
HAL Id: lirmm-02916101
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02916101

Submitted on 17 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Partial Orders, Residuation, and First-Order Linear
Logic

Richard Moot

To cite this version:
Richard Moot. Partial Orders, Residuation, and First-Order Linear Logic. Natural Language Pro-
cessing in Artificial Intelligence, 939, Springer, pp.37-67, 2021, Studies in Computational Intelligence,
978-3-030-63786-6. �lirmm-02916101�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02916101
https://hal.archives-ouvertes.fr


ar
X

iv
:2

00
8.

06
35

1v
1 

 [
cs

.L
O

] 
 1

4 
A

ug
 2

02
0

Chapter 1

Partial Orders, Residuation, and
First-Order Linear Logic

Richard Moot

Abstract We will investigate proof-theoretic and linguistic aspects of first-
order linear logic. We will show that adding partial order constraints in such
a way that each sequent defines a unique linear order on the antecedent
formulas of a sequent allows us to define many useful logical operators. In
addition, the partial order constraints improve the efficiency of proof search.

1.1 Introduction

Residuation is a standard principle which holds for the Lambek calculus and
many of its variants. However, even though first-order linear logic can embed
the Lambek calculus and some of its variants, linear logic formulas need not be
part of a residuated triple (or pair). In this paper, we will present conditions
on first-order linear logic in the form of partial order constraints which allow it
to satisfy the residuation principle. We investigate the number of connectives
definable this way and compare these connectives to the connectives definable
in other type-logical grammars. We conclude by investigating some of the
applications of these results, both in terms of linguistic modelling and in
terms of improving upon the efficiency of proof search.

Richard Moot
Université de Montpellier, LIRMM, CNRS
161 rue Ada 34095 Montpellier Cedex 5
France
Tel.: +33-4-67418585
Fax: +33-4-67418500
e-mail: firstname.lastname@institute.country

1

http://arxiv.org/abs/2008.06351v1
firstname.lastname@institute.country


2 Richard Moot

1.2 Categorial Grammars and Residuation

Lambek introduced his syntactic calculus first as a calculus based on resid-
uation (Lambek 1958, Section 7, with a sequent calculus in Section 8). The
principle of residuation is shown as Equation 1.1.

A → C / B ⇐⇒ A •B → C ⇐⇒ B → A \ C (1.1)

The Lambek calculus is then defined using just the principle of residuation
together together with reflexivity and transitivity of the derivation arrow and
associativity of the product ‘•’. Table 1.1 lists the full set of rules of the
residuation-based representation of the Lambek calculus.

Identity

A → A
Refl

A → B B → C
A → C

Trans

Residuation

A •B → C

A → C / B
Res•,/

A •B → C

B → A \ C
Res•,\

A → C / B

A •B → C
Res/,•

B → A \ C

A •B → C
Res\,•

Associativity

A • (B • C) → (A •B) • C
Ass1

(A •B) • C → A • (B • C)
Ass2

Table 1.1 Residuation-based presentation of the Lambek calculus

In the Lambek calculus, the standard interpretation of the product ‘•’ is
as a type of concatenation, with the implications ‘\’ and ‘/’ its residuals.
Using the residuation calculus, we can derive standard cancellation schemes
such as the following.

C / B → C / B
Refl

(C / B) •B → C
Res/,•

A \ C → A \ C
Refl

A • (A \ C) → C
Res\,•

Showing us that when we compose C/B with a B to its right, we produce
a C, and that when we compose A \C with an A to its left, we produce a C.

Figure 1.1 shows a standard visual representation of the residuation prin-
ciple in the form of a triangle, with the each of the vertices of the triangle
corresponding to one of the Lambek calculus connectives.

We can ‘read off’ many of the principles from this triangle, for example,
the three different ways of concatenating the elements of a residuated triple
are:



1 Partial Orders, Residuation, and First-Order Linear Logic 3

A •B

C

C / B

A B

A \ C

Fig. 1.1 Visual representation of residuation

1. composing A and B to produce A •B,
2. composing C / B and B to produce C,
3. composing A and A \ C to produce C.

The residuation presentation of the Lambek calculus naturally forms a
category. This not only gives the Lambek calculus a category theoretic foun-
dation — something Girard (2011) argues is an important, deeper level of
meaning for logics — but it can also play the role of an alternative type of
natural language semantics for the Lambek calculus (Coecke, Grefenstette,
and Sadrzadeh 2013; Lambek 1988), to be contrasted with the more standard
semantics for type-logical grammars in the tradition of Montague (1974).

Identity

A → A
Refl

A → B B → C
A → C

Trans

Application

A • (A \B) → B
Appl\

(B / A) •A → B
Appl/

Co-Application

A → B \ (B •A)
Coappl\

A → (A •B) / B
Coappl/

Monotonicity

A → B C → D

B \ C → A \D
Mon\

A → B C → D
A • C → B •D

Mon•
A → B C → D

C / B → D / A
Mon/

Associativity

A • (B • C) → (A •B) • C
Ass1

(A •B) • C → A • (B • C)
Ass2

Table 1.2 Došen’s presentation of the Lambek calculus

An alternative combinatorial representation of residuation is found in Ta-
ble 1.2. This presentation uses the two application principles we have derived
above as axioms, and adds two additional principles of co-application, easily



4 Richard Moot

obtained from the identity on the product formulas together with a residua-
tion step.

A •B → A •B
Refl

A → (A •B) / B
Res•,/

B •A → B •A
Refl

A → B \ (B •A)
Res•,\

The advantage of this presentation is that, besides transitivity, the only
recursive rules are the monotonicity principles for the three connectives. This
makes this presentation especially convenient for inductive proofs. For exam-
ple, the completeness proofs of Došen (1992) use this presentation.

1.2.1 Residuation in Extended Lambek Calculi

Many of the extensions and variants of the Lambek calculus which have been
proposed keep the principle of residuation central. For example, the multi-
modal Lambek calculus simply uses multiple families of residuated connec-
tives {/i, •i, \i} for members i of a fixed, small set I of modes. Similarly, the
unary connectives ‘♦’ and ‘�’ connectives are a residuated pair (Kurtonina
and Moortgat 1997; Moortgat 1996; Oehrle 2011).

However, some other formalisms do not use residuation as their central tool
for defining connectives. These formalisms either add connectives correspond-
ing to alternative algebraic principles, or abandon residuation altogether.

Formalisms in the former group take residuation for some of its connectives
and add additional principles such as dual residuation, Galois connections,
and dual Galois connections for other connectives (Areces, Bernardi, and
Moortgat 2004; Bernardi and Moortgat 2010).

Formalisms in the latter group abandon residuation as a key principle
(without replacing it with another algebraic principle), or only preserve it
for some of their connectives. These formalisms include lambda grammars
(Oehrle 1994), hybrid type-logical grammars (Kubota and Levine 2012, 2020)
and first-order linear logic (Moot 2014; Moot and Piazza 2001).

1.2.2 Residuation and First-Order Linear Logic

The main theme of this paper will be to investigate what types of connectives
are definable in first-order linear logic when we restrict ourselves to residuated
connectives. We will look at generalised forms of concatenation and their
residuals and see how we can define these in first-order linear logic.

Some of these definable connectives require us to explicitly specify partial
order constraints on some of the positions to preserve the required informa-
tion. The resulting grammar system then has two components: for a sentence



1 Partial Orders, Residuation, and First-Order Linear Logic 5

to be grammatical, a logical statement has to be derivable (as is standard
for type-logical grammars) but also a corresponding partial order definition
must be consistent. This gives us a mechanism to specify the relative order
of grammatical constituents (logical formulas in type-logical grammars). The
property we want to preserve locally in each statement is that the strings
corresponding to the antecedent formulas can be linearly ordered in a unique
way.

1.3 First-Order Linear Logic

A sequent or a statement is an expression of the form A1, . . . , An ⊢ C (for
some n ≥ 0), which we will often shorten to Γ ⊢ C. We call Γ the antecedent,
formulas Ai in Γ antecedent formulas, and C the succedent of the statement.
We assume the sequent comma is both associative and commutative and
treat statements which differ only with respect to the order of the antecedent
formulas to be equal. Table 1.3 shows the sequent calculus rules for first-
order multiplicative intuitionistic linear logic. The R∀ and L∃ rule have the
standard side condition that there are no free occurrences of x in Γ and C.

A ⊢ A
Ax

Γ ⊢ A ∆,A ⊢ C

Γ,∆ ⊢ C
Cut

Γ,A,B ⊢ C

Γ,A⊗B ⊢ C
L⊗

Γ ⊢ A ∆ ⊢ B
Γ,∆ ⊢ A⊗B

R⊗

∆ ⊢ A Γ,B ⊢ C

Γ,∆,A ⊸ B ⊢ C
L ⊸

Γ,A ⊢ B

Γ ⊢ A ⊸ B
R ⊸

Γ,A ⊢ C

Γ,∃x.A ⊢ C
L∃∗

Γ ⊢ A[x := t]

Γ ⊢ ∃x.A
R∃

Γ,A[x := t] ⊢ C

Γ,∀x.A ⊢ C
L∀

Γ ⊢ A
Γ ⊢ ∀x.A

R∀∗

Table 1.3 The sequent calculus for first-order intuitionistic multiplicative linear logic.

