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Abstract

We study the notion of boundedness in the context
of positive existential rules, that is, whether there
exists an upper bound to the depth of the chase pro-
cedure, that is independent from the initial instance.
By focussing our attention on the oblivious and the
semi-oblivious chase variants, we give a character-
ization of boundedness in terms of FO-rewritability
and chase termination. We show that it is decidable
to recognize if a set of rules is bounded for several
classes and outline the complexity of the problem.

This report contains the paper published at IJCAI
2019 [Bourhis et al., 2019] and an appendix with
full proofs.

1 Introduction

We consider the setting of ontology-based query answer-
ing (OBQA) in which answers to conjunctive queries are
logically entailed from a knowledge base constituted of a
set of facts (or database instance) and an ontology. Ex-
istential rules, also known as Tuple Generating Dependen-
cies (TGDs) in database theory, are an expressive knowl-
edge representation language well studied in the OBQA set-
ting [Calı̀ et al., 2009a; Baget et al., 2011; Calı̀ et al., 2013].
These rules generalize function-free Horn rules (like those
of datalog) with existentially quantified variables in the rule
heads, which allow one to assert the existence of unknown in-
dividuals, and hence to reason in open domains. Beside dat-
alog, existential rules generalize the Semantic Web language
RDF Schema, as well as most Description Logics used in the
OBQA context, namely Horn description logics, in particular
those at the core of the tractable profiles of the ontological
language OWL 2.

The two main approaches developed to answer conjunc-
tive queries on existential rules knowledge bases are materi-
alization and query rewriting. Both can be seen as ways of
reducing query answering to a classical database query eval-
uation problem. Materialization relies on a forward chain-
ing technique, called the chase, that consists in expanding
the database instance with the facts entailed by rules until
fixpoint. In contrast, query rewriting is a backward chain-
ing mechanism that consists in rewriting an input query using

relevant rules, so that its answers on the knowledge base are
exactly the answers of the rewritten query on the database
instance alone. Query answering being undecidable for ex-
istential rules, both materialization and query rewriting may
not terminate.

This led to intensive research aiming at characterizing de-
cidable and tractable classes of existential rules. Several syn-
tactic restrictions were proposed to ensure chase termination
(e.g. weak-acyclicity [Fagin et al., 2005]) or the existence of
a (finite) first-order rewriting of a conjunctive query, a prop-
erty referred as FO-rewritability [Calvanese et al., 2007].
Nevertheless, the interactions between chase termination and
FO-rewritability have been little investigated so far, and not
much is known for existential rules on which both hold. What
are the relationships between these two properties?

Answering this question leads us to another fundamen-
tal problem, which has been extensively studied for data-
log, namely (uniform) boundedness [Hillebrand et al., 1995].
Boundedness concerns the recursivity of rules, and asks
whether there is an upper bound on the depth of the chase,
which is independent from any database instance. The prop-
erty is key for practical optimization of reasoning as it im-
plies that the ruleset is essentially non-recursive (although
syntactic conditions may fail to capture this). It is known
that boundedness and FO-rewritability are equivalent in the
case of datalog [Ajtai and Gurevich, 1994], but this does not
hold for existential rules. In this setting, the notion of bound-
edness also depends on the chase variant as they all behave
differently with respect to termination.

We focus our attention on the oblivious and semi-oblivious
(a.k.a. Skolem) chase [Marnette, 2009]. As a matter of fact,
almost all known sufficient conditions for chase termination
fall within these chase variants (from the simplest ones: rich-
acyclicity [Hernich and Schweikardt, 2007], weak-acyclicity
[Fagin et al., 2005] and acyclic-GRD [Baget et al., 2011] to
the more general MFA [Grau et al., 2013]), at the exception
of the recent work of [Carral et al., 2017] which applies to the
restricted chase variant. Importantly, we consider a breadth-
first version for both variants, which ensures the minimal
depth of the chase [Delivorias et al., 2018].1

1See [Delivorias et al., 2020] for an extended version of this con-
ference paper, to appear in Theory and Practice of Logic Program-
ming (added note w.r.t. IJCAI 2019 paper).

http://arxiv.org/abs/2006.08467v1


Our main contribution is a characterization of bounded-
ness in terms of chase termination and FO-rewritability. This
means that a set of rules is bounded if and only if it ensures
both chase termination for any instance and FO-rewritability
for any conjunctive query. We show this by proving two or-
thogonal results. The first is a bound on the depth of existen-
tial variables when the chase terminates on all instances. The
second is a bound on the (breadth-first) rank at which facts
using terms of a given depth are inferred.

This connection reveals important differences between the
two variants. For the oblivious case we show that, when chase
termination holds, FO-rewritability on full-atomic queries
(queries with a single atom and only answer variables) is
equivalent with FO-rewritability. Moreover, for the case of
fully-existential rules (rules where all head atoms have at least
one existential variable), we show that chase termination is
equivalent to boundedness and so it implies FO-rewritability.
None of these properties hold for the semi-oblivious chase.

Recognizing if a set of existential rules is bounded is unde-
cidable already for datalog [Hillebrand et al., 1995]. How-
ever, we show the decidability of the problem for major
classes of existential rules as direct corollaries of our charac-
terizations and existing results from the literature. Precisely,
the problem is PSpace-complete for linear and sticky rules
and in 2Exptime for guarded rules. Finally, we consider the
k-boundedness problem (i.e., whether the chase terminates in
k steps on all instances), which was recently proven decidable
for several chase variants, including those investigated here
[Delivorias et al., 2018]. We show that deciding if a ruleset is
k-bounded is in 2Exptime for the breadth-first (semi-) oblivi-
ous chase and co-NExptime-complete for datalog.

Proofs omitted due to space limitations are detailed in the
appendix.

2 Preliminary Definitions

We consider a relational vocabulary V = (P , C) constituted
of a finite set of predicates P and a finite set of constants C. A
term v is a constant of C or a variable. An atom is of the form
p(v1 . . . vk) where p is a predicate of arity k and the vi are
terms. We denote by terms() the set of its terms and extend
the notation to sets of atoms. An embedding ϕ from a set of
atoms A to a set of atoms A′ is a substitution of terms(A)
with terms(A′) such that ϕ(A) ⊆ A′. A homomorphism is
an embedding which is the identity on constants.

An instance I is a conjunction of atoms on constants and
(globally) existentially quantified variables. It is finite un-
less otherwise specified. Throughout this paper, we see an
instance I as the set of its atoms and call fact any atom f that
belongs to this set. Given a finite set P of predicates, the criti-
cal instance Ia is composed of all facts built on P and special
constant a. Any instance I on P can be embedded into Ia.

An existential rule σ is a closed formula ∀x̄ȳ(B[x̄, ȳ] →
∃z̄H [x̄, z̄] where B and H are sets of atoms built on vari-
ables called the body and the head of the rule, also denoted
by body(σ) and head(σ) respectively. The set of variables
x̄ shared by B and H is called the frontier of the rule and
is denoted by fr(σ). The set of variables z̄ that belong to H
only are called existential variables and are denoted by ex(σ).

Universal quantifiers will often be omitted in the remainder of
the paper. A rule such that ex(σ) = ∅ is called datalog. A
rule where all head atoms contain at least one existential vari-
able is called fully-existential and denoted by FE-rule. We
say that a rule σ is applicable on an instance I if there is a ho-
momorphism π from body(σ) to I and call the pair (σ, π) a
trigger of I . Given a trigger (σ, π), we denote by π|fr(σ) ⊆ π

the restriction of π to fr(σ).
A knowledge base (KB) is a pair (I,Σ) where I is an in-

stance and Σ a set of existential rules. The chase is a funda-
mental tool for computing logical consequences from a KB
since, when it terminates, it computes a universal model of
the KB, i.e., a model that maps by homomorphism to any
other model of the KB (with a model being seen here as an
instance). In this work, we focus our attention on the breadth-
first oblivious (o-chase) and semi-oblivious (so-chase) vari-
ants. As discussed in Section 3.3, the breadth-first behavior
is particularly interesting when studying boundedness.

