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Abstract
We present ÆTHEL, a semantic compositionality dataset for written Dutch. ÆTHEL consists of two parts. First, it contains a lexicon of
supertags for about 900 000 words in context. The supertags correspond to types of the simply typed linear lambda-calculus, enhanced
with dependency decorations that capture grammatical roles supplementary to function-argument structures. On the basis of these
types, ÆTHEL further provides 72 192 validated derivations, presented in four equivalent formats: natural-deduction and sequent-style
proofs, linear logic proofnets and the associated programs (lambda terms) for meaning composition. ÆTHEL’s types and derivations are
obtained by means of an extraction algorithm applied to the syntactic analyses of Lassy Small, the gold standard corpus of written Dutch.
We discuss the extraction algorithm and show how ‘virtual elements’ in the original Lassy annotation of unbounded dependencies and
coordination phenomena give rise to higher-order types. We suggest some example usecases highlighting the benefits of a type-driven
approach at the syntax semantics interface. The following resources are open-sourced with ÆTHEL: the lexical mappings between words
and types, a subset of the dataset consisting of 7 924 semantic parses, and the Python code that implements the extraction algorithm.

1. Introduction
Typelogical categorial grammars offer an attractive view
on the syntax-semantics interface. The key idea is that
the derivation establishing the well-formedness of a phrase
systematically corresponds to a procedure that computes
the meaning of that phrase, given the meanings of its con-
stituent words.
This connection between logical derivations and programs,
known as the Curry-Howard correspondence (Sørensen and
Urzyczyn, 2006), plays a central role in current typelog-
ical grammars. In extended versions of the Lambek cal-
culus (Lambek, 1958) such as (Morrill, 1994; Moortgat,
1996; Morrill et al., 2011; Kubota and Levine, to appear),
the Curry-Howard correspondence applies to a language of
semantic types, where meaning composition is addressed.
The semantic type language is obtained by a structure-
preserving translation from the syntactic type system that
handles surface word order, prosodic structure and the like.
Alternatively, the type system of Abstract Categorial Gram-
mar (De Groote, 2001) and Lambda Grammars (Muskens,
2001) is designed to capture a ‘tectogrammatical’ (Curry,
1961) view of language structure that abstracts away from
the surface realization. From the abstract syntax now both
the meaning representations and the surface forms are ob-
tained by compositional translations, where for the latter
one relies on the standard encoding of strings, trees, etc in
lambda calculus (Barendregt et al., 2013).
A common feature of these approaches is the use of
resource-sensitive type logics, with Linear Logic (Girard,
1987) being the key representative. Curry’s original for-
mulation of the logic-computation correspondence was for
Intuitionistic Logic, the logic of choice for the formaliza-
tion of mathematical reasoning. For many real-world ap-
plication areas, Linear Logic offers a more attractive al-
ternative. In Linear Logic, formulas by default stand for
non-renewable resources that are used up in the course of a
derivation; free copying or deletion is not available.
The resource-sensitive view of logic and computation fits
the nature of grammatical composition particularly well.

Despite this, linear logic is underrepresented when it comes
to linguistic resources that exhibit its potential at the
syntax-semantics interface. Motivated by this lack of re-
sources, we introduce ÆTHEL1, a dataset of typelogical
derivations for Dutch. The type logic ÆTHEL employs
rests on the non-directional types of simply typed intuition-
istic linear logic, enhanced with modal operators that allow
the inclusion of dependency information on top of simple
function-argument relations. ÆTHEL consists of 72 192
sentences, every word of which is assigned a linear type that
captures its functional role within the phrase-local struc-
ture. Under the parsing-as-deduction view, these types give
rise to proofs, theorems of the logic showing how the sen-
tence type is derived from the types of the words it con-
sists of. These derivations are presented in four formats
which, albeit being morally equivalent, can be varyingly
suitable for different tasks, viz. proofnets, natural deduction
and sequent-style proofs, and the corresponding λ-terms.
ÆTHEL is generated by an automated extraction algorithm
applied to Lassy Small (van Noord et al., 2013), the gold
standard corpus of written Dutch. The validity of the ex-
tracted derivations is verified by LinearOne (Moot, 2017),
a mechanized theorem prover for first-order linear logic.
The structure of the paper is as follows: we begin in Sec-
tion 2 by providing an overview of the type logic used. We
proceed by detailing the proof extraction algorithm in Sec-
tion 3, before describing the dataset and its accompanying
resources in Section 4. We give some conclusive remarks
in Section 5.

Related work The work reported on here shares many of
the goals of the CCGBank project (Hockenmaier and Steed-
man, 2007).
A difference is that CCGBank uses syntactic types aim-
ing at wide-coverage parsing, whereas our linear types are
geared towards meaning composition. Also different is
the treatment of long-range dependencies, where CCG es-
tablishes the connection with the ‘gap’ by means of type-
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raising and composition rules. From a logical point of view,
these CCG derivations are suboptimal: they contain detours
that disappear under proof normalization. In our approach,
long-range gaps are hypotheses that are withdrawn in a sin-
gle inference step of conditional reasoning.