The sequent calculus is decidable (the decision problem is NP complete
(Lincoln 1995)) and sequent proof search can be used as a practical decision
procedure (Lincoln and Shankar 1994). Decidability presupposes both cut
elimination (which, as usual, is a simple enough proof even though it consists
of many rule permutation cases to verify) and a restriction on the choice
of t for the L∀ and R∃ rules. A standard solution is to use unification for
this purpose, effectively delaying the choice of t to the most general term
required by the axioms in backward chaining cut-free proof search. This of
course requires us to verify the eigenvariable conditions for the R∀ and L∃
rules are still satisfied after unification. We can see this in action in the



6 Richard Moot

following failed attempt to prove ∀y[a⊗ b(y)] ⊢ a ⊗ ∀x.b(x) (the reader can
easily verify all other proof attempts fail as well).

a ⊢ a
Ax

Y = x
b(Y ) ⊢ b(x)

Ax

b(Y ) ⊢ ∀x.b(x)
∀R∗

a, b(Y ) ⊢ a⊗ ∀x.b(x)
R⊗

a⊗ b(Y ) ⊢ a⊗ ∀x.b(x)
L⊗

∀y.[a⊗ b(y)] ⊢ a⊗ ∀x.b(x)
L∀

Tracing the proof from the endsequent upwards to the axioms, we start
by replacing y by a fresh metavariable Y to be unified later, then follow the
proof upwards to the axioms. For the b predicates, we compute the most
general unifier of x and Y , which is x. But then, the antecedent of the ∀R
rule becomes b(x), which fails to respect the eigenvariable condition for x.
We can improve on the sequent proof procedure for first-order linear logic,
even exploiting some of the rule permutabilities (Lincoln and Shankar 1994).
However, in Section 1.3.2 we will present a proof net calculus for first order
linear logic, following Girard (1991), which intrinsically avoids the efficiency
problems caused by rule permutations.

Before we do so, however, we will briefly recall how we can use first-order
linear logic for modelling natural languages.

1.3.1 First-Order Linear Logic and Natural Language

Grammars

For type-logical grammars, a lexicon is a mapping from words to formulas in
the corresponding logic. In first-order linear logic, this mapping is parametric
for two position variables L and R, corresponding respectively to the left and
right position of the string segment corresponding to the word. In general, for
a sentence with n words, we assign the formula of word wi (for 1 ≤ i ≤ n) the
string positions i−1 and i. This simply follows the fairly standard convention
in the parsing literature to represent substrings of the input string by pairs
of integers.

As noted by Moot and Piazza (2001), we can translate Lambek calculus
formulas to first-order linear logic formulas as follows.

‖p‖x,y = p(x, y) (1.2)

‖A •B‖x,z = ∃y.‖A‖x,y ⊗ ‖B‖y,z (1.3)

‖A \ C‖y,z = ∀x.‖A‖x,y ⊸ ‖C‖x,z (1.4)

‖C / B‖x,y = ∀z.‖B‖y,z ⊸ ‖C‖x,z (1.5)



1 Partial Orders, Residuation, and First-Order Linear Logic 7

Equation 1.5 states that when C/B is a formula spanning string x, y (that
is, having x as its left edge and y as its right edge), that means combining it
with a formula B having y as its left edge and any z as its right edge.

∃y.‖A‖x,y ⊗ ‖B‖y,z

‖C‖x,z

∀z.‖B‖y,z ⊸ ‖C‖x,z
‖A‖x,y ‖B‖y,z

∀x.‖A‖x,y ⊸ ‖C‖x,z

A

C / B

B

A \ C

A •B

C

x y z

Fig. 1.2 Figure 1.1 with the corresponding translations in first-order logic

Figure 1.2 shows how this translation forms a residuated triple1. Note how
combining (the translations of) A and B to A • B, A and A \ C to B, and
C / B and B to C all correspond to the concatenation of an x, y segment to
an y, z segment to form x, z segment.

1.3.2 Proof Nets

Multiplicative linear logic has an attractive, graph-based representation of
proofs called proof nets. It is relatively simple to add the first-order quantifiers
to proof nets (Bellin and van de Wiele 1995; Girard 1991).

The choice for intuitionism is justified by our interest in natural language
semantics: the Curry-Howard isomorphism between proofs in multiplicative
intuitionistic linear logic and linear lambda terms gives us a simple and prin-
cipled way of defining the syntax-semantics interface, thereby connecting our
grammatical analyses to formal linguistic semantics in the tradition of Mon-
tague (1974).

Proof nets can be defined in two different ways.

1. We can define them inductively as instructions of how to build proof nets
from simpler ones.

2. We can define proof nets as instances of a more general class of objects
called proof structures.

Even though the inductive definition of proof nets is useful for proving
all proof nets have certain properties, it is not immediately obvious how to

1 To show this in full detail would require us to do the simple but tedious job of proving
that this definition satisfies the monotonicity and Application/Co-Application principles
of Table 1.2.



8 Richard Moot

determine whether something is or is not a proof net, since its inductive
structure is not immediately visible (unlike, say, for sequent proofs). But
to distinguish proof nets we only care about the final graph structure, the
inductive structure is irrelevant2.

The second way of producing proof nets starts from proof structures. Given
a sequent, there is a very direct procedure to enumerate its proof structures.
Not all these proof structures will be proof nets (that is, correspond to the
inductive definition of proof nets, or, equivalently, to provable sequents). A
correctness condition allows us to distinguish the proof nets from other struc-
tures.

Proof structures are built from the links shown in Table 1.4. The formulas
drawn above the links are called its premisses and the formulas drawn below
it are called its conclusions. Each connective is assigned two links: one where
it occurs as a premiss (the left link, corresponding to the left rule for the
connective in the sequent calculus) and one where it occurs as a conclusion
(corresponding to the right rule in the sequent calculus).

We call the formula occurrence containing the main connective of a link
its main formula and all other formula occurrences its active formulas.

The logical links are divided into four groups:

1. the tensor links are the binary rules drawn with solid lines (the negative
link for ‘⊸’ and the positive link for ‘⊗’),

2. the par links are the binary rules drawn with dashed lines (the negative link
for ‘⊗’ and the positive link for ‘⊸’; par is the name for the multiplicative,
classical disjunction of linear logic, ‘`′),

3. the existential links are the unary rules drawn with solid lines (the negative
link for ‘∀’ and the positive link for ‘∃’),

4. the universal links are the unary rules drawn with dashed lines and labeled
with the corresponding eigenvariable (the negative link for ‘∃’ and the
positive link for ‘∀’).

Definition 1 A proof structure is a tuple S = 〈F,L〉 where F is a set of
formula occurrences and L is a set of the links connecting these formula
occurrences such that each local subgraph is an instantiation one of the links
in Table 1.4 (for some A, B, x, t), and such that

• each formula is at most once the premiss of a link,
• each formula is at most once the conclusion of a link.

Finally, the quantifiers links and eigenvariables have the following addi-
tional conditions.

• each quantifier link uses a distinct bound variable,
• all conclusions and hypotheses of S are closed,

2 Another way of thinking about this is that different ways of producing the same proof
net correspond to rule permutations in the sequent calculus.



1 Partial Orders, Residuation, and First-Order Linear Logic 9

A[x := t]

∀x.A

∀x.A

A

x

A

∃x.A

x

A⊗B

A B A⊗B

A B

∃x.A

A[x := t]

B

A A ⊸ B

A ⊸ BA

B

Table 1.4 Logical links for MILL1 proof structures

• all eigenvariables of links in S are used strictly, meaning that we cannot
substitute a constant cx for any set of occurrences of an eigenvariable x
and obtain a proof structure with the same conclusions and hypotheses.

The formulas which are not the premisses of any link in a proof structure
with hypotheses are the conclusions of the structure. The formulas which are
not the conclusions of any link are the hypotheses of the structure.

Formulas which are both the premiss and the conclusion of a link in a proof
structure are its internal formulas. All other formulas (that is, formulas which
are either hypotheses or conclusions of the proof structure) are its external
formulas. �

This definition essentially follows Girard (1991), incorporating the no-
tion of strictly used eigenvariables from Bellin and van de Wiele (1995) and
the proof structures with hypotheses of Danos (1990). The requirement that
eigenvariables are used strictly avoids the case where, for example, a subproof
∀x.a(x) ⊢ ∃y.a(y) instantiates x and y to the eigenvariable z of a universal
link elsewhere in the proof. Given that, by definition, we can replace such
occurrences by a new constant cz this is a minor technicality to facilitate the
verification of the correctness of the universal links in a proof net.