Definition 1. Let (I,Σ) be a knowledge base and ⋆ ∈ {o, so}
a chase variant. Then, the breadth-first ⋆-chase is defined as

follows: ⋆-chase0(I,Σ) = I and for all saturation rank i ≥ 0

⋆-chasei+1(I,Σ) = ⋆-chasei(I,Σ) ∪
⋃

(σ,π)

π⋆(head(σ))

where (σ, π) is any trigger of ⋆-chasei(I,Σ) and π⋆ ⊇ π a
substitution that replaces each existential variable z ∈ ex(σ)
with a fresh variable named as follows:

• πo(z) = z(σ,π)

• πso(z) = z(σ,π|fr(σ))

Then, we define ⋆-chase(I,Σ) =
⋃∞
i≥0 ⋆-chase

i(I,Σ). The

⋆-chase terminates on (I,Σ) if there is a rank k with

⋆-chase(I,Σ) = ⋆-chasek(I,Σ).

Note that for the o-chase fresh variables are named by the
trigger from which they have been generated. Instead, for the
so-chase the naming only depends on the frontier-restriction
of the homomorphism of the trigger. This means that any two
triggers having the same rule and agreeing on the image of
its frontier variables produce equal results, hence only one of
them is actually considered by the so-chase. The so-chase is
very close to the Skolem chase, which relies on a skolemisa-
tion of the rules: first, each rule σ is transformed by replacing
each occurrence of an existential variable z with a functional
term fσz (fr(σ)) on the frontier of σ; then the o-chase is run
on the skolemised rules. At each saturation rank, the Skolem
chase produces a result isomorphic to that of the so-chase (up
to the renaming of each Skolem term by the corresponding
fresh variable), hence the forthcoming results on the so-chase
also hold for the Skolem chase.

Example 1. Consider the rule σ = p(x, y) → ∃z p(x, z).
Then o-chase(I,Σ) with I = {p(a, b)} and Σ = {σ} is infi-
nite - as the chase does not terminate. The atom p(a, z(σ,π1))
with π1 = {x 7→ a, y 7→ b} is first inferred, then p(a, z(σ,π2))
with π2 = {x 7→ a, y 7→ z(σ,π1)}, and so on. Here, each rule

application enables a new trigger. In contrast, so-chase(I,Σ)
is finite, in that only the first rule application will be per-
formed, producing p(a, z(σ,{x 7→a})), since all triggers map



the frontier variable x to a. For the Skolem chase, σ is rewrit-
ten as σ′ = p(x, y) → p(x, fσz (x)). The first rule application
according to trigger (σ′, π1) produces p(a, fσz (a)), then the
chase halts as the same atom is produced by the next trigger.

Definition 2. The rank of a fact f ∈ ⋆-chase(I,Σ), de-
noted by rank(f), is 0 if f ∈ I and 1 + max{rank(f ′)|f ′ ∈
π(body(σ))} if f is produced by the trigger (σ, π). This def-
inition is naturally extended to terms and sets of facts. The
rank of ⋆-chase(I,Σ) is the smallest k such that ⋆-chase(I,Σ)

= ⋆-chasek(I,Σ) if ⋆-chase(I,Σ) terminates, and it is infinite
otherwise.

Note that for the breadth-first chases we consider the above
definition implies that rank(f) is the smallest k such that f ∈

⋆-chasek(I,Σ) \ ⋆-chasek−1(I,Σ).
An FO-query φ(x1, ..., xn) is a (function free) first-order

formula whose free variables (called answer variables) are ex-
actly {x1, ..., xn}. A conjunctive query (CQ) is an FO-query
which is an existentially quantified conjunction of atoms. An
atomic query is a CQ with a single atom. A full-atomic query
is an atomic query where all terms are free variables. A query
is called Boolean if it does not have any free variable. As
for instances, it will be handful to see CQs as sets of atoms,
of course by distinguishing the answer variables. A union of
conjunctive queries (UCQ) Q is a disjunction of CQs with the
same free variables, also seen as a set of CQs.

A tuple of constants (a1, ..., an) ∈ Cn is an answer to a
CQ Q(x1, ..., xn) on an instance I if there is a homomor-
phism h from Q to I such that h(xi) = ai for 1 ≤ i ≤ n.
Equivalently, I |= Q[xi 7→ ai], where |= denotes the clas-
sical logical consequence and Q[xi 7→ ai] is the Boolean
query obtained from Q substituting each xi with ai. A tu-
ple of constants (a1, ..., an) ∈ Cn is a certain answer toQ on
a KB (I,Σ) if I,Σ |= Q[xi 7→ ai]. This is equivalent to the

existence of a saturation rank k such that ⋆-chasek(I,Σ) |=
Q[xi 7→ ai]. In other words, the certain answers to Q on
(I,Σ) are exactly its answers on the possibly infinite instance
⋆-chase(I,Σ). The set of (certain) answers to a UCQ Q is the
union of the sets of (certain) answers to the CQs it contains.

2.1 Termination vs Boundedness

To begin our study, we need to present the relationships be-
tween chase termination and boundedness. Let ⋆ ∈ {o, so}
be a chase variant, the ⋆-chase termination class, denoted by
CT⋆, contains all rulesets Σ such that ⋆-chase(I,Σ) termi-
nates for all instances I . The ⋆-boundedness class, denoted
by BN⋆, contains all bounded rulesets Σ, i.e., for which there

exists an integer k such that ⋆-chasek(I,Σ) = ⋆-chase(I,Σ)
for all instances I . Obviously, BN⋆ ⊂ CT⋆.

Example 2. Let σ1 = p(x, y) ∧ p(y, z) → p(x, z) and σ2 =
p(x, y)∧ p(w, z) → p(x, z). Because both rules are datalog,
{σ1} ∈ CT⋆ and {σ2} ∈ CT⋆. However, Σ = {σ1} 6∈ BN⋆,
since the rank of ⋆-chase(I,Σ) depends on I . In contrast,
{σ2} ∈ BN⋆ and the bound is k = 1. Similarly, {σ1, σ2} ∈
BN⋆. Indeed, σ2 produces at the first rank all atoms that can
be produced by σ1 at later ranks.

To get a better understanding of boundedness, it will be
useful to decompose each rule of a set thereby distinguishing

between its “datalog part” and its “existential part”. For in-
stance, a rule of the form p(x, y) → ∃z p(x, z)∧ q(x) can be
decomposed into a datalog rule p(x, y) → q(x) and an FE-
rule p(x, y) → ∃z p(x, z). Let σ be any existential rule of the
form B → HF ∧HD where B is the set of body atoms, HF

is the set of head atoms with at least one existential variable
and HD are the remaining head atoms. The datalog-fully ex-
istential decomposition of σ, denoted by DF(σ), returns a set
made of the FE-rule B → HF together with a (single head)
datalog rule of the form B → Hi

D, for each Hi
D ∈ HD. The

definition is then extended to sets DF(Σ) =
⋃

σ∈Σ DF(σ).
This decomposition preserves boundedness and termination
of the oblivious chase.2

Proposition 1. Σ ∈ CTo
iff DF(Σ) ∈ CTo

and Σ ∈ BNo
iff

DF(Σ) ∈ BNo.

3 Upper Bounding the Chase Depth

Our approach consists of defining a notion of existential depth
for facts, proper to each chase, which is finite on a given in-
stance if and only if the chase terminates on that instance.
Then we show that for each chase, the existential depth of all
facts produced by the chase for a given ruleset are bounded
by those of the critical instance. This means that whenever
the chase terminates on the critical instance there is an upper
bound to the existential depth of the facts, for all instances.
In the next section, with these results in hand, we use FO-
rewritability to bound the rank at which any fact of a certain
existential depth will be inferred. This will give us a char-
acterization of boundedness for the oblivious and so-chase in
terms of FO-rewritability and chase termination.

3.1 The Oblivious Case

Intuitively, the notion of existential depth of a term measures
the number of fresh variable generation steps that led to the
creation of this term.