2. Type Logic
2.1. ILL(

The core of the type system used in this paper is ILL(,
the simply-typed fragment of Intuitionistic Linear Logic.
ILL( types are defined by the following inductive scheme:

T ::= A | T1 ( T2

where A ∈ A is a set of atomic types and linear impli-
cation (() is the only type-forming operation for building
complex types. Atomic types are assigned to phrases that
can be considered complete in themselves. A complex type
T1 ( T2 denotes a function that takes an argument of type
T1 to yield a value of type T2. Such function types are
linear in the sense that they actually consume their T1 ar-
gument in the process of producing a T2 result.
Given Curry’s “proofs as programs” approach, one can
view the inference rules that determine whether a con-
clusion B can be derived from a multiset of assumptions
A1, . . . ,An as the typing rules of a functional program-
ming language. The program syntax is given by the fol-
lowing grammar:

M,N ::= x |MN | λx.M

Typing judgements take the form of sequents

x1 : A1, . . . , xn : An `M : B

stating that a program M of type B can be constructed with
parameters xi of type Ai. Such a program, in the linguistic
application envisaged here, is a procedure to compute the
meaning of a phrase of type B, given meanings for the con-
stituting words wi as bindings for the parameters xi. The
typing rules then comprise the Axiom x : A ` x : A, to-
gether with inference rules for the elimination and introduc-
tion of the linear implication, where (( E) corresponds to
function application, and (( I) to function abstraction.

Γ `M : A ( B ∆ ` N : A
Γ,∆ ` (M N) : B

( E
(1)

Γ, x : A `M : B
Γ ` λx.M : A ( B ( I (2)

The abstraction rule (( I) comes into play in reasoning
about higher-order types. We say that atomic types are of
order zero. For function types, order(T1 ( T2) is defined
as max(order(T1) + 1, order(T2)). A type of order n > 1
is a function that has a function as one of its arguments. A
relative pronoun, for example, could be typed schematically
as (NP ( S) ( REL. The import of this type is that the
relative clause body is an S composed with the aid of an
NP hypothesis (the ‘gap’); this hypothesis is withdrawn by
the (( I) rule.

2.2. Dependency enhancement
As it stands, our type system doesn’t have the expressiv-
ity to capture grammatical role information. For exam-
ple, a ditransitive verb such as ‘give’ would be typed as
NP ( NP ( NP ( S2; we would like to be able to dis-
tinguish the subject, direct object and indirect object among
the three NP arguments.
To address this limitation, we use the modalities of Multi-
modal Categorial Grammars (Moortgat, 1996). Modalities
are unary type-forming operations, commonly used for syn-
tactic control, licensing restricted forms of restructuring or
reordering, or blocking overgenerating applications of such
operations. Here instead, we use them as a means of inject-
ing dependency information directly into the type system in
the form of feature decorations3.
We augment the type system with unary operators �d and
@d, where the d labels are taken from the set of depen-
dency roles (subject, object, modifier, etc) in the corpus.
The operators �d and @d come with their own Elimination
and Introduction rules. We assume that the dependency an-
notations do not affect the Curry-Howard program terms
associated with a proof, so we can formulate these infer-
ence rules purely on the type level. For our purposes, �d
Introduction and @d Elimination play a key role.

Γ ` A
〈Γ〉d ` �dA

�I Γ ` @dA
〈Γ〉d ` A

@E
(3)

The (�dI) rule says that if from resources Γ one can de-
rive a phrase of syntactic type A, then one can obtain an A
phrase with dependency role d by grouping together the Γ
resources with the delimiter 〈·〉d, indicating that they con-
situte a dependency domain. The (@dE) rule, similarly, en-
closes the Γ resources with the dependency delimiter 〈·〉d,
this time by unpacking the @dA type of the premise, so that
reasoning can now proceed with the A subtype.
The �d and @d modalities allow us to reconcile the demands
of the logical function-argument structure of a phrase with
those of its dependency structure (Moortgat and Morrill,
1991).
(i) We use �dA ( B for a function acting as a head that
selects for an A complement and assigns it the dependency
role d by means of (�dI). For example, intransitive verbs
are typed �suNP ( S.
(ii) We use @d(A ( B) for non-head functions, i.e. func-
tions that, in the dependency structure, are dependents with
respect to their argument. For example, @mod(NP ( NP)
for a noun-phrase modifier, or @det(N ( NP) for a deter-
miner.
To complete the tour of the type system, the nested implica-
tions of higher-order types come with a structural modality
! on their argument: ! A ( B. The purpose of the ! modal-
ity is to allow for the A hypothesis that is withdrawn in
the (( I) step to originate from an embedded dependency
domain.

2Type brackets can be ommitted reading the ( operation as
right-associative.

3For earlier applications of modalities-as-features, see
(Heylen, 1999; Johnson, 1999).