Figure 1.3 shows, on the left hand side, the formula unfolding for the
underivable sequent ∀y[a ⊗ b(y)] ⊢ a ⊗ ∀x.b(x). We want derivable sequents
A1, . . . , An ⊢ C to correspond to proof structures (and proof nets) with
exactly the Ai as hypotheses and C as a conclusion. The proof structure on
the left hand side of Figure 1.3 has a and b(Y ) as additional conclusions
and a and b(x) as additional hypotheses. By identifying these formulas (and
substituting x for Y ) we obtain the proof structure shown on the right hand
side of Figure 1.3. In the current case, this is the unique identification of
atomic formulas producing a proof structure such that the only hypothesis
is ∀y[a ⊗ b(y)] and the only conclusion is a ⊗ ∀x.b(x). In the general case,
there can be many ways of identifying atomic formulas and this is the central
problem for proof search using proof nets.



10 Richard Moot

a⊗ ∀x.b(x)

∀x.b(x)

b(x)

x

a

a⊗ b(x)

∀y.[a⊗ b(y)]

a⊗ ∀x.b(x)

∀x.b(x)

b(x)

b(Y )

x

a

a

a⊗ b(Y )

∀y.[a⊗ b(y)]

Fig. 1.3 Two proof structures for the sequent ∀y[a⊗ b(y)] ⊢ a⊗ ∀x.b(x).

Underivability in the sequent calculus follows from the fact that there
is no proof where the ∀ right rule is performed below the ∀ left rule (the
intuitionistic version of this sequent ∀y[a ∧ b(y)] ⊢ a ∧ ∀x.b(x) is derivable,
but it requires us to use the antecedent formula ∀y[a ∧ b(y)] twice, which
produces the correct order between the ∀ left and right rules). We will see
below why the proof structure on the right of Figure 1.3 is not a proof net.

Definition 2 Given a proof structure P a component is a maximal, con-
nected substructure containing only tensor and existential links.

We obtain the components of a proof structure by first removing the
par and universal links, then taking each (maximal) connected substructure.
Components can be single formulas. The components of the proof struc-
ture on the right of Figure 1.3 correspond to the induced substructures of
{∀y.[a ⊗ b(y)], a ⊗ b(x)}, {a, ∀x.b(x), a ⊗ ∀x.b(x)}, and {b(x)}. For the first
and last of these structures, the occurrences of x (all of them free) will be
replaced by cx. The second substructure contains the universal link for x (and
only bound occurrences of x) and its formulas will therefore be unchanged.
The corresponding sequents are given in Equations 1.6 to 1.8.

∀y.[a⊗ b(y)] ⊢ a⊗ b(cx) (1.6)

a, ∀x.b(x) ⊢ a⊗ ∀x.b(x) (1.7)

b(cx) ⊢ b(cx) (1.8)

The reader can verify that all of these are derivable (though we cannot
combine these three proofs into a single proof of the required endsequent).
Before we turn to the correctness condition, we need another auxiliary notion
from Bellin and van de Wiele (1995).



1 Partial Orders, Residuation, and First-Order Linear Logic 11

Definition 3 Given a proof structure P and the eigenvariable x of a link
l in P , the existential frontier of x in P is the set of formula occurrences
A1, . . . , An such that each Ai is the main formula of an existential link li
where x occurs free in the active formula of li but not in its main formula Ai.

In Figure 1.3, the formula ∀y.[a⊗b(y)] is the only formula in the existential
frontier of x.

To decide whether a proof structure is a proof net in linear logic, we need
a correctness condition on the proof structure. Given that the two universal
links correspond to sequent calculus rules with side conditions on the use of
their eigenvariable, it should come as no surprise that we need to keep track
of free occurrences of eigenvariables for deciding correctness. Typical cor-
rectness conditions involve graph switchings and graph contractions. Girard
(1991), and Bellin and van de Wiele (1995) extend the switching condition
of Danos and Regnier (1989) for first-order linear logic. Here we will extend
the contraction condition of Danos (1990) to the first-order case.

Definition 4 An abstract proof structure A = 〈V, L〉 is obtained from a
proof structure P = 〈F,L〉 by replacing each formula A ∈ F by the set of
eigenvariables freely occurring in A, plus the eigenvariable x in case A is on
the existential frontier of a universal link of P .

a⊗ ∀x.b(x)

∀x.b(x)

b(x)

x

a

a⊗ b(x)

∀y.[a⊗ b(y)]

∅

∅

{x}

x

∅

{x}

{x}

Fig. 1.4 Proof structure (left) and abstract proof structure (right) for the sequent ∀y[a⊗
b(y)] ⊢ a⊗ ∀x.b(x).

Figure 1.4 shows the proof structure and corresponding abstract proof
structure of the proof structure we’ve seen before on the right of Figure 1.3.
We have simply erased the formula information and kept only the information
of the free variables at each node. The top node and only hypothesis of the
structure, which corresponds to a closed formula (the formula ∀y.[a⊗ b(y)]),
is on the existential frontier of x (there is an occurrence of x in the active
formula of the link) and therefore has the singleton set {x} assigned to it.



12 Richard Moot

Table 1.5 shows the contractions for first-order linear logic. Each contrac-
tion is an edge contraction on the abstract proof structure, deleting an edge
or a joined pair of edges, and identifying the two incident vertices vi and
vj . The resulting vertex is incident both to all nodes incident to vi (except
vj) and to all nodes incident to vj (except vi). The eigenvariables assigned
to the resulting vertex are the set union of the eigenvariables assigned to vi
and vj . For the universal contraction u the eigenvariable corresponding to
the eigenvariable x of the link is removed. The contraction p verifies that the
two premisses of a single par link can be joined in a single point. The con-
traction u verifies that all free occurrences of the eigenvariable of a universal
link (and its existential border) can be found at the vertex corresponding to
the premiss of the link. The contraction c contracts a component.

All contractions remove one edge (or, in the case of the par contraction p,
a linked pair of edges) and keep all other edges the same, reducing the length
of the paths which passed through the contracted edge by one. Contractions
can produce self-loops and multiple edges between two nodes, but can never
remove self-loops.

vi

vj

vi⇒p

vi

vj

x vi⇒u

vi

vj

vi⇒c

Table 1.5 Contractions for first-order linear logic. Conditions: vi 6= vj and, for the u

contraction, all occurrences of x are at vj .

Definition 5 A proof structure is a proof net iff its abstract proof structure
contracts to a single vertex using the contractions of Table 1.5.

The contraction system as presented is not confluent. For the critical cases,
when a pair of vertices v1 and v2 is connected by two or more links of different
types (par, universal or component), we can contract any of these multiple
links connective v1 and v2 and produce a self-loop for all others. An easy
solution to ensure confluence is to treat all self-loops as equivalent3. Figure 1.5
shows how the abstract proof structure of Figure 1.3 fails to contract to a
single vertex. The final structure shown on the right of the figure cannot be
further contracted: the par (p) contraction requires the two edges of the par
link to end in the same vertex, whereas the universal (u) contraction requires
all occurrences of x to be at the vertex from which the x edge is leaving.

Lemma 1 Γ ⊢ C is derivable if and only if there is a proof net of Γ ⊢ C

See Bellin and van de Wiele (1995) for a proof, which adapts trivially to
the current context.

3 A more elegant solution for ensuring confluence would replace the right-hand side of the
p and u contractions by the left-hand side of the c contraction.



1 Partial Orders, Residuation, and First-Order Linear Logic 13

∅

∅

{x}

x

∅

{x}

{x}

→

∅

{x}

x

∅

{x}

{x}

→ ∅ {x}

{x}

x

{x}

→ ∅ {x}

{x}

x

Fig. 1.5 Failed contraction sequence for the abstract proof structure on the right of Fig-
ure 1.3

1.4 Residuation and Partial Orders

So far, we have discussed proof-theoretic properties of first-order linear logic
while only hinting at its applications as a formalism for natural language
processing. In this section, I will suggest some principles for writing gram-
mars using first-order linear logic, essentially in the form of constraints on
the formulas. These constraints apply only to constants and variables used
as string positions and not to other applications of first-order variables (such
as grammatical case, island constraints and scoping constraints). The prin-
ciples presented here should not be taken in a dogmatic way. It may turn
out that a larger class of grammars has significant applications or better
mathematical properties. The goal is merely to provide some terra firma for
exploring both linguistic applications and mathematical properties. Indeed,
some known classes of type-logical grammars are outside the residuated frag-
ment investigated in this paper (Oehrle 1994), even though it is possible to
follow Kubota and Levine (2020) and combine residuated connectives with
non-residuated ones in the more general framework proposed here.

