is surrounded by a green rectangle (at the right of core 0). The
line of cores has a serpentine shape. The last core is not connected to the first
one. Hence, teams may only expand along successive cores until the last one, no
further (a line of cores in a chip can be extended by connecting a second chip;
a line of chips can be built to unboundingly extend the line of cores; the first
core is the first one of the first chip and the last core is the last one of the last
chip as on figure 15).

Each core is directly connected to its successor (blue arrow). Each core is
indirectly connected to any predecessor through a unidirectional line (magenta
arrows). The direct connections (blue arrows) are used to allocate harts (fork
with p fc or p fn), send continuation values (p swcv) and propagate ending hart
signals (p ret). The backward line (magenta arrows) is used to send join ad-
dresses (p ret), function results and reduction values (send a result with p swre).

fetch
decode
rename execute

ooo issue

code

bank
memory

data

bank
memory

next PC

writeback
ooo in order

commit

branch target PC

join PC

fork PC

neighbor
core

neighbor
core

Figure 10: The core pipeline.

5.2. The pipeline

Figure 10 shows the LBP core pipeline. It has a classic five stages out-of-
order organization. Each stage selects one active hart at every cycle as shown
on figures 11 and 12. In one cycle, a core fetches one instruction for the selected
fetching hart, renames one instruction of the selected renaming hart, issues one
instruction of the selected issuing hart, writes back one result to the register
file of the selected writing hart and commits one instruction for the selected
committing hart. The five selections are independent from each other.

A hart may be selected to fetch if its pc is full (a thread is running), if it has
not been suspended and if the fetched instruction may be saved in the decode
stage instruction buffer (labeled ib on figure 11)(the buffer remains full until the
hart is selected for decode/rename).

In particular, a hart is suspended after fetch until the next pc is known, at
best after the decoding which produces nextPC as shown on figure 10 (pc +
1 or the target of an unconditional direct branch). During the suspension,
other active harts on the core are selected. LBP hides branch latency through
multithreading instead of eliminating it through prediction (because every hart
is suspended after fetch, at least two full harts are necessary to fill the pipeline).
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Figure 11: Fetch and decode/rename stages.

A hart may be selected for renaming if its instruction buffer is full with a
fetched instruction, if there are available resources to do the renaming (renaming
table labeled rt on figure 11, decode/rename stage) and there is a free entry in
the hart reorder buffer (labeled rob in the commit stage on figure 12). Once
renamed an instruction is saved in the hart instruction table (labeled it in the
issue stage) and in the hart reorder buffer.

it0

it3

it1

it2

select

rrf0 rd

rrf1 rd

rrf2 rd

rrf3 rd

rb0

rb3

rb1

rb2

fu select

rrf0 wr

rrf1 wr

rrf2 wr

rrf3 wr

select

rob0

rob3

rob1

rob2

rob0

rob3

rob1

rob2

write back stageissue stage commit stage

Figure 12: Issue, write back and commit stages.

A hart may be selected for issue if it has at least one ready instruction in its
instruction table (renamed instructions wait in the hart instruction table until
the sources are ready; there is one table per hart) and if the result buffer of the
hart in the write back stage is empty (labeled rb in the write back stage; hence,
a multicycle computation blocks the hart for issue until the result has been
written back, releasing the result buffer). Once issued, the renamed instruction
reads its renamed sources in the renaming register file (labeled rrf), crosses a
single or multiple cycle functional unit (labeled fu) and saves the result in the
hart result buffer.

A hart may be selected for write back if its result buffer is full and the
commit buffer of the hart is empty (labeled cb). The selected result is written
to the renaming register file of the hart. The written back instruction is notified
as terminated in the hart reorder buffer.

A hart may be selected for commit if its reorder buffer tail entry is termi-
nated. If the instruction is a hart ending p ret, the ending hart signal must have
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been received from the preceding hart.
The pipeline has the minimum hardware to make the out-of-order engine

work (to keep each core as simple as possible, which allows either to maximize
the number of cores on the die for a high performance manycore or to build a
very low-cost parallelizing microcontroller with one core and 4 harts).
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Figure 13: The memory of the LBP processor.