In practice, the dependency refinement serves three main
purposes. From a semantic perspective, the added opera-
tors can be meaningful in the interpretation of the type sys-
tem, allowing distinct composition recipes for types which
would otherwise be equated. Further, through subsuming
dependency label information, they allow for a backwards
conversion into dependency-based syntactic frameworks.
Finally, from a parsing perspective, ILL( by itself is word-
order agnostic, meaning it admits more proofs than linguis-
tically desired. The dependency decorations in this respect
act as a balancing counter-weight, which on the one hand
increases lexical type ambiguity, but on the other hand pro-
vides valuable information to constrain proof search.
For the time being, we specify the dependency-decorated
types at the lexical level of our provided proofs, but refrain
from incorporating the structural rules imposed for reasons
of brevity and simplicity.

3. Extraction
The formulation of the extraction process takes its inspi-
ration from (Moortgat and Moot, 2002; Moot, 2015), mod-
ulo some adaptations to account for the discrepancies in the
type-logic and the source corpus. Algorithmically, it may
be perceived as a pipeline of three distinct components. The
first one concerns the transformation of the syntactically an-
notated input sentences into a directed acyclic graph (DAG)
format that satisfies the input requirements of the remain-
der of the algorithm. The intermediate one is responsible
for assigning types to the DAG’s nodes and asserting their
validity within the phrase-local context. Finally, the third
component accepts the type-decorated DAG and identifies
the interactions between its constituent types, thereby trans-
forming it into a typelogical derivation.

3.1. Lassy
Lassy (van Noord et al., 2013) is a dataset of syntacti-
cally annotated written Dutch. It is subdivided in two parts,
Lassy Small and Lassy Large, both of which have been au-
tomatically annotated by the Alpino parser (Bouma et al.,
2001). For the purposes of this work we focus our attention
at the gold-standard Lassy Small, which (unlike its sibling)
has been manually verified and corrected. Lassy Small enu-
merates about 65 000 sentences (or a million words), orig-
inating from various sources such as e-magazines, legal
texts, manuals, Wikipedia content and newspaper articles
among others. The Lassy annotations are essentially DAGs,
where nodes correspond to words and phrases labeled with
lexical and phrasal categories, connected with edges that
capture the syntactic functions between them4. DAGs al-
low for reentrancy, whereby a node has multiple incoming
dependency edges. In the Lassy annotation, cases of reen-
trancy are handled via phantom syntactic nodes coindexed
with nodes that carry real content, so as to allow the anno-
tation DAG to be visually represented as a tree.

4A concise description of the syntactic category tags and
dependency labels of Lassy can be found at http://
nederbooms.ccl.kuleuven.be/eng/tags

3.2. Preprocessing
The extraction algorithm is formulated in terms of opera-
tions on DAGs. The first step mandated is therefore to col-
lapse all coindexed duplicate nodes of each word or phrase
into one, which inherits all the incoming edges of the orig-
inal tree.
Next, we wish to treat annotation instances that are prob-
lematic for our type logic, stemming from schemes that
under-specify the phrase structure. The two usual cul-
prits are discourse-level annotations, which do not exhibit a
consistent function-argument articulation, and multi-word
units, the children of which are syntactically indiscernible.
In the first case, we erase branches related to discourse
structure (in many cases, these consist simply of struc-
tures annotated as “discourse unit” with substructures each
marked as “discourse part”). To minimize the amount
of annotations lost, we reconstruct an independent sample
from each disconnected subgraph positioned under the cut-
off point. To resolve multi-word phrases without resorting
to ad-hoc typing schemes, we merge participating nodes,
essentially treating the entire phrase as a single word. Punc-
tuation symbols are dropped, as they are left untreated by
the original annotation.
Beyond ensuring compatibility, we apply a number of
transformations to Lassy’s annotations designed to homo-
genize the types extracted. First, we remove the phantom
syntactic nodes used to express the ‘understood’ subject or
object of non-finite verb forms, since this is semantic infor-
mation that does not belong in a proper syntactic annota-
tion. Second, we replace the generic conj and mwu tags (for
conjunctions and multi-word units, respectively), by recur-
sively performing a majority vote over their daughters’ tags.
Finally, we refine the generic body label by specifying the
particular kind of clause it applies to, thus splitting it into
rhd body, whd body and cmp body for body of a relative,
wh- and comparative clause respectively.
Edge erasures performed by the above procedures might
lead to artifacts, which we take measures against. We re-
deem DAGs with multiple sources by creating a distinct
graph for each source, constituted by (a replica of) the
source-reachable subset of the original graph. We remove
redundant intermediate nodes with a single incoming and a
single outgoing edge, and redirect the incoming edge to its
corresponding descendant. Conjunctions left with no more
than one conjunct are truncated and replaced by their sole
daughter.