The main property we want our formulas to preserve is that we can always
uniquely define a linear order on the string segments (pairs of position vari-
ables) used in the formulas of first-order linear logic. This is already somewhat
of a shift with respect to standard first-order linear logic: an atomic formula
p(x0, x1, x2, x3) represents to string segments x0, x1 and x2, x3 without any
claims about the relative order of these two segments. This gives us the free-
dom to build these two strings independently and let other lexical items in the
grammar decide in which relative order these two segments will ultimately
appear in the derived string. Adding the linear order requirement requires us
to add an explicit relation between these two segments (either x1 ≤ x2, for
the linear order x0, x1, x2, x3, or x3 ≤ x0 for the linear order x2, x3, x0, x1).



14 Richard Moot

It is possible to define residuated connectives for string segments which are
not linearly ordered. However, we would then be limited by the fact that any
connective which linearises such segments (by ordering some of the previously
unordered segments) would not be residuated. For example, suppose we want
to define a connective combining two unordered string segments x0, x1 and
x2, x3 by concatenating them (or ‘wrapping’ them around) a segment x1, x2

producing the complex segment x0, x1. This would entail the linear order to
be x0, x1, x2, x3, and therefore the two segments x0, x1 and x2, x3 assigned
to one of the residuals must be linearly ordered as well, simply because the
alternative order x2, x3, x0, x1 has become incompatible with the linear order
after concatenation. A restriction to residuated connective therefore sacrifices
some flexibility for writing grammars in first-order linear logic. We will return
briefly to this point in the discussion of Section 1.7.

1.4.1 Residuation for the Lambek Calculus Revisited

We have already looked at the Lambek calculus connectives and their transla-
tion into linear logic from the point of view of residuation. Figure 1.6 presents
a simplified version of Figure 1.2. It focuses only on the position variables,
which have been placed at the appropriate points in the triangle.

A⊗B

C

B ⊸ C

A B

A ⊸ C
[X, Y ] [Y,Z]

[X,Z]

Fig. 1.6 Lambek calculus residuation translated into first-order linear logic.

Each variable occurs on exactly two of the tree points of the triangle. The
place where a variable is absent determines the quantifier: ‘∃’ for ‘⊗’ (that
is, the bottom node), and ‘∀’ for the two ‘⊸’ nodes (the two top nodes).
Downwards movement — from A and B to A⊗B, from A and A ⊸ C to C,
and from B ⊸ C and B to C — corresponds to concatenation: we combine
a first string with left position X and right position Y with a second string
with left position Y and right position Z to form a new string starting at the
left position X of the first and ending at the right position Z of the second.

A variable shared between the bottom position and one of the top positions
of the figure must appear in both of these in either a left position or a right



1 Partial Orders, Residuation, and First-Order Linear Logic 15

position (as, respectively, variables X and Z in Figure 1.6). A variable shared
among the two top positions must appear in a right position in one and a
left position in the other. Variable Y in the figure is in this case.

Seen from the point of view of string segments, the bottom element con-
tains exactly the combination of the string segments of the left and right
elements, with some of them (that is those positions occurring both left and
right) concatenated.

1.4.2 Partial Orders

As a general principle, we want the left-to-right order of the position variables
and constants to be globally coherent. This means that we do not want X
to be left of Y at one place and to the right of it at another (at least not
unless they are equal). Formally, this means that the variables in a formula
and in a proof are partially ordered. More precisely, we have only argued for
antisymmetry (that is X ≤ Y and Y ≤ X entail X = Y ). To be a partial
order, we also need reflexivity (X ≤ X) and transitivity (X ≤ Y and Y ≤ Z
entail X ≤ Z, or, in our terms: if X occurs to the left of Y and Y occurs to
the left of Z then X occurs to the left of Z).

We can add explicit partial order constraints to first-order linear logic,
where a lexical entry specifies explicitly how some of its variables are ordered.
In a system with explicit partial order constraints, a sequent is derivable if it
is derivable in first-order linear logic (as before) but also satisfies all lexical
constraints on the partial order. We will see in the next section how this can
be useful.

Instead of using partial order constraints to obtain extra expressivity, we
can also see it as a way of improving efficiency. For example, when we look
at a sentence like.

1. John gave Mary flowers.

With formulas np, ((np\s)/np)/np, np, and np, we obtain the formula
np(0, 1) for “John” and ∀Z.np(Y, Z) ⊸ ∀Y.np(2, Y ) ⊸ ∀X.np(X, 1) ⊸

s(X,Z) for “gave” (using the standard Lambek calculus translation). This
produces the orders 0 < 1 for “John” and X ≤ 1 < 2 ≤ Y ≤ Z for “gave”.
Without any partial order constraints, it would be possible to identify np(0, 1)
with np(Y, Z). With the contraint, this would fail, since unifying Y with 0
would entail 2 ≤ 0 contradicting 0 < 2. We will give a more detailed and
interesting example in Section 1.5.3.

The residuation principle for generalised forms of concatenation requires
use to be able to uniquely reconstruct the linear order of any of the three
elements in a residuated triple based on the linear order of the two others.
As we will see, for three position variables and two string segments, the
Lambek calculus connectives are the only available residuated triple. But



16 Richard Moot

what happens when we increase the number of variables, and thereby the
number of string positions?

Figure 1.7 shows two solutions with four position variables. The residuated
triple at the top represents an infixation connective A\3aC and a circumfixion
connective C/3aB. Note that since this last connective is represented by the
pair of white rectangles, it positions itself ‘around’ the B formula. The infix-
ation operation corresponds, at the string level, to the adjoining operation of
tree adjoining grammars (Joshi and Schabes 1997) and to the simplest version
of the discontinuous connectives of Morrill, Valentin, and Fadda (2011).

Given the concatenation operation, we can obtain its residuals by plugging
them in the Application/Co-Application principles and adding the required
quantifiers to make them derivable. However, the general principle is very
simple and we can ‘read off’ the definitions directly (although the reader
is invited to verify that all the Application/Co-Application principles hold).
For the topmost residuated triple this gives the following definition (this
connective is labeled 3a to indicate it is the first connective with 3 string
positions).

‖A •3a B‖x0,x3 = ∃x1, x2.[‖A‖
x0,x1,x2,x3 ⊗ ‖B‖x1,x2]

‖A\3aC‖x1,x2 = ∀x0, x3.[‖A‖
x0,x1,x2,x3 ⊸ ‖C‖x0,x3 ]

‖C/3aB‖x0,x1,x2,x3 = ‖B‖x1,x2 ⊸ ‖C‖x0,x3

We can see that the patterns are very similar to the translation of the Lambek
calculus connectives: the variables shared between A and B (in the current
case x1 and x2) are quantified existentially for the A⊗B case, the variables
shared between A and C are quantified universally for the A ⊸ C case
(x1 and x2 here), and the variables shared between B and C (none for this
case) are quantified universally for the B ⊸ C case. In total each variable is
quantified in exactly one of the translation cases.

The residuated triple at the bottom of Figure 1.7 assigns positions x0, x1

to its A formula and positions x2, x3 to its B formula. In this case, the
positions assigned to A ⊗ B are underdetermined: we can say that nothing
is known about the relation between x1 and x2, or between x0 and x3. This
case therefore explicitly requires an additional partial order constraint to be
a residuated triple. The recursive definitions are as follows.

‖A •3b B‖x0,x1,x2,x3 = ‖A‖x0,x1 ⊗ ‖B‖x2,x3

‖A\3bC‖x2,x3 = ∀x0, x1.[‖A‖
x0,x1 ⊸ ‖C‖x0,x1,x2,x3 ]

‖C/3bB‖x0,x1 = ∀x2, x3.[‖B‖x2,x3 ⊸ ‖C‖x0,x1,x2,x3 ]



1 Partial Orders, Residuation, and First-Order Linear Logic 17

∃x1, x2.‖A‖x0,x1,x2,x3 ⊗ ‖B‖x1 ,x2

‖C‖x0,x3

‖B‖x1 ,x2 ⊸ ‖C‖x0,x3

‖A‖x0,x1,x2,x3 ‖B‖x1 ,x2

∀x0, x3.‖A‖x0,x1,x2,x3 ⊸ ‖C‖x0,x3

A

C /3a B

A

C /3a B

B

A \3a C

A •3a B

C

x0 x1 x2 x3

‖A‖x0,x1 ⊗ ‖B‖x2,x3

‖C‖x0,x1,x2,x3

∀x2, x3.‖B‖x2,x3 ⊸ ‖C‖x0,x1,x2,x3

‖A‖x0,x1 ‖B‖x2,x3

∀x0, x1.‖A‖x0,x1 ⊸ ‖C‖x0,x1,x2,x3

A

C /3b B

B

A \3b C

A •3b B

C

x0 x1 x2 x3

Fig. 1.7 Two families of connectives with three segments and four position variables

The key case is A •3b B, where there would be a loss of information in the
information passed to the two subformulas without the additional constraint
the x1 ≤ x2.

Now it may seem that this connective is just a formal curiosity. However,
it is essentially this pattern, notably the A\3bC connective, which figures in
the analysis of the well-known crossed dependencies for Dutch verb clusters
of Morrill, Valentin, and Fadda (ibid.).