A consequence is that a hart may have to wait in multiple situations: to fetch
because the pc is unknown (after a branch; this is frequent), to decode because
there is no renaming register available to rename the destination (this is rare)
or to issue because the result buffer is occupied (waiting for a computation in
progress or waiting to be selected for write back; this is frequent in programs
with a lot of memory accesses and/or a lot of multiplications/divisions). How-
ever, our experiments have shown that when the 4 harts are active, the core
pipeline achieves a rate close to the peak of one instruction per cycle.

There is a situation in which an instruction can wait for issue for millions of
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cycles. When a p lwre instruction in a consuming hart ch has to load a result
which is to be sent by an asynchronous producing hart ph (e.g. ph inputs a data
to be sent to ch by a matching p swre instruction). Hart ch p lwre instruction
waits in its instruction table until hart ph issues its p swre instruction which
sends the input data on the intercore backward link. Once the data has reached
the destination hart ch, it fills the ch result buffer, allowing the consuming
p lwre instruction to issue.

This synchronization of asynchronous harts through producing and consum-
ing instructions having a read-after-write dependency (on the implicit result
buffer) is the main reason why LBP cores are moved by an out-of-order engine.
Traditionally, out-of-order issue serves to capture the local ILP within a hart.
In LBP, the out-of-order mechanic mainly serves to synchronize producers and
consumers from different harts.

Even though harts are interleaved in the pipeline on a cycle by cycle basis,
this interleaving keeps deterministic as it only involves harts belonging to the
same application.

5.3. The memory

Figure 13 shows the LBP memory organization. Each core is associated to
a set of memory banks (red square labeled m). There are three banks per core.
One bank holds the code, another holds local data (a stack) and the last one is
used as a shared global memory.

The shared banks have two access ports. One port is used for a local access
and the other port is used for distant accesses through a hierarchy of routers
which interconnect the banks7.

Each core has a bidirectional access to a level one router (green rectangle
labeled r1 and shared by four cores). Each r1 router is connected to a level two
r2 router (shared by four r1). Eventually, r2 routers are connected through a
level three router r3. The pattern is extensible (for example to extend the shared
memory out of the LBP chip or for future extensions of an LBP manycore).

Each r1 router is able to handle one access per link per cycle (i.e. 8 transac-
tions with the connected cores plus 4 transactions with the connected memory
banks; the router has the necessary internal buffers to pipeline the transactions
from core to memory and back to core). Every cycle, each r2 router is able to
receive 4 incoming requests from the 4 connected r1, send 4 outgoing request
results to the 4 r1, propagate one request to r3 and receive one request result
from r3. Eventually, every cycle the r3 router is able to propagate 4 requests
and 4 results to/from the 4 connected r2.

Figure 14 shows the superposition of figures 9 and 13 which makes the LBP
manycore design (a LBP processor can be built from any subset of the 64 core
design; for example, a 16-core LBP has no r3 router, a 4-core has no r2 nor r3
and a single core LBP has no router at all). Figure 15 shows four interconnected

7The routers are not yet implemented on the FPGA but simulated for the reported exper-
iment
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Figure 14: The LBP processor.

LBP chips with their pinout and a shared last level memory (e.g. DRAM
controller and DDR4 DIMM).

6. LBP is non interruptible

LBP cores are not interruptible. Each hart pc has no external input. Figure
16 shows a Deterministic OpenMP application to be run on a microcontroller
connected to 4 sensors and an actuator. A fusion of the 4 values obtained from
the sensors is sent to the actuator. The sensors are assumed to respond in any
non-deterministic order. However, the ordering of the input values in the fusion
computation static code (e.g. (s[0] + s[1] + s[2] + s[3])/4)) fixes the ordering of
the evaluation (left to right in C) which ensures a deterministic result.

17



memory

r4

core 0−63 core 64−127 core 128−191 core 192−255

LBP

64−core 64−core

LBP

64−core

LBP

64−core

LBP

Figure 15: Four interconnected LBP chips.

int s[4], f;

C source after translation

void fork_on_current(

void(*f)(void*), void *data){

/*p_fc(f, data);*/

}

while(1){

void main(){

fork_on_current(get_sensor0,&s[0]);

fork_on_current(get_sensor1,&s[1]);

fork_on_current(get_sensor2,&s[2]);

get_sensor3(&s[3]);

set_input(0);

set_input(1);

set_input(2);

set_input(3);

f=fusion(s);

set_output(); set_actuator(f);