3.3. Type Assignment
The output of the preprocessing procedure is a number of
rooted DAGs per Lassy sample. The goal now is to as-
sign types to the nodes of these DAGs, according to the
dependency-decorated scheme of Section 2. We begin this
endeavour by specifying two look-up tables that the type
assignment algorithm is parametric to; one from part-of-
speech tags and phrasal categories into atomic types, and
one from dependency labels into modal operators (refer to
Appendix 1 for details). Further, we specify the edge labels
that correspond to phrasal heads and the ones that corre-
spond to modifiers. We then formulate the type assignment
process as a conditional iteration over a DAG, with each it-
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eration progressively inferring and assigning the types of a
subset of the DAG’s nodes, and the termination condition
being the absence of any untyped nodes.
In abstract terms, the algorithm looks as follows:

TYPEDAG :: DAG d→ DAG
RETURN LAST (UNFOLD STEP d)

STEP :: DAG d→ OPTION DAG
d’← LAST (UNFOLD TYPESIMPLE d)
d’← LAST (UNFOLD TYPENONLOCAL d’)
d’← LAST (UNFOLD TYPECONJUNCTIONS d’)
RETURN d’ IF d’ 6= d else NOTHING

The iteration loop consists of three steps, each being the
unfold of a function that takes a DAG, selects its fringe of
typeable nodes, assigns a type to each node within, and re-
turns the new (partially) typed DAG. Each of these three
functions differs in how it selects for its fringe and how it
manufactures type assignments. We detail their function-
ality in the next paragraphs; an illustrative example is also
given in Figure 1a.

Simple Clauses The first step internalizes the typing of
sub-graphs within the DAG that exhibit simple syntactic
clauses.
First off, we select context-independent nodes, i.e. the root,
plus those that are either leaves or have all of their daugh-
ters typed (possibly excluding modifier- and head-labeled
daughters) and are not targets of exclusively modifying or
head-labeled edges themselves; we type them by simply
translating their part-of-speech or phrasal category tags into
the corresponding atomic type.
The next step is to assign a type to nodes acting as phrasal
heads and modifiers. These may only be typed insofar as
both their parents and all of their siblings are typed, im-
posing the analogous fringe conditions. We assign phrasal
heads the complex type:

�d1 A1 ( . . .( �dnAn ( R,

with �d1A1, . . . , �dn An the list of dependency-decorated
types for the complements and R the phrasal type for the
result. In order to obtain a consistent currying of multi-
argument function types, we appeal to an obliqueness or-
dering of the dependency labels (see e.g. (Dowty, 1982)),
and have the curried n-ary function type consume its n ar-
guments from most oblique �d1A1 to least oblique �dn An.
We refer to Appendix 2 for details of the obliqueness order
assumed here.
Modifiers are treated as non-head functors; their typing is
based on the polymorphic scheme @d (R ( R), i.e. they
are typed as endomorphisms of the phrasal type they are
modifying, fixed to determine the dependency role d they
realize.
Similarly, determiners are also treated as non-head func-
tors: nouns are recognized as the syntactic heads of a noun
phrase, in which determiners still assume the functor role.
As such, they are assigned a boxed type @det(N ( NP).
In order to obtain proper higher-order type assignments
(with functors deriving functors), head (and determiner)
nodes are typed in a bottom-up fashion, whereas modifier
nodes are typed top-down.

Non Local Dependencies Lassy treats non-local phe-
nomena such as relative clauses and constituent questions
by inserting a secondary edge pointing from a phrasal node
embedded (possibly deeply) within the relative or question
clause body on to the relativizing or interrogative pronoun.
Such pronouns then serve two roles. In their primary role,
they act as head of the relative or interrogative clause they
project. In their second role, they contribute to the com-
position of the dependency domain of the subclause where
their secondary edge has its origin. In this respect, they
can be distinguished from other nodes due to having mul-
tiple incoming edges, the labels of which are distinct from
one another. Both of these two roles have already been ad-
dressed by the algorithm, but only in isolation.
To reconcile this, we select our fringe as nodes falling un-
der this construction, and which have already been assigned
some implicational type �dX ( Y depicting the top-level
clause functor (conforming to the flow of the first iteration
step). We then inspect the secondary dependency edge orig-
inating from (a subgraph of) X in order to update the afore-
mentioned type to �d(�eE ( X) ( Y.
The updated higher-order type has a nested implication:
from the parsing-as-deduction perspective this means that
in order to obtain a result of type Y, the relative or question
pronoun has to assemble its argument X with the aid of a
hypothesis �eE. Hypothetical reasoning (the ( Introduc-
tion rule) is a key feature of our typelogical toolkit; it ob-
viates the need for phantom ‘gap’ categories in unbounded
dependency constructions.
The identity of �e and E depends on what the label of the
secondary dependency edge is. In case of an argument
edge, it is simply the pair of translations from the depen-
dency label and the node’s part of speech or phrasal syn-
tactic tag respectively. In case of a modifying edge, the
hypothesis subtype E is itself a box functor @m (Z ( Z),
corresponding to the endomorphism on the type Z of the
edge’s source node. In both cases, if the source node is
in fact a sub-graph of X, the hypothesis type �eE is pre-
fixed with the structural ! operator, allowing it to traverse
intermediate dependency domains as necessary to reach the
point where (( I) can withdraw it.
For any non-terminal nodes the type of which has been al-
tered, we iteratively update the types of all heads and mod-
ifiers lying underneath in the DAG so as to account for the
new phrasal type.