1.5 The General Case

Given linear order of the string position variables, each additional string
variable increases the number of possible connectives. We have seen the case
for three position variables (the Lambek calculus connectives) and the two
residuated triples for four position variables. Are these the only possibilities?
And, more generally, how many residuated connectives exist for k position
variables.

We want our residuated triples to combine two sequences of components,
one containing elementary segments labeled a (corresponding to the left resid-
ual) and the other containing elementary segments labeled b (corresponding
to the right residual) while allowing an ‘empty’ component between two other
components (but not at the beginning or end of a generalised concatenation).
Residuated triples can use the ‘empty’ segment 1, which corresponds to a sort
of placeholder or hole for another segment.



18 Richard Moot

1. the first segment must be a (concatenations with b as first segment are
obtained by left-right symmetry of the residuated triple),

2. there can be no consecutive a segments (that it, if two a segments have
already been concatenated, we ‘lose’ the internal structure),

3. for the same reasons, there can be no consecutive b segments,
4. consecutive 1 segments do not increase expressivity and are therefore ex-

cluded,
5. there must be at least one b segment,
6. the last segment cannot be 1 (and, as a consequence of item 1, neither can

the first segment).

The finite state automaton shown in Figure 1.8 generates all strings which
satisfy these requirements. From the start state q0, the only valid symbol is
a. The condition that we cannot repeat the last symbol then ensures that the
states where the last symbol was a (states q1 and q4) can only continue with
a 1 or a b symbol. Similarly, the states where the last symbol was 1 (states q2
and q5) can only continue with an a or a b symbol, and the state where the
last symbol was b (state q3) can only continue with 1 or a. Finally, the states
q3, q4 and q5 denote the states where we have seen at least one b symbol.
These are accepting states except for q5 (because its last symbol is 1).

q0start

q1

q2 q3

q4 q5

a

1
a b

b

b
a b

1
a

1

Fig. 1.8 Finite state automaton of concatenation-like operations.

We can now show that this machine generates only one two-symbol string
ab (corresponding to three string positions and to the simple concatenation
of a and b) and two three-symbol strings (with four string positions, namely
a1b and aba).

Table 1.6 shows the concatenation-like operations definable with two,
three, and four total string segments. The a segments correspond to empty
rectangles, the b segments to filled rectangles and the 1 segments to empty



1 Partial Orders, Residuation, and First-Order Linear Logic 19

Two segments, three variables

x0 x1 x2

Three segments, four variables

(3a)
x0 x1 x2 x3

(3b)
x0 x1 x2 x3

Four segments, five variables

(4a)
x0 x1 x2 x3 x4

(4b)
x0 x1 x2 x3 x4

(4c)
x0 x1 x2 x3 x4

(4d)
x0 x1 x2 x3 x4

(4e)
x0 x1 x2 x3 x4

Table 1.6 Concatenation-like operations for two to four string segments

spaces between the other segments. We can read off the free variables and
their linear order for each of the subformulas of a residuated triple.

For example, the A (and B ⊸ C) segments of the first item with four seg-
ments corresponds to a formula with free variable x0, x1, x2, x3 (in that linear
order) whereas the B (and A ⊸ C) formula corresponds to a formula with
free variables x1, x2, x3, x4. Finally, the result of the concatenation formula
C (and A⊗B) corresponds to variables x0, x4, with three separate concate-
nation operations. We concatenate a1a to b1b to produce abab. The number
of variables shared by the left branch A and the right branch B corresponds
to the number of concatenations of elementary segments. If we name this
residuated triple 4a, its recursive definition is as follows.

‖A •4a B‖x0,x4 = ∃x1, x2, x3.[‖A‖
x0,x1,x2,x3 ⊗ ‖B‖x1,x2,x3,x4]

‖A\4aC‖x1,x2,x3,x4 = ∀x0.[‖A‖
x0,x1,x2,x3 ⊸ ‖C‖x0,x4 ]

‖C/4aB‖x0,x1,x2,x3 = ∀x4.[‖B‖x1,x2,x3,x4 ⊸ ‖C‖x0,x4

As another example, the fourth item with four segments (and five vari-
ables) assign the A (and B ⊸ C) segments the sequence of variables
x0, x1, x2, x3, the B and (and A ⊸ C) formula the variables x3, x4, and the
C (and A⊗B formula) the variables x0, x1, x2, x4. If we name this residuated



20 Richard Moot

triple 4d, we obtain the following recursive definitions.

‖A •4d B‖x0,x1,x2,x4 = ∃x3.[‖A‖
x0,x1,x2,x3 ⊗ ‖B‖x3,x4 ]

‖A\4dC‖x3,x4 = ∀x0, x1, x2.[‖A‖
x0,x1,x2,x3 ⊸ ‖C‖x0,x1,x2,x4 ]

‖C/4dB‖x0,x1,x2,x3 = ∀x4.[‖B‖x3,x4 ⊸ ‖C‖x0,x1,x2,x4 ]

Five segments, six variables

(5a)
x0 x1 x2 x3 x4 x5

(5b)
x0 x1 x2 x3 x4 x5

(5c)
x0 x1 x2 x3 x4 x5

(5d)
x0 x1 x2 x3 x4 x5

(5e)
x0 x1 x2 x3 x4 x5

(5f)
x0 x1 x2 x3 x4 x5

(5g)
x0 x1 x2 x3 x4 x5

(5h)
x0 x1 x2 x3 x4 x5

(5i)
x0 x1 x2 x3 x4 x5

(5j)
x0 x1 x2 x3 x4 x5

Table 1.7 Concatenation-like operations for five string segments

Table 1.7 shows the concatenation-like operations definable with five string
segments. We give an example of only one of these, because it illustrates a
new pattern. As we have seen, some concatenation-like operations require
additional order constraints to uniquely define a linear order, for each sub-
formula, on all variables occurring exactly once in this subformula. This was
the case for the second possibility with three segments, where we could not in-
fer the order between the A segment x0, x1 and the B segment x2, x3 without
explicitly requiring x1 ≤ x2.

The second item of Table 1.7, 5b, shows a different type of underdeter-
mination. When we give the translation of the table entry into a residuated
triple 5b, we obtain the following.



1 Partial Orders, Residuation, and First-Order Linear Logic 21

‖A •5b B‖x0,x3,x4,x5 = ∃x1, x2.[‖A‖
x0,x1,x2,x3,x4,x5 ⊗ ‖B‖x1,x2 ]

‖A\5bC‖x1,x2 = ∀x0, x3, x4, x5.[‖A‖
x0,x1,x2,x3,x4,x5 ⊸ ‖C‖x0,x3,x4,x5 ]

‖C/5bB‖x0,x1,x2,x3,x4,x5 = ‖B‖x1,x2 ⊸ ‖C‖x0,x3,x4,x5

The problematic connective here is C/5bB. The order information of its
subformulas B and C does not allow us to unambiguously reconstruct the full
order: it is compatible with an alternative linear order x0, x3, x4, x1, x2, x5,
which is the sixth entry 5f in Table 1.7. The left residuals of 5b and 5f
cannot be distinguished without an explicit constraint on the linear order for
the left residual. In the case above, we need to explicitly state that x0 ≤ x1

and x2 ≤ x3 (technically, since x0 is the leftmost element of the triple, the
first constraint is superfluous).

1.5.1 How Many Residuated Connectives Are There for

Concatenation-Like Operations?

Since the finite state automaton of Figure 1.8 is deterministic, each transition
produces a symbol and it is therefore easy to use the automaton to enumerate
the number of strings4 of a certain length k.

We can also use the machine to directly compute the number of words,
either by using a standard dynamic programming approach or by solving the
linear recurrence specified by the automaton to produce a closed form. For
example, there is a single length 1 path to q1 (the path from the start state
q0). For paths of length greater than 1, the number of paths to q1 of length k
is equal to the number of paths of length k− 1 to q2. In general, the number
of paths of length k to a state is the sum of the paths of length k − 1 which
can reach this state in one step. Writing out the full definition then gives
the following set of linear recurrences, where p[Q][K] denotes the number of
paths of length K which reach state Q. In addition, p[k] denotes the number
of accepting paths of length k and it is the sum of the number of paths to
the two accepting states q3 and q4.

4 In the literature on finite state automata it is common to refer to sequences of symbols
produced by such an automaton as “words”. However, we reserve “words” to refer to
elements in the lexicon of a type-logical grammar and exclusively use “string” for a sequence
of symbols produced by a finite state automaton.