Definition 3. The existential depth (or simply depth) of a
term v that belongs to o-chase(I,Σ) is

depth∃(v) =

{

0 if v ∈ terms(I)
1 + max{ depth∃(vB) } otherwise

where vB is any term in π(body(σ)) used by a trigger (σ, π)
which generates v. The existential depth of a fact f is the
maximum existential depth of its terms. The existential depth
of o-chase(I,Σ) is the maximum existential depth of its facts
if it is finite and is infinite otherwise.

To illustrate the definition, consider Example 1. The exis-
tential depth of terms in o-chase(I, {σ}) is unbounded, which
is in line with the non-termination of the o-chase on (I, {σ}).
The rule σ1 in Example 2. shows the difference between
rank and existential depth. For any I , the existential depth

2This is not true for the so-chase. For instance, for Σ = {σ =
p(x, y) → ∃z p(x, z)∧q(x, y)} and I = {p(a, b)}, so-chase(Σ, I)
is infinite, while DF(Σ) is so-bounded. This is due to the fact that
σ has frontier {x, y}, while the FE-rule p(x, y) → ∃z p(x, z) in
DF(σ) has frontier {x}. We correct here a wrong claim in Propo-
sition 1 of IJCAI’s paper, which has no incidence on the paper’s
results.



of terms (hence facts) is 0 because σ1 is datalog, however
their rank depends on I . More generally, for any term v and
fact f in o-chase(I,Σ) it holds that depth∃(v) ≤ rank(v)
and depth∃(f) ≤ rank(f). Hence, if o-chase(I,Σ) termi-
nates, its existential depth is finite. Reciprocally, when the
existential depth of o-chase(I,Σ) is finite, so it is the number
of its terms, and o-chase(I,Σ) terminates. We point out that
when dealing with sets of FE-rules the notions of rank and
existential depth coincide, as illustrated by Example 1.

Proposition 2. If Σ is a set of FE-rules then, for all instance I
and term v in o-chase(I,Σ), holds that depth∃(v) = rank(v).

It should be clear that, for a given ruleset, the o-chase may
have unbounded rank even when it terminates on all instances
(see for instance Example 2). Nevertheless, when a ruleset is
in CTo, our goal is to show that there exists a bound on the
existential depth of its terms, which holds for all instances.
Aiming at this, we present a lemma stating that existential
depth of terms are preserved by embeddings.

Lemma 3. For any embedding ϕ from I to I ′ and any

i ≥ 0, there exists an embedding ϕ′ ⊇ ϕ from o-chasei(I,Σ)

to o-chasei(I ′,Σ) which preserves the existential depth of
terms, i.e., for every term v in o-chase(I,Σ) it holds that
depth∃(v) = depth∃(ϕ

′(v)).

It is well-known that the o-chase terminates on all in-
stances if and only if it terminates on the critical instance
[Marnette, 2009]. We leverage this property to compute a
bound on the existential depth under chase termination.

Theorem 4. When Σ ∈ CTo there exists a constant kd such
that for every instance I , the existential depth of a term in
o-chase(I,Σ) is bounded by kd.

Proof. Because Σ ∈ CTo, the o-chase terminates on the
critical instance Ia. Let kd be the largest rank such that

terms(o-chasekd(Ia,Σ)) \ terms(o-chasekd−1(Ia,Σ)) 6= ∅.
Every instance I can be embedded into Ia. By Lemma 3 the
existential depth of the terms in o-chase(I,Σ) is bounded by
that of o-chase(Ia,Σ), which is in turn bounded by kd.

Chase termination is a necessary condition for bounded-
ness as it bounds the existential depths of the variables gen-
erated by the chase - but not the rank (see the datalog case).
Interestingly, for FE-rules, chase termination also becomes a
sufficient condition for boundedness, because the notion of
rank and existential depth coincide (Proposition 2).

Corollary 5. For Σ a set of FE-rules, Σ ∈ CTo iff Σ ∈ BNo.

For general existential rules, we will later show that when
a restricted form of FO-rewritability holds, one can also pro-
vide a bound to the rank of the o-chase (Theorem 14).

3.2 The Semi-Oblivious Case

When applied to the so-chase, the previous notion of existen-
tial depth is not preserved by embedding, which hinders the
possibility of using the critical instance to bound the existen-
tial depth of terms. As illustrated below, this is due to the
fact that the so-chase makes equal the result of two distinct
triggers agreeing on a rule frontier.

Example 3. Consider I = {p(a, b)}, I ′ = I ∪ {r(a, b)} and
Σ = {σ1 : p(x, y) → ∃z r(z, y) σ2 : r(x, y) → ∃z s(y, z)}.

Then, so-chase2(I,Σ) = I ∪ { r(z(σ1,π), b) ∪ s(b, z(σ2,π)) }

with π = {y 7→ b}. Also, so-chase2(I,Σ) ⊆ so-chase1(I ′,Σ)
because all triggers applied by the chase from I are al-
ready applicable on I ′. The application of σ2 on r(a, b) and

r(z(σ1,π), b) gives equal results, hence so-chase1(I ′,Σ) =

so-chase2(I ′,Σ). In the embeddings from so-chase2(I,Σ) to

so-chase2(I ′,Σ), z(σ2,π) is mapped to itself, but both occur-
rences have different existential depth (resp. 2 and 1).

It is therefore natural to turn to the following notion of
depth, which accounts for frontier terms only.

Definition 4. The frontier existential depth (or simply frontier
depth) of a term v that belongs to so-chase(I,Σ) is

depthfr∃(v) =







0 if v ∈ terms(I)

1 if fr(σ) = ∅
1 + max{ depthfr∃(vB) } otherwise

where vB is any term in π(fr(σ)) used by a trigger (σ, π)
which generates v. Accordingly, the frontier depth of a fact f
is the maximum frontier depth of its terms. The frontier depth
of so-chase(I,Σ) is defined as the maximum frontier depth of
its facts if it is finite and is infinite otherwise.

Note that frontier depth coincides with the (usual) depth of
terms generated by the Skolem chase.

Clearly, depthfr∃(v) ≤ depth∃(v) for all v in o-chase(I,Σ).
The following example illustrates the difference between the
two notions of (existential) depth.

Example 4. Let Σ = {σ = p(x, y, u) → ∃z p(y, x, z)}.
Starting from I = {p(a, b, c)}, the o-chase generates an in-
finite number of fresh variables v with increasing depth∃(v).
The rank of the so-chase is instead 2 and for each fresh vari-

able v, depthfr∃(v) = 1 as all triggers map fr(σ) to terms(I).

It is worth noting that not only the oblivious notion of ex-
itential depth is not effective for studying the so-chase, but
also that the frontier depth is not well characterizing the be-
havior of the o-chase either. The crux is that the finiteness of
the frontier depth cannot be related with the termination of the
o-chase, as illustrated by Example 4. Using such a notion to
study the o-chase would impede us, for instance, to establish
Corollary 5, which relies on the fact that rank and existential
depth coincide for the oblivious-chase (Property 2).

We are now ready to show that the frontier depth is pre-
served by embeddings. The next lemma and theorem are the
counter-parts of Lemma 3 and Theorem 4 for the so-chase.

Lemma 6. For any embedding ϕ from I to I ′ and any i ≥ 0,

there exists an embedding ϕ′ ⊇ ϕ from so-chasei(I,Σ) to

so-chasei(I ′,Σ) which preserves the frontier depth of terms.

Theorem 7. When Σ ∈ CTso there exists a constant kd
such that for every instance I , the frontier depth of a term
in so-chase(I,Σ) is bounded by kd.

3.3 On the Interest of the Breadth-First Chase

We conclude this section with some remarks on the interest
of studying boundedness for breadth-first chases. We assume



that the reader is familiar with the notion of chase sequence.3

We define the rank of a chase sequence on (I,Σ) as the max-
imal rank of its facts if it is finite, and infinite otherwise.