Conjunctions Phenomena of coordination and ellipsis
pose a challenge for our resource-sensitive type logic: de-
riving conjunction types for incomplete phrases from the
types of the complete conjuncts would require copying in
the logic, an operation that our linear type system rules out.
Our approach here is to replace syntactic copying in the log-
ical derivations by lexical polymorphism. More precisely,
coordinators are typed according to the generically poly-
morphic scheme:

�cnjX ( . . .( �cnjX ( X,

where the number of arguments is concurring with the num-
ber of conjuncts. To determine the value of X, we take
the following steps. We begin by setting X0 as the atomic
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Waarover
` �whd body(�pcBW ( SV1) ( WHQ

L

gaat
` �pcBW ( �suNP ( SV1

L �pcBW ` �pcBW
A

�pcBW, gaat ` �suNP ( SV1
( E

de
` @detN ( NP

L

(d)det ` N ( NP @detI
machtstrijd
` N L

(d)det m ` NP
( E(

(d)det m
)

su
` �suNP

�suI

�pcBW, g
(
(d)det m

)
su
` SV1

( E

g
(
(d)det m

)
su
` �pcBW ( SV1

( I(
g
(
(d)det m

)
su

)
whd body

` �wh body(�pcBW ( SV1)
�whd bodyI

Waarover
(
gaat

(
(de)det machtstrijd

)
su

)
whd body

` WHQ
( E

(b) Structurally decorated linear logic corresponding to the above dependency graph, showcasing the effect of the �I and @E rules on
recovering the original dependency structure in the form of annotated bracketings. Intermediate steps depict words using their initial
letters for space economy. Lexical type assignments are denoted with L and the identity axiom with A.

Figure 1: Typed DAG and structurally annotated proof for Lassy sample WS-U-E-A-0000000236.p.11.s.1.xml,
depicting an analysis for the phrase Waarover gaat de machtstrijd (“What is the power struggle about?”).

type assigned to each of the conjuncts5. We then select
copied nodes (that is, nodes with multiple incoming edges,
the labels of which coincide), which are lying under the in-
spected conjunction node and not below any other common
ancestor and set X to:

! �d1 C1 ( . . .(! �dn Cn ( X0,

where �d1C1, . . . , �dn Cn is the obliqueness-sorted list of
dependency-decorated types of the copied nodes, combined
with the structural ! to allow their unhindered relocation
within the conjunct’s dependency domain. This scheme
provides a uniform treatment of arbitrarily nested elliptical
conjunctions and allows their logical derivation by means
of higher-order types and hypothetical reasoning, without
appealing to copying.

5We ensure a singular set of conjunct types by standardizing
them using a majority-biased conjunct type relabeling.

3.4. Axiom Linking

The algorithm specified above assigns a type to each DAG
node; the multiset of types given to terminal nodes should
admit the derivation of the root’s type (i.e. the type of the
sample phrase as a whole should be derivable by the types
of its constituent words); it does not, however, specify the
derivation itself. To that end we design an additional algo-
rithmic component, which accepts a type-annotated DAG
and produces the linear logic proof it prescribes.
The first choice to make is of how to encode proofs; stan-
dard choices would be Gentzen style proofs (either in nat-
ural deduction or sequent format) or proofnets (Girard,
1987). The proofnet presentation is more appealing, as it
combines the pleasant property of natural deduction (one-
to-one correspondence with the program terms for meaning
composition) with the good computational properties of se-
quent calculus (decidable proof search). The type system’s
structural rules are not explicitly specified in the proof rep-



resentations.
Providing the full theory behind proofnets goes beyond the
scope of this paper; what follows is a simplified summary.
We begin by assigning types a polarity. In the context of
a logical judgement, types appearing in antecedent posi-
tion (i.e. assumptions left of the turnstile) are negative,
whereas types appearing in succedent position (i.e. con-
clusions right of the turnstile) are positive. Polarities are
then propagated to subformulas as follows. If a type is
atomic, its polarity remains unaltered. If it is an implica-
tion T1 ( T2, then the polariy of T2 persists, whereas the
polarity of T1 is reversed.
Atoms nested within complex types are assigned a polar-
ity by recursive application of the above scheme. At its
essence, a proofnet is a bijection between positive and neg-
ative atoms, i.e. a pairing of each positive atom with an
(otherwise equal) negative one6.
Finding a proof is then equated with constructing the ap-
propriate bijection. To ensure that such a bijection is in-
deed possible, we first perform a rudimentary correctness
check, asserting the branch-wise invariance count of atoms
and implications (Van Benthem, 1991). We then project
the types of the DAG’s terminal nodes into a flattened se-
quence, sort them based on the corresponding word order,
and decorate each atom with an integer, thus distinguishing
between unique occurrences of the same atom. Our goal
then lies in propagating these indices upwards along the
DAG, linking atom pairs as we go. The algorithmic pro-
cedure is outlined below.
We first instantiate an empty proofnet in the form of a bijec-
tive function from indices to indices. We additionally im-
plement a function, which takes a proofnet and two equal
types of inverse polarity and recursively matches their cor-
responding atoms, updating the proofnet in the process. For
simple branchings, we isolate the arguments of the phrasal
functor and identify them with the types of its sibling nodes
on the basis of the diamond or box decoration of the former
and the dependency labels of the latter. The resulting pairs
are matched and the proofnet is expanded. The type of the
node dominating the branch is then indexed with the func-
tor’s result index(es). A bottom-up iteration then gradually
indexes the DAG’s non-terminal nodes while filling in the
proofnet.
For constructions involving hypothetical reasoning, such as
elliptic conjunctions and non-local phenomena, the process
is a bit more intricate. The higher-order types involved in
these do double duty, both providing the functor that com-
poses the outer phrase and supplying the material missing
from the inner phrase(s). To resolve such constructions, we
simplify the higher-order types by subtracting their embed-
ded arguments and traversing the DAG to find the branch
that misses them. Once there, we detach edges that are sec-
ondary or point to copied nodes, and replace them by edges
(of the same label) that point to placeholder nodes carrying
the aforementioned subtracted arguments. This transforma-
tion essentially converts the typed DAG back into a typed
tree, reducing the problem once more to the simple case.