22 Richard Moot

p[q1][1] = 1

p[q1][k] = p[q2][k − 1]

p[q2][k] = p[q1][k − 1]

p[q3][k] = p[q4][k − 1] + p[q5][k − 1] + p[q1][k − 1] + p[q2][k − 1]

p[q4][k] = p[q3][k − 1] + p[q5][k − 1]

p[q5][k] = p[q3][k − 1] + p[q4][k − 1]

p[k] = p[q3][k] + p[q4][k]

We can simplify these equations by observing that for each k there is
exactly one path arriving at q in k steps from either q2 (for k− 1 even) or q1
(for k− 1 odd). So we can simplify p[q1][k− 1]+ p[q2][k− 1] to 1. In addition,
because of the symmetries in the automaton, there are exactly as many paths
reaching q4 as there are reaching q5 for any k, so we can replace p[q5][k] by
p[q4][k] without changing the results. This simplifies the equations as follows.

p[q3][0] = p[q3][1] = 0

p[q4][0] = p[q4][1] = p[q4][2] = 0

p[q3][k] = 2 ∗ p[q4][k − 1] + 1 (k > 1)

p[q4][k] = p[q3][k − 1] + p[q4][k − 1] (k > 2)

p[k] = p[q3][k] + p[q4][k]

We can now show the following.

p[q3][k] = p[q4][k] (for k odd) (1.9)

p[q3][k] = p[q4][k] + 1 (for k even and ≥ 2) (1.10)

This is an easy induction: it is trivially true for k = 1. Now assume Equa-
tions 1.9 and 1.10 hold for all k′ < k.

If k is even, k − 1 is odd, and induction hypothesis gives us p[q3][k − 1] =
p[q4][k−1] and we need to show that p[q3][k] = p[q4][k]+1, given k ≥ 2. Using
p[q3][k− 1] = p[q4][k− 1], we can simplify p[q4][k] = p[k3][k− 1]+ p[p4][k− 1]
to p[q4][k] = 2 ∗ p[q4][k]. But since p[q3][k] = 2 ∗ p[q4][k] + 1 we have therefore
shown that p[q3][k] = p[q4][k] + 1.

If k is odd, k − 1 is even, and induction hypothesis gives us p[q3][k − 1] =
p[q4][k − 1] + 1. We have already verified k = 1, so we only need to verify
k ≥ 3. Again, using p[q3][k− 1] = p[q4][k− 1]+ 1 to substitute p[q4][k− 1]+ 1
for p[q3][k−1] in the equation for p[q4][k] produces p[q4][k] = 2∗p[q4][k−1]+1
and we have therefore shown that p[q3][k] = p[q4][k] as required.

We can use Equations 1.9 and 1.10 to further simplify the machine equa-
tions and end up with the following.

For k odd, we have



1 Partial Orders, Residuation, and First-Order Linear Logic 23

p[q4][k] = 2 ∗ p[q4][k − 1] + 1

p[q3][k] = 2 ∗ p[q3][k − 1]− 1

and therefore

p[k] = 2 ∗ p[q4][k − 1] + 1 + 2 ∗ p[q3][k − 1]− 1

= 2 ∗ p[k − 1]

For k even and ≥ 2, we have

p[q4][k] = 2 ∗ p[q4][k − 1]

p[q3][k] = 2 ∗ p[q3][k − 1] + 1

and therefore

p[k] = 2 ∗ p[q4][k − 1] + 2 ∗ p[q3][k − 1] + 1

= 2 ∗ p[k − 1] + 1

The number of residuated connectives definable in first-order linear logic
with partial order constraints therefore corresponds to sequence A000975
of the Online Encyclopedia of Integer Sequences (OEIS Foundation 1964).
Giving us the sequence the following sequence of the number of residuated
triples

0, 1, 2, 5, 10, 21, 42, 85, 170, 341, 682, . . .

for 1, 2, 3, . . . total string components and for 2, 3, 4, . . . total string positions5.

1.5.2 Well-Nestedness

One important property often imposed on linguistic formalisms is the prop-
erty of well-nestedness (Kallmeyer 2010). In the current context, this means
that with respect to the finite state automaton of Figure 1.8, we restrict our-
selves to those paths where, whenever we encounter an a symbol after a b,
there can be no further b symbols. In other words, the bs are sandwiched
between the a, but not inversely. The simplest non-wellnested combination
is abab.

We can write out the linear recurrences as before. The number of paths to
q3 and q5 are easily established to be the following.

5 A closed form solution for this recurrence is the following (OEIS Foundation 1964).

p[n] =

⌈

2(2n − 1)

3

⌉



24 Richard Moot

q0start

q1

q2 q3

q4 q5q6

a

1
a b

b

a

a

b
1

a

1

Fig. 1.9 Variant of the finite state automatic of Figure 1.8 for well-nested operations

p[q3][2k] = k

p[q3][2k + 1] = k

p[q5][2k] = k − 1 k > 0

p[q5][2k + 1] = k

Then given that p[q6][n] = p[q4][n− 1], we can establish the number of paths
to q4 as follows.

p[q4][2k] = q[3][2k − 1] + q[5][2k − 1] + q[4][2(k − 1)]

p[q4][2k + 1] = q[3][2k] + q[5][2k] + q[4][2(k − 1) + 1]

Simplifying the above recurrence with the calculated values for q3 and q5
produces the following.

p[q4][2k] = q[4][2(k − 1)] + 2(k − 1) = k(k − 1)

p[q4][2k + 1] = q[4][2(k − 1) + 1] + 2k = k2

The number of paths to a final state of the automaton is then obtain by
simply adding the number of paths to q3 to those to q4, which gives us the
following solutions after some elementary arithmetic.



1 Partial Orders, Residuation, and First-Order Linear Logic 25

p[2k] = p[q3][2k] + p[q4][2k]

= k + k(k − 1) = k2

p[2k + 1] = p[q3][2k + 1] + p[q4][2k + 1]

= k + k2 = k(k + 1)

An alternative way to state this same solution is the following.

p[n] = ⌊(n/2)⌋ ∗ ⌈n/2⌉

Accordingly, the number of well-nested residuated connectives is the fol-
lowing

0, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, . . .

for 1, 2, 3, 4, 5, . . . segments and 2, 3, 4, 5, 6, . . . string position variables. This
corresponds to sequence A002620 of the Online Encyclopedia of Integer Se-
quences (OEIS Foundation 1964).

As a sanity check, we can verify that 4 out of 5 of the four segment possi-
bilities of Table 1.6 are well-nested (only 4a is not) whereas 6 out of 10 of the
five segment possibilities of Table 1.7 are well-nested (the exceptions being
5a, 5c, 5d, and 5h).

1.5.3 Partial Order Constraints in Practice

As an example, we will give an analysis of the sentence ‘John left before Mary
did’ based on the analysis of Morrill, Valentin, and Fadda (2011). We assign
‘John’ and ‘Mary’ the formulas np(0, 1) and np(3, 4) respectively (based on
their positions in the string). We assign ‘left’ the formula np\s, which at
positions 1, 2 translates to ∀A.[np(A, 1) ⊸ s(A, 2)]. We assign the ‘before’
the formula ((np\s)\(np\s))/s (that is, it selects a sentence to its right and a
vp = np\s to its left to return a vp). This translates to the following formula.

∀B.[s(3, B) ⊸ ∀D.[∀x.[np(x0, D) ⊸ s(x0, 2)] ⊸ ∀C.[np(C,D) ⊸ s(C,B)]]]

Finally, the complicated formula is assigned to ‘did’. In terms of the residu-
ated connectives it is assigned to formula ((vp/3avp)/vp)\4d(vp/3avp). As a
reminder, we restate the relevant translations of the connectives occurring in
this formula.



26 Richard Moot

‖C/B‖x0,x1 = ∀x2.[‖B‖x1,x2 ⊸ ‖C‖x0,x2]

‖C/3aB‖x0,x1,x2,x3 = ‖B‖x1,x2 ⊸ ‖C‖x0,x3

‖A\4dC‖x3,x4 = ∀x0, x1, x2.[‖A‖
x0,x1,x2,x3 ⊸ ‖C‖x0,x1,x2,x4 ]

Given these translations, we can translate this formula into first-order linear
logic as follows.

‖((vp/3avp)/vp)\4d(vp/3avp)‖
4,5

∀F, I, J.‖(vp/3avp)/vp‖
F,I,J,4 ⊸ ‖vp/3avp‖

F,I,J,5

∀F, I, J.[∀x1, ‖vp‖
4,x1 ⊸ ‖vp/3avp‖

F,I,J,x1] ⊸ ‖vp‖I,J ⊸ ‖vp‖F,5

∀F, I, J.[∀x1, ‖vp‖
4,x1 ⊸ ‖vp‖I,J ⊸ ‖vp‖F,x1] ⊸ ‖vp‖I,J ⊸ ‖vp‖F,5

We have left the final vp = np\s subformulas untranslated. We can see that
aside for some fairly complicate manipulation with string positions, to which
we will return shortly, the formula simply indicates it select a function of two
vp’s into a single vp to become a vp modifier.