For the (semi-)oblivious chase, it is well-known that there
is a terminating chase sequence for (I,Σ) if and only if
all chase sequences for (I,Σ) terminate. However, not
all terminating chase sequences have the same rank, and
the minimal rank is obtained with breadth-first sequences
[Delivorias et al., 2018]. This makes the notion of bound-
edness we consider equivalent to studying whether there ex-
ists a bound such that, for all instance, there exists a ter-
minating chasing sequence whose rank is within the bound.
Hence, it characterizes the fact that the chase can indeed ter-
minate within that bound, if a strategy ensuring a minimal
sequence rank is followed. It is therefore natural to con-
sider breadth-first chases which achieve this property, like
the (semi-)oblivious chase. Example 2 illustrates this concept
and shows that, already for datalog, the rank of some chase
sequences may be not bounded, while the rank of all breadth-
first sequences is bounded. This happens for instance if all
applications of the transitivity rule σ2 are performed before
the rule σ1.

In the special case of FE-rules, it is not hard to see that
all oblivious chase sequences for (I,Σ) have the same rank.
However, this does not hold for the semi-oblivious chase. Be-
low, a variation of Example 2, where some dummy variables
are introduced, illustrates this point.

Example 5. Let Σ = {σ1, σ2}, with σ1 = p(x, y, t) ∧
p(y, z, u) → ∃v p(x, z, v) and σ2 = p(x, y, t)∧p(w, z, u) →
∃v p(x, z, v). The rank of so-chase(I,Σ) is bounded by 2 for
any I , while again performing all applications of σ2 before
σ1 gives derivations of different ranks.

4 The Impact of First Order Rewritability

We now turn our attention to FO-rewritability and show that
it yields a bound on the rank of specific (sets of) facts that
share terms with the initial instance I . For the o-chase, we
bound the rank of facts that have all their terms in I . For
the so-chase, we consider triggers that map a rule frontier to
terms of I: we do not bound the rank of facts that allow to
fire such triggers, but we show that for each such trigger t =
(σ, π), there is a trigger t′ = (σ, π′) that agrees with t on
the mapping of fr(σ) and that is fired at a bounded rank. In
Section 5, we will leverage these results to show that FO-
rewritability yields a bound on the rank of all facts with a
certain existential depth. For the o-chase, a restricted version
of FO-rewritability is sufficient to get these properties.

We say that a pair (Q,Σ) is FO-rewritable (resp. UCQ-
rewritable) if there is an FO-query (resp. a UCQ) Q such
that, for all I , the certain answers to Q on (I,Σ) are exactly
the answers to Q on I . It is known that FO-rewritability is

3A chase sequence is any sequence of triggers satisfying the ap-
plicability criterion of the chase variant. For the oblivious chase,
the same trigger should not be applied twice. For the semi-oblivious
chase a trigger is not applied if a trigger for the same rule assigning
the same image for the frontier variables has been applied before.

equivalent to UCQ-rewritability.4 A set of rules Σ is FO-
rewritable (or equivalently, UCQ-rewritable) if (Q,Σ) is FO-
rewritable for every CQ Q. We denote by FO-R the class of
FO-rewritable rulesets. We will also consider specific classes
of CQs. Given a class of CQs C, we say that a ruleset Σ
is FO-rewritable with respect to C if (Q,Σ) is FO-rewritable
for all Q ∈ C. We denote by FO-RC the corresponding class.
We first point out that FO-rewritability with respect to full-
atomic queries, denoted by FO-RAF, is a strictly weaker prop-
erty than FO-rewritability.

Proposition 8. FO-RAF ⊃ FO-R

Proof. The inclusion holds by definition, and to see that it is
strict consider Σ = {σ = p(x, x1), p(x1, x2), p(x2, z) →
∃y p(x, y), p(y, z)}. Σ is not FO-rewritable as for the
Boolean query Q = {p(a, u), p(u, b)}, where a and
b are constants, (Q,Σ) is not FO-rewritable (we would
need an infinite union of Boolean CQs of the form
{p(a, u0), ...p(ui−1, ui), p(ui, b)}, none of these queries be-
ing contained in another). However, Σ ∈ FO-RAF as (Q,Σ)
is FO-rewritable for anyQ ∈ AF . Indeed, σ cannot bring any
answer to such query (in more technical terms, an existential
variable of σ cannot be unified with an answer variable).

Note also that since full-atomic queries have only answer
variables, they cannot be rewritten by means of FE-rules.
Thus, every set of FE-rules is trivially in FO-RAF. More in-
terestingly, to check if Σ ∈ FO-RAF one can restrict the full-
atomic queries of interest to those corresponding to the heads
of the datalog rules yielded by the DF-decomposition of Σ.

Proposition 9. Let Σ be a ruleset andHDΣ be the full-atomic
queries given by heads of the datalog rules in DF(Σ). Then,
Σ ∈ FO-RAF if and only if Σ ∈ FO-RHDΣ .

The following lemma upper bounds the rank of all facts
with terms in I for sets of rules enjoying FO-rewritability on
full-atomic queries.

Lemma 10. If Σ ∈ FO-RAF there is a constant kAF such that,
for any instance I and fact f such that terms(f) ⊆ terms(I),
when f ∈ o-chase(I,Σ) it holds that rank(f) ≤ kAF.

Proof. The number of (non-isomorphic) full-atomic queries
to be considered is finite, as for Proposition 9. We take for
kAF the maximal number of breadth-first rewriting steps nec-
essary to obtain a UCQ-rewriting of a full-atomic query (we
refer here to the breadth-first rewriting based on aggregated
piece-unifiers, see [König et al., 2013]).

The previous lemma also holds for the so-chase, how-
ever we want to derive a bound on the rank of facts with
a certain frontier depth, and for that full-atomic rewritabil-
ity is not enough. To illustrate, consider Σ = {σ =
p(x, y, u), p(y, z, v) → ∃w p(x, z, w)}. Here Σ ∈ FO-RAF

(the only rewriting of a full-atomic query is the query itself
because of the existential variable w). For any instance I , the
frontier depth of facts in the so-chase is bounded by 1, how-
ever there is no bound on their rank (although the so-chase

4It follows from the (Finite) Homomorphism preservation theo-
rem, a classical result in model theory [Rossman, 2008].



terminates). Therefore, we give a different property for the
so-chase, which requires the power of FO-rewritability.

Lemma 11. If Σ ∈ FO-R there is a constant kFO such that,
for any instance I and any trigger (σ, π) from so-chase(I,Σ)
with π(fr(σ)) ⊆ terms(I), there is also a trigger (σ, π′) from
so-chase(I,Σ) such that π′

|fr(σ) = π|fr(σ) and rank(f) ≤ kFO

for all f ∈ π′(body(σ)).

Proof. Similar to the proof of Lemma 10 but considering
CQs of the form Qbody(σ) whose atoms correspond to the

atoms of body(σ), for σ ∈ Σ, and all variables are existen-
tially quantified except for those in fr(σ). The number of such
queries is bounded by the cardinal of Σ. We take for kFO the
maximal number of breadth-first rewriting steps necessary to
obtain a UCQ-rewriting from any Qbody(σ) query. The proof
actually shows that FO-rewritability with respect to rule body
queries is sufficient to derive the lemma.

5 Boundedness: Linking Depth and Rank

We can finally establish a connection between the rank and
depth of a fact when the chase is run on FO-rewritable sets of
rules. This will immediately lead us to a characterization of
boundedness for the oblivious and semi-oblivious chases.

Theorem 12. If Σ ∈ FO-RAF then for all instance I and
fact f ∈ o-chase(I,Σ) we have that rank(f) ≤ depth∃(f)×
(kAF+1)+kAF with kAF the bound provided by Lemma 10.

Theorem 13. If Σ ∈ FO-R then for all instance I and fact

f ∈ so-chase(I,Σ) we have that rank(f) ≤ depthfr∃(f) ×
(kFO+1)+kFO with kFO the bound provided by Lemma 11.

For the o-chase, boundedness is exactly termination and
FO-rewritability on full-atomic queries. Furthermore, for
rulesets in CTo, the notions of FO-R and FO-RAF coincide.