6This bijection must satisfy certain correctness criteria, i.e. not
all such bijections constitute valid proofnets.

3.5. Verification
The extraction procedure described in the previous section
produces type assignments together with axiom links, i.e. a
bijection matching each atomic subformula occurrence to
another of opposite polarity. Albeit being legitimate bijec-
tions, these axiom links are not necessarily proof nets; a set
of correctness criteria needs to be satisfied for a bijection to
be translatable into a proof net (a proof net then typically
corresponds to many proofs, which differ only in inessential
rule permutations). To validate the correctness of the algo-
rithm, we use use LinearOne7, a linear logic theorem prover
to verify that all extracted structures are indeed linear logic
proofs. In addition to asserting correctness and providing
a sanity check on the extraction algorithm, LinearOne also
produces a linear logic proof in sequent calculus and nat-
ural deduction presentations as well as the corresponding
λ-term for each input proof net candidate.

3.6. Analysis
The end-to-end pipeline yields a number of samples,
each corresponding to a mechanically verified typelogi-
cal derivation for a sentential or phrasal syntactic analysis.
Even though everything on the output end is proven correct
(i.e. all extracted proof nets satisfy the correctness criteria),
the extraction algorithm fails to produce a derivation in a
limited number of instances. These failures are recognized
during runtime and their cause is pinpointed; we provide a
breakdown of the algorithm’s coverage at each step of the
process.

Preprocessing Lassy-Small contains 65 200 analyses.
We drop 156 of these due to being a single punctuation
mark. Out of the remaining 65 044, we obtain 75 060 inde-
pendent DAGs (1.15 DAGs per Lassy sample on average).

Typing The type assignment algorithm produces a cor-
rect output for 72 198 samples (96.2% input coverage). The
majority of failed cases relates to conjunction schemata; in
particular, 1 492 samples contain conjunction branches that
lack a coordinating word and 443 samples contain asym-
metric conjunctions. Both cases could be trivially solved,
for instance by promoting the first conjunct to the branch
head or expanding the polymorphic coordinator scheme to
account for unequal constituents; the ad-hoc nature of such
solutions would however degrade the quality and consis-
tency of the lexical types, and we therefore abstain from
implementing them. The remaining 494 cases (0.6% of the
input) are generic failures arising from copying outside the
context of a conjunction, annotation errors and discrepan-
cies, and preprocessing artifacts.

Linking and Verifying Out of the 72 198 typed DAGs,
the axiom linking algorithm fails to produce a sane bijec-
tion in 6 (of which 4 are edge cases and 1 is an annotation
error). All 72 192 outputs of the axiom linking algorithm
are validated by the theorem prover, leading to an end-to-
end coverage of 96.2%.

7Available at https://github.com/RichardMoot/
LinearOne.
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Figure 2: Fraction of words cov-
ered as a function of types included.
Y axis depicts the percentage of
words that can be analyzed (logit-
transformed). X axis illustrates the
percentage of unique types consid-
ered. A point (x, y) then represents
the % of words y in the corpus that
could be type-assigned if all but the
x% most common types were dis-
carded.

Figure 3: Lexical ambiguity his-
togram. Y axis depicts the number
of words (log-scaled), X axis depicts
the number of types (log2-scaled).
A bar spanning the horizontal range
(x1, x2) with height y indicates that
a total of y words are associated with
x1 to x2 number of types.

4. Resources
4.1. Code
We make the Python code implementing the extraction al-
gorithm publicly available8. It is parametric and tunable
with respect to the part of speech and phrasal category
translation tables (both in terms of domain and codomain,
allowing either a refinement or a consolidation of the
atomic type set considered), but also the dependency la-
bels (similarly allowing an adjustment of the number of di-
amond operators). The algorithm is, to a certain degree,
agnostic about the underlying type system specification; in
other words, it is easy to adapt to different grammars, and
can be fine-tuned according to the user’s needs and pur-
poses. Further, the algorithm is immediately applicable to
Lassy-Large, which boasts a total of 700 million words, sig-
nificantly outnumbering Lassy-Small. Its massive size, to-
gether with the extraction algorithm, grants easy access to a
large amount of cross-domain silver standard type-theoretic
analyses, as well as a potential corpus for unsupervised
language modeling enhanced with lexicalized structural bi-
ases. Last but not least, the extraction algorithm is compat-
ible with the Alpino parser’s (Bouma et al., 2001) output
format; combining the two would then essentially account
to an “off the shelf” typelogical theorem prover for writ-
ten Dutch that produces computational terms along with the
standard parses.