}

}

#include <det_omp.h>

int s[4], f;

void main(){

while(1){

Deterministic OpenMP source

}/*end main*/

}/*end while*/

set_output(); set_actuator(f);

f=fusion(s);

}/*end parallel sections*/

set_input(3); get_sensor3(&s[3]);

#pragma omp section/*section_3*/

set_input(2); get_sensor2(&s[2]);

#pragma omp section/*section_2*/

set_input(1); get_sensor1(&s[1]);

#pragma omp section/*section_1*/

set_input(0); get_sensor0(&s[0]);

#pragma omp section/*section_0*/

{

#pragma omp parallel sections

h1

h2

h3

h0

h0

h0

Figure 16: An example of a non-deterministic application run deterministically on LBP.

The run is distributed on four harts with the fork on current function of the
det omp.h runtime (labeled h0 to h3 on the right part of the figure). Hence,
the four possible inputs are simultaneously monitored. The monitoring is an
active wait of each input machine instruction on the input controller. The team
of four harts joins back to h0. The last team member sends the fused value f
to h0 which is output to the actuator. Hart h0 loops and starts a new team of
harts to input.

Figure 17 shows an example of an I/O system connected to a 4-core LBP.
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Two of the 16 harts are used as I/O controllers. The input controller is hart 3
of core 3 (rightmost core, lower hart, labeled in cont). The output controller is
hart 0 of core 0 (leftmost core, upper hart, labeled out cont).

out cont

in cont

in deviceout device mem mem mem mem

r1

core 0 core 1 core 2 core 3

p_swre

p_lwre

sw

p_swre

sw

p_lwre

Figure 17: The I/O system connected to a 4-core/16-hart LBP processor.

The input controller is connected to the input devices (e.g. the four sensors).
It polls the input ports mapped on the shared memory bank. Once a value is
present, the input controller sends it to the requesting core, using the intercore
backward link (X PAR instruction p swre; the input value travels from the input
controller to the hart requesting an input).

To request an input (as do the set input function calls in the figure 16 exam-
ple), a hart (hart 1 in core 2 on figure 17) writes a request in the input controller
memory through the r1 router (RISCV standard sw store word instruction; the
written word identifies the requesting hart). To input (as the get sensor func-
tion calls), it runs a p lwre instruction which matches the controller p swre one.
The p swre and p lwre pair are asynchronously fetched and renamed but orderly
issued. The p swre instruction is issued after the input data has been received
and loaded in the register to be sent. The p lwre instruction is issued when the
hart result buffer is full, i.e. when the travelling input data has been written
into the destination hart. This synchronization is done by the cores out-of-order
engines from the register or the result buffer read-after-write dependencies.

The output controller works the same way. To request an output (as the
set output function call), a hart (hart 2 in core 1 on figure 17) writes a request in
the output controller memory. To output (as the set actuator function call), the
hart sends the data to be output with a p swre instruction. The data is saved in
the output controller result buffer. A matching p lwre instruction is issued by
the output controller to receive the data, which is written to the output device
by a store word instruction.

This is very different from the interrupt based classic I/O implementation
in which the I/O response time is very hard to bound (interrupt handler +
thread wake up + thread running, where the interruption may be interrupted
by another I/O). On LBP, once the data is available to the input controller,
within a few cycles it is received by the requesting hart. The response time is
very short (a few cycles) and easy to bound.

Among the input devices can be timers. On classical hardware/OS, external
timers are not highly reliable because of the imprecise lag between the very
precise periodic signal and its impact on the piece of software which it clocks.
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Internal timers are prefered if times close to the internal clock are to be measured
(e.g. the exact latency in cycles of a run composed of a few tens or a few
hundreds of instructions). The LBP I/O system, based on the producer to
consumer dependency and their automatic synchronization by the out-of-order
engine, reduces to a few cycles the internal reaction delay after an input, making
external timing systems adapted to be used as very precise external clocks for
real time softwares.

The LBP I/O pattern is suited to distributed I/Os. A team of harts can
collaborate to input pieces of a structured data from an input controller or to
output a structured result chunk by chunk through an output controller. The
intercore backward link connecting the cores acts as a stream either filling the
team of harts or draining them.