Theorem 14. FO-RAF ∩ CTo = BNo = FO-R ∩ CTo

Proof. We start by showing that BNo ⊆ FO-R ∩ CTo. By
definition BNo ⊆ CTo. Then, BNo ⊆ FO-R follows from the
equivalence between FO-R and the bounded-depth derivation
property [Gottlob et al., 2014]. Moreover, by Proposition 8
we have BNo ⊆ FO-RAF ∩ CTo. To conclude the proof, by
Theorem 4 and 12 we have that FO-RAF ∩ CTo ⊆ BNo and
again by Proposition 8 follows FO-R ∩ CTo ⊆ BNo.

For the so-chase, boundedness can be characterized again
as termination and FO-rewritability by Theorem 7 and 13.

Theorem 15. BNso = FO-R ∩ CTso

Summing up, we have the following differences between
boundedness for o-chase and so-chase. o-chase-boundedness
requires i) o-chase termination and full-atomic-rewritability
and ii) is equivalent to o-chase termination for FE-rules.
Intuitively, when a set of rules Σ is decomposed into
DF(Σ), the fully-existential part may cause non-termination
of the o-chase, while the datalog part may cause non-FO-
rewritability. Furthermore, the fully-atomic queries possi-
bly leading to infinite rewritings in this case correspond to
the heads of the datalog rules. Note however that this re-
stricted form of FO-rewritability has still to be verified with

respect to the whole set of rules. In contrast, so-chase-
boundedness i) requires a stronger form of FO-rewritability
and ii) FE-rules do not behave differently from general exis-
tential rules for this chase. Intuitively, for the so-chase, any
existential rule (even an FE-rule) has an “underlying” data-
log rule. This is illustrated by the following transformation.
To each rule σ in Σ we assign a special predicate pσ of ar-
ity |fr(σ)|. Ψ(Σ) is obtained from Σ by replacing each rule
σ = B → H with two rules: a datalog rule B → pσ(fr(σ))
and a rule pσ(fr(σ)) → H . It can be shown that Σ ∈ CTso

iff Ψ(Σ) ∈ CTo and that Σ ∈ BNso iff Ψ(Σ) ∈ BNo. This
may also provide an alternative path to study so-chase bound-
edness by reducing it to o-chase boundedness.

6 Decidability and Complexity

From the undecidability of (uniform) boundedness of datalog
[Hillebrand et al., 1995], we immediately obtain the undecid-
ability of membership to BNo and BNso. A notable class of
datalog rules with decidable boundedness (more precisely in
linear time) is chain datalog [Guessarian and Peixoto, 1994].
We obtain that membership to BNso, CTso and FO-R remains
undecidable for FE-rules, while the decidability of member-
ship to BNo, hence to CTo, is still open.5

Importantly, new decidability and complexity results about
boundedness for specific existential rules studied in the litera-
ture can be obtained as direct corollaries of our results. This is
in particular the case for classes known to be FO-rewritable.

Corollary 16. For any class of existential rules C ∈ FO-R, it
holds that: C ∈ BNo iff C ∈ CTo, and C ∈ BNso iff C ∈ CTso.

This implies that membership to BNo and BNso is PSpace-
complete for the two main classes of FO-rewritable existen-
tial rules, namely linear and sticky. Indeed, deciding CTo

and CTso is PSpace-complete for both [Calautti et al., 2015;
Calautti and Pieris, 2019]. We also get an upper bound on the
complexity of membership to BNo and BNso for a major class
of existential rules, namely guarded. This class is neither
CTso

nor FO-R. However, membership to CTo
and CTso

for
guarded rules is decidable in 2Exptime [Calautti et al., 2015].
Then a careful reduction from [Barceló et al., 2018] allows
us to set the result. The paper shows that checking FO-
rewritability for a single query under guarded rules is in 2Ex-
ptime. This suffices since by Lemma 10 and 11 we need to
test only a polynomial number of queries.

We conclude by considering the k-boundedness prob-
lem, which asks whether the chase actually halts within
k steps. The problem is decidable for the breadth-first
(semi-)oblivious chase and any set of existential rules
[Delivorias et al., 2018]. Therefore, the k-boundedness ques-
tion becomes interesting for dealing with fragments of ex-
istential rules where boundedness is undecidable. We study
here the complexity of the following version of the problem.
Given a ruleset Σ and a (unary encoded) integer k, does it

hold that ⋆-chasek(I,Σ) = ⋆-chase(I,Σ) for all instance I?

Theorem 17. Deciding k-boundedness is in 2Exptime
for existential rules for the o-chase and so-chase; co-

5See Proposition 18 in the Appendix.



NExptime-complete for datalog rules; in co-NExptime on FE-
rules for the o-chase.

Proof. (Sketch) The upper bound results rely on the de-
cidability arguments from [Delivorias et al., 2018]. Co-
NExptime-hardness for datalog is by reduction from the co-
NExptime-hard inclusion problem of non-recursive Boolean
datalog queries [Benedikt and Gottlob, 2010].

7 Outline and Perspectives

In this paper, we have characterized boundedness in terms of
FO-rewritability and chase termination, for the oblivious and
semi-oblivious chase variants. We conclude with a discussion
on the extent of our results to more powerful chase variants
(i.e., which terminate at least when the semi-oblivious chase
terminate). Theorem 13 suggests that whenever Σ ∈ FO-R
if any such chase generates only terms of bounded frontier
depth on all instances, then Σ is bounded. We leave open
the question to determine if for other chase variants, like the
restricted and the core chases, boundedness is again the inter-
section of chase termination and FO-rewritability.

Acknowledgements. This work was supported by ANR
projects CQFD (ANR-18-CE23-0003), DataCert (ANR-15-
CE39-0009), DeLTA (ANR-16- CE40-0007) and the CNRS-
Momentum project Managing-Data.

References

[Ajtai and Gurevich, 1994] Miklós Ajtai and Yuri Gurevich.
Datalog vs first-order logic. J. Comput. Syst. Sci.,
49(3):562–588, 1994.

[Baget et al., 2011] Jean-François Baget, Michel Leclère,
Marie-Laure Mugnier, and Eric Salvat. On rules with ex-
istential variables: Walking the decidability line. Artif. In-
tell., 175(9-10):1620–1654, 2011.
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[König et al., 2015] Mélanie König, Michel Leclère, Marie-
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Appendix

This appendix contains the proofs that were omitted in the
paper due to space limitation. Note that the proofs of Theo-
rem 4 and Proposition 8 are provided in the paper, hence not
recalled below.

Proof of Proposition 1 Σ ∈ CTo iff DF(Σ) ∈ CTo and
Σ ∈ BNo iff DF(Σ) ∈ BNo.

Proof. The proposition is immediate since, for any instance I

and chase step i, o-chasei(I,Σ) = o-chasei(I,DF(Σ)).

Remarks. For the so-chase, only one direction holds true:
if Σ ∈ CTso then DF(Σ) ∈ CTso and if Σ ∈ BNso then
DF(Σ) ∈ BNso. Note that the decomposition has no inci-
dence on the FO-rewritability of Σ since Σ and DF(Σ) are
logically equivalent.

Proof of Proposition 2 If Σ is a set of FE-rules then,
for all instance I and term v in o-chase(I,Σ), holds that
depth∃(v) = rank(v).

Note that this proposition could also be stated for facts instead
of terms.

Proof. By a straightforward induction on the rank of facts,
we show that, for all i ≥ 0 and fact f , if rank(f) = i then
depth∃(f) = i. The property obviously holds for i = 0. Let
i > 0 and rank(f) = i. By definition of rank, f was produced
from at least one fact f ′ of rank i − 1. By induction hypoth-
esis, depth∃(f

′) = i − 1, hence, by definition of existential
depth, f ′ contains a term t with depth∃(t) = i − 1. Since
all rules are FE-rules, f contains at least one fresh variable
(null) v, and, by definition of existential depth, depth∃(v) =
1 + (i− 1) = i. Hence, depth∃(f) = i.

Now, let t be a term with rank i. If i = 0, t occurs in I and
depth∃(t) = 0. Otherwise, t has been generated in a fact f of
rank i. Since depth∃(f) = rank(f), depth∃(f) = i and, by
definition of existential depth, all terms generated in f have
existential depth i, in particular t.