Given these translations, Figure 1.10 shows the formula unfolding for the
sentence ‘John left before Mary did’. Each node indicates the corresponding
linear order on the variables occurring once in this subformula. The complex
formula ‘did’ has many branchings but referring back to the position variables
allows to to identify which node corresponds to which subformula in the
translation. For example, the node labeled F, I, J, x1 corresponds to (the
leftmost occurrence of) the formula vp/3avp.

Table 1.8 shows the possible matchings between positive and negative
atomic formulas. The rows of the table represent the choices for the positive
formulas, whereas the columns represent the choices for the negative formu-
las. The positive s(0, 5) formula represents the conclusion, the other positive
formulas are those which are premisses of their link. Each of the candidate
proof structures for the goal sequent is one of the perfect matchings of the
positive with the negative formulas. However, since there are n! matchings,
brute force search is to be avoided as much as possible. Just for the current
example, there are 5! = 120 choices for the np formulas and the same number
of choices for the s formulas. Given that these choices are independent, this
amounts to a total of 14.400 different possible proof structures.

Fortunately, there are quite a number of constraints on the possible con-
nections in the proof structure. The partial order constraints are one of those.
Figure 1.11 summarises the partial order constraints for the structure of Fig-
ure 1.10. The partial order constraints allow us to avoid connecting s(3, B) to
s(A, 2) since it fails both the 3 ≤ B constraint (when unifying B to 2) and the
A ≤ 1 constraint (when unifying A to 3). A slightly less obvious connection
which fails the constraint is the connection between s(x2, x1) and s(H, J).



1 Partial Orders, Residuation, and First-Order Linear Logic 27

np(0, 1)

John

np(3, 4)

Mary

1, 2

left

1, 2

A

np(A, 1)

s(A, 2)

2, 3

before

2, 3

B

s(3, B)

2, B

2, B

D

D, 2

D,B

D, 2

x0

np(x0,D)

s(x0, 2)

D,B

C

np(C,D)

s(C,B)

F, I, J, 44, x1

F, I, J, x1

F, I, J, 4

x1

4, x1

G

np(G, 4)

s(G, x1)

I, J

F, x1

4, x1

H

np(H, I)

s(H, J)

F, x1

x2

np(x2, F )

s(x2, x1)

4, 5

F, I, J, 5

4, 5

did

F, I, J

I, J

I, J

x3

np(x3, I)

s(x3, J)

F, 5

F, 5

E

np(E,F )

s(E, 5)

Fig. 1.10 Proof structure formed from the formula unfolding for ‘John left before Mary
did’



28 Richard Moot

np(x0,D) np(0, 1) np(3, 4) np(x2, F ) np(x3, I)

np(C,D) 2

np(A, 1) 9

np(E,F ) 4

np(G, 4) 8

np(H, I) 10

s(A, 2) s(E, 5) s(H,J) s(G,x1) s(C,B)

s(x0, 2) 6

s(3, B) 7

s(x3, J) 5

s(x2, x1) 1

s(0, 5) 3

Table 1.8 Possible axiom connectives for the proof structure in Figure 1.10, with the
columns representing the negative occurrences and the rows the positive ones.

0 1 2 3 4 5

A

DC

x0

J

IFE

x2 x3

H

G

x1B

Fig. 1.11 The partial order constraints corresponding to the proof structure of Fig-
ure 1.10.

Here we have J ≤ 4, but also 4 < x1. Unifying J to x1 would therefore
produce the contradicting x1 ≤ 4 and 4 < x1.

Many potential axioms connections are excluded by a simply failure of
unification between the two atoms: the positive atom s(x2, x1) cannot connect
either to s(A, 2) or to s(E, 5) (since x1 does not unify with either 2 or 5).

Finally, the contractability condition excludes many other connections.
The metavariables F , I, and J have free occurrences at many nodes. This
notably means none of them can unify with x1, x2 or x3 without violating the
contraction condition. Similarly, x0 cannot unify with B, C, or D. In general,
the eigenvariable of a universal link can never appear on the ‘wrong’ side of
its link (the part to which the arrow points), since this would correspond to
a violation of the eigenvariable condition in the sequent calculus.

Now, returning to our proof structure, we can see there is only a single
possibility for the positive atomic formula s(x2, x1). We have already seen
that s(A, 2) and s(E, 5) do no unify and that s(H, J) fails on the partial
order constraint. This leaves only s(C,B) and s(G, x1). However, s(G, x1)



1 Partial Orders, Residuation, and First-Order Linear Logic 29

fails on the proof net condition: unifying G to x2 produces an occurrence
of x2 on the 4, x1 node of the proof structure above the G link (since it is
on the existential frontier of G). And a reduction of the par link requires
an identification of this node with the F, I, J, x1 node, thereby producing
an occurrence of x2 on the wrong side of its universal link. Therefore, the
only possible connection for s(x2, x1) is to s(C,B), unifying C = x2 and
B = x1. This fills in the first cell labeled 1 of Table 1.8. This unification then
turns the positive np(C,D) formula into np(x2, D) which can only unify with
np(x2, F ), filling cell 2 of the table.

We can now turn to the goal formula s(0, 5). Since we have already con-
nected the s(C,B) formula to s(x2, x1) this option is no longer available,
and the s(A, 2) and s(G, x1) options are excluded by failure of unification.
Finally, s(H, J) is excluded because the J ≤ 4 partial order constraint would
contradict unifying J to 5. This leaves only the s(E, 5) possibility, unifying
E to 0, as indicated by cell 3 of the table.

After these unifications the negative np(E,F ) has become np(0, D) which
only unifies with np(0, 1), instantiating D to 1, and filling cell 4 of the table.
We have now essentially solved the linking problem and the remaining s
connections can only be made in a single way, filling cells 5 to 7 in the table.
Following that, we can apply similar reasoning to the np connections and fill
the remaining cells (cells 8 to 10).

What we have shown is that even a for a quite complex proof structure
such as the one in Figure 1.10, the partial order constraints combined with
the proof net conditions can allow us to produce the unique solution while
avoiding all backtracking. Given the essentially non-deterministic natural of
natural language parsing (sentences can have multiple readings and our parser
should therefore produce as many proofs), we will in many cases be required
to use some form of backtracking. But this examples gives an illustration of
how powerful the combined constraints are.

1.6 The Empty String

Up until now, we have not explicitly allowed string segments to be empty.
However, there are some well-know applications of empty string, notably the
treatment of extraction in variants of the Lambek calculus. We can add a
variant of extraction as a residuated pair as follows.

‖A ⊸ C‖y,z = ∀x.[‖A‖x,x] ⊸ ‖C‖y,z

‖A⊗B‖y,z = ∀x.[‖A‖x,x]⊗ ‖B‖

Even though this works in many cases, there is a potential problem here:
suppose the extracted element is a vp, that is the Lambek calculus formula
np\s, with the standard translation into first-order linear logic of



30 Richard Moot

∀x0.[np(x0, x1) ⊸ s(x0, x2)]

corresponding to a vp at positions x1, x2. When we plug this formula into
the A argument of the implication selecting an empty argument, the result
is the identification of x1 and x2, producing the formula

∀x1∀x0.[np(x0, x1) ⊸ s(x0, x1)]

for this extracted vp.
Compare this to an extracted formula corresponding to s/np. It would be

translated into
∀x2.[np(x1, x2) ⊸ s(x0, x2)]

at positions x0, x1. Turning this into the empty string identifies x0 with x1,
producing the following

∀x1∀x2.[np(x1, x2) ⊸ s(x1, x2)]

The problem now is that this is equivalent to the formula for the extracted
vp we computed before!

Though it would seem that there is not much of a difference between
concatenating the empty string to the left or to the right of an np constituent,
there should be a difference in behaviour between an np\s gap and a s/np
gap: for example, the first, but not the second can be modified by an subject-
oriented adverb of type (np\s)\(np\s). The naive first-order translation fails
to make this distinction.

There is a solution, and it consists of moving the universal quantifier out.
Instead of the universal quantifier having only the A formula as its scope, we
turn it into an existential quantifier which has the entire A ⊸ C formula as
its scope as follows.

‖A ⊸ C‖y,z = ∃x.[‖A‖x,x ⊸ ‖C‖y,z]

This allows us to correctly distinguish these two cases, but at the price of no
longer having a residuated pair for the extraction phenomena6.

1.7 Discussion

One obvious aspect of first-order linear logic which hasn’t been mention thus
far is that the Horn clause fragment corresponds to a lexicalised version of
multiple context-free grammars (Moot 2014; Wijnholds 2011). Horn clauses

6 This analysis also makes an unexpected empirical claim: the treatment of parasitic gap-
ping in type-logical grammars using the linear logic exponential ! would require the ex-
ponential to have scope over the quantified variable representing the empty string. We
therefore need to claim that parasitic gapping can only happen with atomic formulas.