The LBP I/O pattern is also suited to build a Direct Memory Access (DMA)
unit, using one hart as an input controller to fill all the shared memory banks
with a structured data distributed to the computing harts. The synchronization
of the DMA with the using harts is done through p swre and p lwre pairs of
X PAR instructions rather than though interrupts.

7. A matrix multiplication program example experiment

Figure 18 shows a Deterministic OpenMP program to multiply integer ma-
trices. Except for the det omp.h reference in red, the remaining of the text is
standard OpenMP code and can be compiled with gcc -fopenmp.

This program (the base) has been run on three sizes of a vivado HLS simu-
lation (Xilinx High Level Synthesis tool, version 2019.2) of the LBP processor
(4, 16 and 64 cores). Four other versions have also been implemented and run
on the simulated LBP: copy, distributed, d+c and tiled. The different codes are
shown at URL [19].

The aim of the experience is to show that the LBP design is able to fill the
harts pipelines with instructions all along the run, thanks to the high level of
distant ILP exhibited by the Deterministic OpenMP parallelization, despite the
multiple latencies each hart has to wait for. A second goal is to verify that the
shared memory interconnection is dimensioned proportionally to the number of
harts. As the number of cores is increased in LBP, the distant memory access
requests are more frequent and have a longer latency. The experience should
check that the hardware is able to sustain a high proportion of distant accesses
without stalling the harts, i.e. keeping the IPC as close as possible to its peak.

Each run multiplies a matrix X with h lines and h/2 columns and a matrix
Y with h/2 line and h columns, where h is the number of harts (i.e. 16, resp.
64 and resp. 256 for a 4, resp. 16 and resp. 64 core LBP processor).

The copy code copies a line of matrix X in the local stack to avoid its multiple
accesses in the shared memory. The distributed code distributes and interleaves
the three matrices evenly on the memory banks (four lines of X, two lines of Y
and four lines of Z in each bank), to avoid the concentration of memory accesses
on the same banks (which happens if matrix Y is not distributed). The c+d
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void thread(int t){

int i, j, k, l, tmp;

for (l=0, i=t*LINE_Z/NUM_HART; l<LINE_Z/NUM_HART; l++, i++)

for (j=0; j<COLUMN_Z; j++)

tmp=0;

for (k=0; k<COLUMN_X; k++)

tmp+=*(X+(i*COLUMN_X+k)) * *(Y+(k*COLUMN_Y+j));

*(Z+(i*COLUMN_Z+j))=tmp;
}

}
void main(){

int t;

omp_set_num_threads(NUM_HART);

#pragma omp parallel for

for (t=0; t<NUM_HART; t++) thread(t);
}

#include <stdio.h>

#include <det_omp.h>

#define LINE_X

#define COLUMN_X

#define LINE_Y

#define COLUMN_Y

#define LINE_Z

#define COLUMN_Z

#define NUM_HART

int X[LINE_X*COLUMN_X]={[0...LINE_X*COLUMN_X−1]=1};

int Y[LINE_Y*COLUMN_Y]={[0...LINE_Y*COLUMN_Y−1]=1};

int Z[LINE_Z*COLUMN_Z];

16

8

16

COLUMN_X

LINE_X

COLUMN_Y

16

Figure 18: A Deterministic OpenMP matrix multiplication program.

version copies and distributes. The tiled version is the classic five nested loops
tiled matrix multiplication algorithm. Each tile has h/2 elements for matrices
X and Y (

√
h ∗
√
h/2) and h for the result matrix Z (

√
h ∗
√
h).

Figures 19, 20 and 21 show nine histograms (number of cycles, IPC and
number of retired instructions) for the five codes on the three sizes of LBP.
These values are reproducible thanks to cycle determinism. The three bot-
tom histograms also include the best measures done on a Xeon Phi2 for the
tiled version (MCDRAM configured in flat mode and all-to-all cluster mode;
OMP NUM THREADS = 256, OMP PLACES = threads, OMP PROC BIND
= close). The measures are the minimum ones after 1000 runs. They were
obtained with a PAPI instrumentation of the original tiled version.

What matters is the number of cycles, i.e. the duration of the run. The IPC
is an indication whether the parallelization is effective. However, a high IPC
does not mean that useful work is done. The number of retired instructions is
important to see the overcost of parallelization.