Proof of Lemma 3 For any embedding ϕ from I to I ′

and any i ≥ 0, there exists an embedding ϕ′ ⊇ ϕ from

o-chasei(I,Σ) to o-chasei(I ′,Σ) which preserves the exis-
tential depth of terms, i.e., for every term v in o-chase(I,Σ)
it holds that depth∃(v) = depth∃(ϕ

′(v)).

Proof. By induction on i. If i = 0 then all terms have
existential depth 0 in I and I ′, then for ϕ′ = ϕ the the-
sis follows. Assume the property holds for 0 ≤ i <
n. Let i = n. By inductive hypothesis there exists an

embedding ϕ′ : o-chasen−1(I,Σ) → o-chasen−1(I ′,Σ)
preserving the existential depth of terms. Let (σ, π) be

any trigger of o-chasen−1(I,Σ). We know that ϕ′ ◦
π(body(σ)) ⊆ o-chasen−1(I ′,Σ) and (σ, ϕ′ ◦ π) is a trig-

ger of o-chasen−1(I ′,Σ). Also, there exists a bijection ρn
from the fresh terms in πo(head(σ)) to the fresh terms in ϕ′ ◦
πo(head(σ)) precisely defined as ρn(z(σ,π)) = z(σ,ϕ′◦π). Let

ϕ′′ = ϕ′ ⊎
⋃

ρn be the natural extension of ϕ′ to all triggers
that are performed to compute o-chasen(I,Σ). Of course,
for every trigger (σ, π) and term vB ∈ terms(π(body(σ)))
we have that depth∃(vB) = depth∃(ϕ

′′(vB)). We want to
show that ϕ′′ also preserves the existential depth of fresh
terms. Consider now the rule application (σ, ϕ′′ ◦ π). Let
z be an existential variable of σ. Then, depth∃(z(σ,π)) =
1 + max{depth∃(vB)} = 1 + max{depth∃(ϕ

′′(vB))} =
depth∃(z(σ,ϕ′′◦π)).

Proof of Lemma 6 For any embedding ϕ from I to I ′

and any i ≥ 0, there exists an embedding ϕ′ ⊇ ϕ from

so-chasei(I,Σ) to so-chasei(I ′,Σ) which preserves the fron-
tier depth of terms.

Proof. By induction on i. If i = 0 then all values have
frontier depth 0 in I and I ′, then for ϕ′ = ϕ the thesis
follows. Assume the property holds for 0 ≤ i < n. Let
i = n. By inductive hypothesis, we know that there exists

an embedding ϕ′ : so-chasen−1(I,Σ) → so-chasen−1(I ′,Σ)



which preserves the frontier depth of values. Let (σ, π) be
any trigger producing a new fact f ∈ so-chasen(I,Σ). Then

ϕ′ ◦ π(body(σ)) ⊆ so-chasen−1(I ′,Σ).
Consider first the case where fr(σ) = ∅. In this case

depthfr∃(f) = 1 and any term v ∈ terms(f) is a fresh term
v = z(σ,∅) generated from an existential variable z ∈ ex(σ).
Thus f ∈ so-chasen(I ′,Σ) as well and the embedding ϕ′ is
the identity on the terms of f . Also, f has frontier depth 1 in
so-chasen(I ′,Σ).

Now, if fr(σ) 6= ∅ we again distinguish two cases.
If for all triggers of the form (σ, π′) applied to compute

so-chasen−1(I ′,Σ) we have that ϕ ◦ π|fr(σ) 6= π′
|fr(σ)

then the trigger (σ, ϕ′ ◦ π) has not yet been applied in

o-chasen−1(I ′,Σ). So, we define ϕ′′ ⊇ ϕ′ to be such that
ϕ′′(z(σ,π|fr(σ))) = z(σ,ϕ′◦π|fr(σ)) for every z ∈ fr(σ). Oth-

erwise, there is a trigger (σ, π′) such that ϕ ◦ π|fr(σ) =

π′
|fr(σ) applied to compute so-chasen−1(I ′,Σ) which makes

(σ, ϕ′ ◦ π) producing the same result as (σ, π′). In this
case we define ϕ′′ ⊇ ϕ′ to be such that ϕ′′(z(σ,π|fr(σ))) =

z(σ,π′
|fr(σ)

) for all z ∈ fr(σ). To conclude, we have

that depthfr∃(z(σ,π|fr(σ))) = 1 + max{depthfr∃(v) | v ∈

π(fr(σ))} = 1 + max{depthfr∃(ϕ
′′(v)) | v ∈ π(fr(σ))} =

depthfr∃(ϕ
′′(z(σ,π|fr(σ)))).

Proof of Theorem 7 When Σ ∈ CTso there exists a con-
stant kd such that for all instance I , the frontier depth of a
term in so-chase(I,Σ) is bounded by kd.

Proof. If Σ is in CTso, the so-chase terminates on the crit-
ical instance. We take for kd the smallest rank such that
so-chasekd(Ia,Σ) = so-chase(Ia,Σ). Every instance can be
embedded into the critical instance. Hence, by Lemma 6 the
frontier depth of the terms in so-chase(I,Σ) is bounded by
the frontier depth of so-chase(Ia,Σ), which is itself bounded
by kd.

Proof of Proposition 9 Let Σ be a ruleset and HDΣ be
the full-atomic queries given by heads of the datalog rules
in DF(Σ). Then, Σ ∈ FO-RAF if and only if Σ ∈ FO-RHDΣ .

Proof. Since HDΣ is a particular set of full-atomic queries,
Σ ∈ FO-RAF implies Σ ∈ FO-RHDΣ . For the other direction,
first note that Σ and DF(Σ) are equivalent sets of rules, hence
they behave similarly with respect to first-order rewritabil-
ity. Specifically, for any CQ Q and set of rules Σ, (Q,Σ) is
FO-rewritable iff (Q,DF(Σ)) is FO-rewritable. Hence, we
conveniently consider in the following that Σ is in the form
of DF(Σ).

When a query is rewritten, some answer variables may
be made equal. Hence, we slightly generalize the notion of
query Q(x1, ..., xk) by allowing to equate some answer vari-
ables, which is represented by assigning to Q the partition
PQ on {1, . . . , k} associated with answer variable equality,
i.e., i and j are in the same class of PQ iff the ith and jth
answer variables of Q are the same. Given a class C in
PQ, we denote by xC the answer variable associated with C.
Then, the full-atomic query given by an atom has exactly the
same arity as this atom, for instance the query associated with

p(x, x, y) is Q(x{1,2}, x{1,2}, x3) = p(x{1,2}, x{1,2}, x3),
with PQ = {{1, 2}, {3}}, and not a query of the form
Q(x1, x2) = p(x1, x1, x2). Given partitions P1 and P2 on
{1, . . . , k}, we note P1 ⊑ P2 if P1 is thinner than P2, i.e., for
each classC ∈ P1, there is a classC′ ∈ P2 withC ⊆ C′. The
⊑ relation organizes the set of partitions of {1, . . . , k} into a
lattice. As usual, we denote by P1 ∨ P2 the upper bound of
P1 and P2 in this lattice.

We recall that (Q,Σ), with Q a CQ, is FO-rewritable iff
there is a UCQ-rewriting of Q, i.e., a finite set Q of CQs
such that, for any instance I , the set of certain answers to
Q on (I,Σ) is exactly the set of answers to the UCQ ob-
tained from Q on I .6 Each CQ in Q can be obtained from
Q and Σ by a finite rewriting sequence, based on so-called
piece-unifiers (see e.g., [König et al., 2015] for definitions).
More precisely, each query Qi+1 in a rewriting sequence is
obtained from the preceding query Qi, and a piece-unifier u
ofQi with a rule σ ∈ Σ that unifies a non-empty subset ofQi
with a subset of σ’s head while satisfying conditions concern-
ing existential variables in σ. In particular, an answer variable
of Qi cannot be unified with an existential variable of σ. The
following property holds: for any (I,Σ) and CQ Q, a tuple of
constants (a1, . . . , ak) is a certain answer to Q on (I,Σ) iff
there is a finite rewriting sequence from Q to a CQ Q′ such
that (a1, . . . , ak) is an answer to Q′ on I . Also note that for
any CQ Qi obtained from a CQ Q by a rewriting sequence,
PQ ⊑ PQi

holds (PQ is thinner than PQi
).