4.2. Lexicon
Dissociating leaf nodes from their DAG, we obtain a
weighted lexicon mapping words to type occurrences. Our
lexicon enumerates a total of 77 283 distinct words and
5 747 unique types made out of 31 atomic types and 26

8The code can be found at https://github.com/
konstantinosKokos/Lassy-TLG-Extraction.

dependency decorations. On average, each word is asso-
ciated with 1.79 types and each type with 24 words. Fig-
ure 3 presents a histogram of lexical type ambiguity; most
words are unambiguous, being always assigned a single
type, whereas 20 words (mostly coordinators and auxiliary
verbs) are highly ambiguous, being associated with more
than 128 unique types each. Figure 2 presents the relation
between lexical coverage and types considered; evidently,
the 1 150 most common types (20%) suffice to cover 99%
of the corpus (on a per-word basis). The lexicon can be uti-
lized as a stand-alone resource, useful for studying gram-
matical relations and syntactic variation at the lexical level.

4.3. Theorems
The core resource is a collection of 72 192 typelogical
derivations9.
The primitive component behind each derivation is a type-
annotated sentence or phrase. On average, samples con-
sist of 12 lexical items (a 25% drop compared to the un-
processed source corpus due to multi-word merges and de-
tached branches); figure 4 presents a histogram of sample
lengths. As already hinted by Figure 2, the fine-grained
nature of the type system has the side-effect of enlarging
the lexicon’s co-domain, and therefore the type sparsity, in
comparison to other lexicalized grammar formalisms. Fig-
ure 5 presents the relation between corpus coverage and
types considered; no less than the 5 000 most common
types (85%) are required to parse 99% of the corpus. This
suggests that, in themselves, the annotated sentences con-
stitute a challenging supertagging task as well as a potential
benchmark for open-world classification (Kogkalidis et al.,
2019).

9The public subset of the dataset consists of 7 924 sen-
tences and is available online https://github.com/
konstantinosKokos/aethel-public

https://github.com/konstantinosKokos/Lassy-TLG-Extraction
https://github.com/konstantinosKokos/Lassy-TLG-Extraction
https://github.com/konstantinosKokos/aethel-public
https://github.com/konstantinosKokos/aethel-public


Figure 4: Sentence length histogram.
Y axis depicts the number of sen-
tences (log-transformed), X axis de-
picts the number of words. A
bar spanning the horizontal range
(x1, x2) with height y indicates that
a total of y sentences have a length
of x1 to x2 words (with punc-
tuations removed and multi-word
phrases counted as a single lexical
item).

Figure 5: Fraction of sentences cov-
ered as a function of types included.
Y axis depicts the percentage of sen-
tences that can be analyzed (logit-
transformed). X axis depicts the per-
centage of unique types considered.
A point (x, y) then represents the
% of sentences y in the corpus, all
words of which could be type as-
signed if all but the x% most com-
mon types were discarded.

Of higher importance are, however, the derivations them-
selves. As stated earlier, they are provided in four distinct
formats; as natural deduction and sequent calculus proofs,
bijections between atomic formulas (proofnets) as well as
λ-terms. The type system, being based on ILL, is agnos-
tic about word order and thus inherently ambiguous. Out
of the (possibly many) potential proofs, the dataset spec-
ifies the one that is linguistically acceptable, determining
the correct flow of information within the sentence’s con-
stituents (an example of such a derivation is presented in
Figure 1b). This has multiple ramifications and usecases.

First and foremost, it opens a path towards integrated
neuro-symbolic approaches to parsing. On one hand, lex-
ical interactions are constrained to just those that are re-
spectful of the typing information. On the other hand, neu-
ral approaches can be applied to narrow down the resulting
search space, simultaneously utilizing semantic and syntac-
tic information, with the dependency enrichment providing
an additional heuristic. In this context, selecting a parsing
methodology and the appropriate proof format is up to the
end-user; for instance, shift-reduce parsing would be eas-
ier accomplished on the binary branching natural deduction
structures (Shieber et al., 1995; Ambati et al., 2016), λ-
terms would be more accommodating for generalized trans-
lation architectures like sequence transducers (Zettlemoyer
and Collins, 2012), proofnet bijections could be obtained
via neural permutation learning (Mena et al., 2018) etc;
supertagging and type representations can also be jointly
optimized (Lewis et al., 2016; Kasai et al., 2017).

The dataset can also emerge as a useful resource for “pure”
parsing as deduction. The type grammar and its derivations
can be utilized as a stepping stone towards stricter type sys-
tems. Noting that our abstract types are in alignment with
Lambek types (modulo directionality), linear implications
can be gradually replaced with directed divisions based on

their aggregated corpus-wide behavior, easing the transi-
tion towards an (either hybrid or multi-modal) typelogical
dataset.