On a 4-core LBP (figure 19), even though the tiled version has the highest
IPC (3.67 for a peak at 4), the base version is better as it is twice faster.
The innermost loop has seven instructions (two loads, one multiplication, one
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Figure 19: Number of cycles, IPC and retired instructions for the matrix multiplication five
versions on a 4-core LBP (16 harts).

addition, two address incrementations and a conditional branch), which are
repeated h3/2 times, i.e. 14336 instructions when h = 16. The base version
has 16722 retired instructions, which leaves 2386 instructions for the two outer
loops, the parallelization and its control (creation of 16 threads and their join).

Figure 20: Number of cycles, IPC and retired instructions for the matrix multiplication five
versions on a 16-core LBP (64 harts).

On a 16-core LBP (figure 20), the fastest is the copy version. The base
version achieves a poor 12.7 IPC when the copy version IPC is over 15 (for
a peak of 16), saving more than 10000 cycles (16% faster). The overhead is
moderate (14500 instructions, i.e. 1.5%).

On the 64-core LBP (figure 21), the tiled version is the best because it saves
many long distance communications and because it distributes the remaining
ones more evenly over time and space. It is twice faster than the distributed
version and four times faster than the base version (1.18M cycles vs 2.08M and
4.14M). The IPC is 61.7 (for a peak of 64), showing that the LBP interconnect is
strong enough to handle the high demand. The tiling overhead is not negligible
(73M instructions versus 59M for the base version, i.e. +23%).

The 64-core LBP is not as fast as the Xeon Phi2 (1.18M cycles vs 391K, 3
times more). Firstly, there is no vector unit in LBP, which explains that the
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Figure 21: Number of cycles, IPC and retired instructions for the matrix multiplication five
versions on a 64-core LBP (256 harts).

Xeon runs 32M instructions and LBP runs 73M, i.e. 2.28 times more. Secondly,
LBP peak performance is 1 IPC per core when the Xeon peak is 6 (2 int, 2 mem
and 2 vector ops per cycle). Hence, LBP reaches 0.96 IPC per core (96% of 1
IPC peak) and the Xeon reaches 1.28 IPC per core (81.86/64 ; 21% of 6 IPC
peak). LBP is aiming embedded applications and should keep low-power and
energy efficient, which the Xeon Phi2 is not.

8. Conclusion and Perspectives

Safety critical real time applications can benefit from parallel manycore pro-
cessors, if a high level of determinism is ensured to guarantee repeatable tim-
ings, as on the LBP processor. Moreover, the reported experiment shows that a
low-power manycore processor can be built for the embedded high performance
computations. The design of the LBP processor is suited to either offer par-
allelism to microcontrollers or to safely accelerate computations through their
parallelization and capture the distant ILP by hundreds of distributed harts.

Deterministic OpenMP is standard OpenMP with a new runtime. For the
programmer, the difference resides in the new det omp.h header file and the
hardware placement of code and data according to the program structure. The
main difference between OpenMP classic runtime and Deterministic OpenMP
new one comes from the ordering of harts in a parallel team. This ordering
is optional in standard OpenMP but mandatory in Deterministic OpenMP be-
cause the hardware synchronization which ensures safety relies on the referential
sequential order. As an example, a producing hart has to precede a consuming
one in the referential sequential order to exhibit the read-after-write dependency
linking the producer to the consumer. In Deterministic OpenMP, a later hart
cannot send anything to a prior one (a data cannot go back in time).

In a future work, we will extend the actual 8-core FPGA implementation
of LBP to fit a 16 core and two levels of routers on the Xilinx ZCU106 devel-
opment board. We will also complete the Deterministic OpenMP translator to
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automatize the translation of standard OpenMP codes into our LBP specific
machine code.

It is also interesting to study an adaptation of LBP to the particular context
of High Performance Computing (HPC). The forking mechanism which creates
teams of harts on a line topology could be slightly modified to allow the start
of a new team on a new LBP chip, taking advantage of the incompletely used
fields in the X PAR instruction set. The links connecting the cores could be
duplicated or super links connecting chips could be added to allow more direct
communications between distant harts. A deterministic version of MPI [20]
could even be proposed, built around ordered communicators where a sender
always precedes its receiver(s) (i.e. the sender rank is lower than all its receivers
ranks).
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