Now, assume Σ ∈ FO-RHDΣ and let Q be a full-atomic
query. If Q is not unifiable with a datalog rule from DF(Σ),
its UCQ-rewriting is Q itself, because a full-atomic query is
not unifiable with an FE rule. Otherwise, let Qh be the full-
atomic query associated with any datalog rule head unifiable
with Q by a unifier u. One has u(Q) = u(Qh). If all such
(u(Qh),Σ) are FO-rewritable, we obtain that (Q,Σ) is FO-
rewritable, as the union of the UCQ-rewritings of all u(Qh)
yields a suitable UCQ-rewriting of Q. We will show the fol-
lowing property (P1): letQ andQs be two full-atomic queries
with the same predicate such thatPQ ⊑ PQs

; if (Q,Σ) is FO-
rewritable then (Qs,Σ) also is. By hypothesis, each (Qh,Σ)
is FO-rewritable, hence (P1) implies that, for any substitution
u, (u(Qh),Σ) is also FO-rewritable, which will conclude the
proof.

It remains to prove (P1). We prove a preliminary lemma
(L): let Q and Qs be two full-atomic queries with the same
predicate such that PQ ⊑ PQs

; then, for any rewriting se-

quence of length l leading from Q to a query Ql, there is a
rewriting sequence of the same length leading from Qs to a
query Qls, such that PQl

s
= PQl

∨ PQs
(where ∨ is the upper

bound in the partition lattice), and, given s′ the substitution of
the answer variables in Ql by the answer variables in Qls as-
sociated with PQl ⊑ PQl

s
, it holds that s′(Ql) = Qls, up to a

bijective renaming of non-answer variables. Let us now prove
(P1). Let Q and Qs be two full-atomic queries on the same
predicate of arity k such that PQ ⊑ PQs

and (Q,Σ) is FO-
rewritable. The FO-rewritability of (Q,Σ) is equivalent to the

6As already noticed, the equivalence between the rewritability
into a union of CQs and first-order rewritability follows from the
(Finite) Homomorphism Preservation Theorem [Rossman, 2008].



following statement: there is an integer b such that for any in-
stance I and any tuple of constants (a1, . . . , ak), it holds that
(a1, . . . , ak) is a certain answer to Q on (I,Σ) if and only if
there is a query Qb obtained by a rewriting sequence from Q
of length less than b, with (a1, . . . , ak) is an answer to Qb on
I . We prove that (Qs,Σ) is FO-rewritable by such a state-
ment. Let I be any instance and (a1, . . . , ak) be a certain
answer to Qs on (I,Σ). There is thus a homomorphism h
from Qs to ⋆-chase(I,Σ) that maps its answer variable tuple
to (a1, . . . , ak). Given s the homomorphism fromQ to Qs, it
holds that h ◦ s is a homomorphism from Q to ⋆-chase(I,Σ)
that maps its answer variable tuple to (a1, . . . , ak). Since Q
is FO-rewritable, there is a query Qb obtained by a rewriting
sequence of length less than b such that (a1, . . . , ak) is an an-
swer to Qb on I . Let hb be a homomorphism from Qb to I
yielding this answer. Let Pa be the partition on {1, ..., k} as-
sociated with the equality of terms in (a1, . . . , ak). We have
PQb ⊑ Pa and PQs

⊑ Pa. By Lemma (L), there is a query

Qbs obtained fromQs with a rewriting sequence of length less
than b, such that (1) PQb

s
= PQb ∨PQs

, and (2) s′(Qb) = Qbs,

with s′ the substitution associated with PQb
⊑ PQb

s
. From

(1), we have PQb
s
⊑ Pa. Hence, the homomorphism hb from

Qb to I can be written h′ ◦ s′, where h′ is a homomorphism
from Qbs to I mapping its answer tuple to (a1, . . . , ak). The
converse direction (“if there is Qbs obtained by a rewriting se-
quence from Qs, of length less than b, with (a1, . . . , ak) is
an answer to Qbs on I , then (a1, . . . , ak) is a certain answer
to Qs on (I,Σ)”) holds because of the soundness of query
rewriting based on piece-unifiers.

Proof of Lemma 10 If Σ ∈ FO-RAF there is a constant kAF

such that, for any instance I and fact f such that terms(f) ⊆
terms(I), when f ∈ o-chase(I,Σ) it holds that rank(f) ≤
kAF.

Proof. Assume Σ ∈ FO-RAF. We take for kAF the maximal
number of breadth-first rewriting steps necessary to obtain a
UCQ-rewriting of a full-atomic query (we refer here to the
breadth-first rewriting based on aggregated piece-unifiers, see
[König et al., 2013]; this query rewriting technique ensures
the following property: for any (I,Σ) and any CQ Q, for any

k, the set of answers to Q on o-chasek(I,Σ) is equal to the
set of answers to Qk on I , where Qk is the UCQ-rewriting of
Q with Σ obtained by k breadth-first rewriting steps).7

We know that the number of full-atomic queries to be con-
sidered is finite and by Proposition 9 can be even bounded
by the number of non-isomorphic heads of datalog rules. By
the properties of breadth-first query rewriting, we know that
for any instance I and any full-atomic query Q, the certain
answers to Q on (I,Σ) are exactly the answers to Q on

o-chasekAF(I,Σ). We can identify an answer (a1, . . . , an)

7Alternatively, we could rely on the bound given by the bounded
derivation-depth property (BDDP) [Calı̀ et al., 2009b]. A ruleset Σ
satisfies the BDDP if for all Boolean CQ Q, there is an integer k such
that, for all instance I , it holds that I,Σ |= Q iff o-chase

k(I,Σ) |=
Q. It has been several times remarked that BDDP is equivalent to
UCQ-rewritability, hence to FO-rewritability.

to Q = p(x1, . . . , xn) with the fact (having only constants)
p(a1, . . . , an). Then we have that (a1, . . . , an) is a certain

answer to Q iff p(a1, . . . , an) ∈ o-chasekAF(I,Σ). Now,
the statement of the lemma considers more generally facts
f with terms(f) ⊆ terms(I) which could contain also exis-
tentially quantified variables. Observe however that, for any
instance I , let freeze() be a bijective renaming of the vari-
ables of I by constant values that do not appear in I , then,

for all i ≥ 0, there is an isomorphism from o-chasei(I,Σ)

to o-chasei(freeze(I),Σ) that preserves the rank of facts.
Because of this, let f and I be any fact and instance, we

have that f ∈ o-chasei(I,Σ) (for any i) iff freeze(f) ∈
o-chasei(freeze(I),Σ). Since freeze(f) contains only con-
stants we can conclude.

Proof of Lemma 11 If Σ ∈ FO-R there is a constant kFO
such that, for any instance I and any trigger (σ, π) from
so-chase(I,Σ) with π(fr(σ)) ⊆ terms(I), there is also a trig-
ger (σ, π′) from so-chase(I,Σ) such that π′

|fr(σ) = π|fr(σ) and

rank(f) ≤ kFO for all f ∈ π′(body(σ)).

Proof. Assume Σ ∈ FO-R. We denote by Qbody(σ) any
conjunctive query whose atoms correspond to the atoms of
body(σ), for σ ∈ Σ, and all variables are existentially quan-
tified except for those in fr(σ), which are the answer vari-
ables. We know that the number of such queries is bounded
by the cardinal of Σ. We take for kFO the maximal number
of breadth-first rewriting steps necessary to obtain a UCQ-
rewriting from any Qbody(σ) query.