1 Partial Orders, Residuation, and First-Order Linear Logic 31

for first-order linear logic are of the form ∀x0, . . . , xn[p1 ⊗ . . .⊗ pm ⊸ q] for
predicates pi and q, or equivalently ∀x1, . . . , xn.(p1 ⊸ (. . . ⊸ (pm ⊸ q), and
they code each segment of an MCFG by a pair of string positions. In the
context of MCFG it is well-known that each additional segment increases the
generative capacity. When the maximum arity is 2, each predicate has a single
segment and we have context-free grammars allowing us to generate languages
such as anbn. When the maximum arity is 4, we can generate anbncndn, with
maximum arity 6 anbncndnenfn, and so on (Kallmeyer 2010).

It is unclear which of these classes best captures the properties we want
with respect to the string languages needed for the analysis of natural lan-
guages. It is generally assumed that a reasonable minimum is 4 (that is, two
string segments per predicate). For example the languages generated by tree
adjoining grammars and several similar formalisms are strictly included in
this class (more precisely, the tree adjoining languages have the additional
contraint of well-nestedness, whereas the multiple context free languages in
general do not (Seki et al. 1991)).

It is unclear to me which would be the right number of components to
consider. Values between 4 and 6 components would seem to suffice for most
applications, and it is unclear whether there are good linguistic reasons for
abandoning well-nestnedness.

The well-nested, residuated connectives seem to be the same as those de-
finable in the Displacement calculus. Indeed, I have elsewhere already implic-
itly assumed a linear order for all subproofs when relating the Displacment
calculus to first-order linear logic (Moot 2014).

One interesting area of further investigation would be to relax the linear
order constraint. For example, we let our sequent compute a unique partial
order over the initial position variables (now no longer linearly ordered) and
consider the sentence grammatical when the input string is a valid linearisa-
tion of this partial order. This would be potentially interesting for languages
with relatively free word order.

1.8 Conclusions

This paper has discussed several aspect of adding partial order constraints
to first-order linear logic. Although somewhat odd from the logical point of
view, adding order constraints to the variables in first-order linear logic allows
us to preserve the standard algebraic and category theoretic perspectives on
type-logical grammars. In addition, some linguistically interesting operations
can only be defined as part of a residuated triple when we impose partial
order constraints on the string position variables.

We have also shown how partial order constraints can be use as a mech-
anism for improving proof search by filtering out choices inconsistent with
this order.



32 REFERENCES

References

Areces, Carlos, Raffaella Bernardi, and Michael Moortgat (2004). “Galois
connections in categorial type logic”. In: Electronic Notes in Theoretical
Computer Science 53, pp. 3–20.

Bellin, Gianluigi and J. van de Wiele (1995). “Empires and Kingdoms in
MLL”. In: Advances in Linear Logic. Ed. by Jean-Yves Girard, Yves La-
font, and Laurent Regnier. Cambridge University Press, pp. 249–270.

Bernardi, Raffaella and Michael Moortgat (2010). “Continuation seman-
tics for the Lambek–Grishin calculus”. In: Information and Computation
208.5, pp. 397–416.

Coecke, Bob, Edward Grefenstette, and Mehrnoosh Sadrzadeh (2013). “Lam-
bek vs. Lambek: Functorial vector space semantics and string diagrams for
Lambek calculus”. In: Annals of pure and applied logic 164.11, pp. 1079–
1100.

Danos, Vincent (1990). “La Logique Linéaire Appliquée à l’étude de Divers
Processus de Normalisation (Principalement du λ-Calcul)”. PhD thesis.
University of Paris VII.

Danos, Vincent and Laurent Regnier (1989). “The Structure of Multiplica-
tives”. In: Archive for Mathematical Logic 28, pp. 181–203.

Došen, Kosta (1992). “A Brief Survey of Frames for the Lambek Calculus”.
In: Zeitschrift für Mathematische Logic und Grundlagen der Mathematik
38, pp. 179–187.

Girard, Jean-Yves (1991). “Quantifiers in Linear Logic II”. In: Nuovi problemi
della logica e della filosofia della scienza. Ed. by G. Corsi and G. Sambin.
Vol. II. Proceedings of the conference with the same name, Viareggio, Italy,
January 1990. Bologna, Italy: CLUEB.

– (2011). The Blind Spot: Lectures on Logic. European Mathematical Soci-
ety.

Joshi, Aravind and Yves Schabes (1997). “Tree-adjoining Grammars”. In:
Handbook of Formal Languages 3: Beyond Words. Ed. by Grzegorz Rosen-
berg and Arto Salomaa. New York: Springer, pp. 69–123.

Kallmeyer, Laura (2010). Parsing Beyond Context-Free Grammars. Cognitive
Technologies. Springer.

Kubota, Yusuke and Robert Levine (2012). “Gapping as Like-Category Coor-
dination”. In: Logical Aspects of Computational Linguistics. Ed. by Denis
Béchet and Alexander Dikovsky. Vol. 7351. Lecture Notes in Computer
Science. Nantes: Springer, pp. 135–150.

– (2020). Type-Logical Syntax. MIT Press.
Kurtonina, Natasha and Michael Moortgat (1997). “Structural Control”. In:

Specifying Syntactic Structures. Ed. by Patrick Blackburn and Maarten de
Rijke. Stanford: CSLI, pp. 75–113.

Lambek, Joachim (1958). “The Mathematics of Sentence Structure”. In:
American Mathematical Monthly 65, pp. 154–170.



REFERENCES 33

– (1988). “Categorial and Categorical Grammars”. In: Categorial Grammars
and Natural Language Structures. Ed. by Richard T. Oehrle, Emmon Bach,
and Deirdre Wheeler. Vol. 32. Studies in Linguistics and Philosophy. Rei-
del, pp. 297–317.

Lincoln, Patrick (1995). “Deciding Provability of Linear Logic Formulas”.
In: Advances in Linear Logic. Ed. by Jean-Yves Girard, Yves Lafont, and
Laurent Regnier. Cambridge University Press, pp. 109–122.

Lincoln, Patrick and Natarajan Shankar (1994). “Proof Search in First-order
Linear Logic and Other Cut-free Sequent Calculi”. In: Proceedings of Logic
in Computer Science (LICS’94). IEEE Computer Society Press, pp. 282–
291.

Montague, Richard (1974). “The Proper Treatment of Quantification in Or-
dinary English”. In: Formal Philosophy. Selected Papers of Richard Mon-
tague. Ed. by R. Thomason. New Haven: Yale University Press.

Moortgat, Michael (1996). “Multimodal Linguistic Inference”. In: Journal of
Logic, Language and Information 5.3–4, pp. 349–385.

Moot, Richard (2014). “Extended Lambek calculi and first-order linear logic”.
In: Categories and Types in Logic, Language, and Physics: Essays dedicated
to Jim Lambek on the Occasion of this 90th Birthday. Ed. by Claudia Casa-
dio et al. Lecture Notes in Artificial Intelligence 8222. Springer, pp. 297–
330.

Moot, Richard and Mario Piazza (2001). “Linguistic Applications of First
Order Multiplicative Linear Logic”. In: Journal of Logic, Language and
Information 10.2, pp. 211–232.

Morrill, Glyn, Oriol Valentin, and Mario Fadda (2011). “The Displacement
Calculus”. In: Journal of Logic, Language and Information 20.1, pp. 1–48.

Oehrle, Richard T. (1994). “Term-Labeled Categorial Type Systems”. In:
Linguistics & Philosophy 17.6, pp. 633–678.

– (2011). “Multi-modal type-logical grammar”. In: Non-transformational
Syntax: Formal and Explicit Models of Grammar. Ed. by Robert Bors-
ley and Kersti Börjars. Wiley-Blackwell. Chap. 6, pp. 225–267.

OEIS Foundation (1964).On-Line Encyclopedia of Integer Sequences (OEIS).
http://oeis.org. Accessed July 23 2020.

Seki, Hiroyuki et al. (1991). “On Multiple Context-free Grammars”. In: The-
oretical Computer Science 88, pp. 191–229.

Wijnholds, Gijs (2011). “Investigations into Categorial Grammar: Symmet-
ric Pregroup Grammar and Displacement Calculus”. MA thesis. Utrecht
University.

http://oeis.org

	1 Partial Orders, Residuation, and First-Order Linear Logic
	Richard Moot
	1.1 Introduction
	1.2 Categorial Grammars and Residuation
	1.2.1 Residuation in Extended Lambek Calculi
	1.2.2 Residuation and First-Order Linear Logic

	1.3 First-Order Linear Logic
	1.3.1 First-Order Linear Logic and Natural Language Grammars
	1.3.2 Proof Nets

	1.4 Residuation and Partial Orders
	1.4.1 Residuation for the Lambek Calculus Revisited
	1.4.2 Partial Orders

	1.5 The General Case
	1.5.1 How Many Residuated Connectives Are There for Concatenation-Like Operations?
	1.5.2 Well-Nestedness
	1.5.3 Partial Order Constraints in Practice

	1.6 The Empty String
	1.7 Discussion
	1.8 Conclusions
	References