5. Conclusion

We have described a linear type system that captures ab-
stract syntactic function-argument relations, but is also able
to distinguish between arguments on the basis of their de-
pendency roles. We have presented a methodology for ex-
tracting these linear types as well as their interactions out
of dependency parsed treebanks. Our approach is modu-
lar, allowing a large degree of parameterization, and gen-
eral enough to accommodate alternative type systems and
source corpora. We implemented and applied a concrete
algorithmic instantiation, which we ran on the Lassy tree-
bank, generating a large dataset of type-theoretic syntactic
derivations for written Dutch. Utilizing a theorem prover,
we verified the correctness of the algorithm’s output, and
transformed it into a number of different realizations to fa-
cilitate its use in different contexts. Taking advantage of the
Curry-Howard correspondence between linear logic and the
simply-typed λ-calculus, we naturally equated our deriva-
tions to computational terms which characterize the flow of
information within a sentence. Disconnecting types from
their derivations, we are left with a pairing of sentences to
type sequences; disconnecting them from their surrounding
context, we obtain a highly refined lexicon mapping words
to type occurrences. We make a significant portion of the
above resources publicly available. Our hope is that our
resources will find meaningful applications at the intersec-
tion of formal and data-driven methods, in turn giving rise
to practically applicable insights on the syntax-semantics
interface.
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Appendix
1. Translation Tables
Atomic Types Table 1 presents the set of atomic types
and their origins (part-of-speech and phrasal category tags).
The current translation domain utilizes the Lassy part of
speech tagset (pt); other options could be either the alpino
tagset (pos) or even the detailed tagset (postag). Note also
that in our usecase there is a one-to-one correspondence
between tags and types. This does not necessarily need to
be the case; one could as well choose to collapse one or
more tags onto the same type (e.g. translate vnw to NP or all
sentential tags to S). The extraction algorithm is parametric
to all above possible variations.

Tag Description Assigned Type
Short POS Tags

adj Adjective ADJ
bw Adverb BW
let Punctuation LET
lid Article LID
n Noun N

spec Special Token SPEC
tsw Interjection TSW
tw Numeral TW
vg Conjunction VG

vnw Pronoun VNW
vz Preposition VZ

ww Verb WW

Phrasal Category Tags

advp Adverbial Phrase ADV
ahi Aan-Het Infinitive AHI
ap Adjectival Phrase AP
cp Complementizer Phrase CP

detp Determiner Phrase DETP
inf Bare Infinitival Phrase INF
np Noun Phrase NP
oti Om-Te Infinitive OTI
pp Prepositional Phrase PP

ppart Past Participial Phrase PPART
ppres Present Participial Phrase PPRES

rel Relative Clause REL
smain SVO Clause SMAIN
ssub SOV Clause SSUB
sv1 VSO Clause SV1
svan Van Clause SVAN

ti Te Infinitive TI
whq Main WH-Q WHQ

whrel Free Relative WHREL
whsub Subordinate WH-Q WHSUB

Table 1: Part-of-speech tags and phrasal categories, and
their corresponding type translations.

Dependency Decorations Table 2 presents the set of de-
pendency decorations (i.e. modal operators) and their de-
scriptions. Most decorations coincide with a Lassy depen-
dency label or a derivative thereof.

Decoration Description Precedence
app Apposition 20

cmp body Complementizer body 18
cnj Conjunct 0
det Noun-phrase determiner 1
hdf Final part of circumposition 7
ld Locative Complement 6
me Measure Complement 5

mod Modifier 21
obcomp Comparison Complement 3

obj1 Direct Object 12
obj2 Secondary Object 10
pc Prepositional Complement 8

pobj Preliminary Object 13
predc Predicative Complement 11
predm Predicative Modifier 19

rhd-body Relative clause body 17
se Obligatory Reflexive Object 9
su Subject 14

sup Preliminary Subject 15
svp Separable Verbal Participle 2
vc Verbal Complement 4

whd-body WH-question body 16

Table 2: Dependency relations and their corresponding im-
plication labels.

2. Obliqueness Hierarchy
Phrasal heads are assigned functor types; in the multi-
argument case, these would be of the form:

(A1 ⊗ A2 ⊗ . . .An) ( R,

or their curried equivalent:

A1 ( A2 ( . . .An ( R

To avoid the inconvenience of (in this case, superficial) dis-
tinction between different argument type permutations, we
impose a strict full order on argument sequences, loosely
based on the obliqueness hierarchy of their syntactic roles
(apparent through their modal decorations). The ordering is
presented in the third column of Table 2; the lower a label’s
number, the less prominent (i.e. more oblique) the argument
it marks, causing it to be consumed first. This scheme, re-
cursively applied, provides a unique implicational type for
each functor’s argument-permutation class. Functors car-
rying cnj-decorated arguments (i.e. coordinators and their
derivatives) are the only kind of functor which permits two
distinct argument of the same decoration; we sort those
based on the conjuncts’ order within the sentence.
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