By the properties of breadth-first query rewriting (based on
aggregated piece-unifiers [König et al., 2013]), we know that,
for any instance I , the certain answers to Qbody(σ) on (I,Σ)

are exactly the answers to Qbody(σ) on o-chasekFO(I,Σ)

and therefore on so-chasekFO(I,Σ). By definition of query-
answer, there is a homomorphism π′ from Qbody(σ) to

so-chasekFO(I,Σ) which maps each answer variable (re-
call, originated from a frontier variable) to a constant of
I and each existentially quantified variable to a term of

so-chasekFO(I,Σ).
Let (σ, π) any trigger from so-chase(I,Σ) with π(fr(σ)) ⊆

terms(I). Assume first that all values in I are constants. Ac-
cording to the previous observation, we know that there is π′

from Qbody(σ) to so-chasekFO(I,Σ) with π′
|fr(σ) = π|fr(σ)

and therefore a trigger (σ, π′) as desired. Now, for the case
where I also contains existentially quantified variables, let I
be an instance and let freeze() be a bijective renaming of the
variables of I by constant values that do not appear in I then,

for all i ≥ 0, there is an isomorphism from so-chasei(I,Σ) to

so-chasei(freeze(I),Σ) that preserves the rank of facts. This
implies that if I is any instance then for any f and i holds

f ∈ so-chasei(I,Σ) iff freeze(f ) ∈ so-chasei(freeze(I),Σ)
and we conclude.

A closer look at our proof actually shows that FO-
rewritability with respect to queries associated with rule bod-
ies is sufficient to derive Lemma 11.



Proof of Theorem 12 If Σ ∈ FO-RAF then for all in-
stance I and fact f ∈ o-chase(I,Σ) we have that rank(f) ≤
depth∃(f)× (kAF + 1) + kAF with kAF the bound provided
by Lemma 10.

Proof. We first show that since Σ ∈ FO-RAF then for all
instance I and term v ∈ terms(o-chase(I,Σ)) it holds that
rank(v) ≤ depth∃(v) × (kAF + 1), where we recall that
rank(v) is the rank where v is introduced.

By induction on the existential depth of v. If depth∃(v) =
0 then v ∈ terms(I) and thus rank(v) = 0 also. Assume
the property holds for 0 ≤ depth∃(v) ≤ n. We show that
it holds for depth∃(v) = n + 1. Let (σ, π) be the trigger
that generates v. Then, for all vB ∈ terms(π(body(σ))),
we know that depth∃(vB) ≤ n. By inductive hypothesis,
rank(vB) ≤ n × (kAF + 1). Since Σ ∈ FO-RAF, we can

apply Lemma 10 using as instance o-chasek(I,Σ) where k =
n× (kAF + 1). Hence for all fB ∈ π(body(σ)) it holds that
rank(fB) ≤ k + kAF. Thus rank(v) ≤ k + kAF + 1 =
(n+1)× (kAF +1) = depth∃(v)× (kAF +1). To conclude
the proof, since any fact f ∈ o-chase(I,Σ) contains only
terms v with rank(v) ≤ depth∃(v) × (kAF + 1), we apply
Lemma 10 and we obtain rank(f) ≤ max{ depth∃(v) | v ∈
terms(f) } × (kAF + 1) + kAF.

Proof of Theorem 13 If Σ ∈ FO-R then for all instance
I and fact f ∈ so-chase(I,Σ) we have that rank(f) ≤
depthfr∃(f)× (kFO + 1) + kFO where kFO is the bound pro-
vided by Lemma 11.

Proof. We first show that since Σ is FO-rewritable, then for
all instance I and term v ∈ terms(so-chase(I,Σ)) it holds

that rank(v) ≤ depthfr∃(v) × (kFO + 1). By induction on

the frontier depth of v. If depthfr∃(v) = 0 then v ∈ terms(I)
and thus rank(v) = 0 also. Assume the property holds for

0 ≤ depthfr∃(v) ≤ n. We show that it holds for depthfr∃(v) =
n+1. Let (σ, π) be the trigger that generates v. By definition
of frontier depth, for all vfr ∈ terms(π(fr(σ))), we know that

depthfr∃(vfr) ≤ n. By inductive hypothesis, rank(vfr) ≤ n×
(kFO + 1). Since Σ ∈ FO-R, we can apply Lemma 11 using

as instance so-chasek(I,Σ) where k = n× (kFO + 1). This
gives us rank(π(body(σ))) ≤ k + kFO. Thus rank(v) ≤
n × (kFO + 1) + kFO + 1 = (n + 1) × (kFO + 1) =

depthfr∃(v)× (kFO + 1).
Since any fact f ∈ so-chase(I,Σ) contains only terms v

with rank(v) ≤ depthfr∃(v)×(kFO+1), we use again Lemma

11, and obtain rank(f) ≤ depthfr∃(f)×(kFO+1)+kFO.

Proof of Theorem 14 BNo = FO-RAF ∩ CTo
.

Proof. (⇒) If Σ ∈ BNo there is k such that, for all I ,

o-chasek(I,Σ) = o-chase(I,Σ). Hence, there is k such that
for all I and all Boolean CQ Q we have Σ, I |= Q (i.e.,

o-chase(I,Σ) |= Q iff o-chasek(I,Σ) |= Q iff I |= Qk,
where Qk is the query obtained by k steps of breadth-first
rewriting from Q and Σ, which implies the FO-rewritability
of Σ. To conclude, BNo ⊆ CTo follows by definition.

(⇐) By Theorem 4 and 12.

Proof of Theorem 15 BNso = FO-R ∩ CTso.

Proof. Identical to proof of Theorem 14 for the direct sense.
The other direction holds by Theorem 7 and 13.

The next proposition leads to conclude that membership to
BNso, CTso and FO-R remains undecidable for FE-rules.

Proposition 18. There is a translation ψ from any KB (I,Σ)
on a vocabulary V , where Σ is a set of existential rules, to a
KB (ψ(I), ψ(Σ)) on a vocabulary ψ(V), where ψ(Σ) is a set
of FE-rules, such that:
(1) ψ is injective, and
(2) so-chase(I,Σ) and so-chase(ψ(I), ψ(Σ)) have the same
rank, and
(3) for any instance I ′ on ψ(V), there is an instance ψ(I)
such that so-chase(I ′, ψ(Σ)) and so-chase(ψ(I), ψ(Σ)) have
the same rank.

The proposition leads directly to the undecidability ofBNso

and CTsofor FE-rules. Concerning the undecidability of
FO-R for FE-rules, we take for Σ a set of datalog rules. Then
Σ is in CTso if and only if ψ(Σ) is in CTso. Since every data-
log set is CTso, ψ(Σ) is also CTso. Now, consider the (unde-
cidable) problem of whether Σ is (uniformly) bounded. We
have that Σ is bounded iff ψ(Σ) is bounded, which amounts
to asking if ψ(Σ) is FO-R (as we already know it is in CTso).

Proof. (of proposition 18). Take a vocabulary V =
(P , C) and define the set P+ where each predicate p ∈
P of arity k is replaced by a predicate p+ of arity
k + 1. Let ψ be a transformation defined as follows.
First, ψ(V) = (P+, C). Then, given an atom α =
p(v1, . . . , vk) then ψ(α) = p+(v1, . . . , vk, zα) where zα
is a fresh variable. Let σ = B1(x̄, ȳ) . . . Bn(x̄, ȳ) →
∃z̄H1(x̄, z̄), . . . , Hm(x̄, z̄) be a rule, then ψ(σ) =
ψ(B1), . . . , ψ(Bn) → ∃zH1 . . . zHm

ψ(H1) . . . ψ(Hm). Fi-
nally, ψ(I) =

⋃

α∈I ψ(α) and ψ(Σ) =
⋃

σ∈Σ ψ(σ).
Obvliously, ψ is injective (Point (1)).
To prove the point (2), we show that for each fact

f = p(v1, . . . , vn) ∈ so-chasei(I,Σ) generated by
a trigger (σ, π) it holds p+(v1, . . . , vn, z(ψ(σ),π|fr(σ))) ∈

so-chasei(ψ(I), ψ(Σ)), and vice-versa.
We focus on the direction ⇒) as the direction ⇐) is sim-

ilar. By induction on the rank i of the so-chase. If i = 0
then by definition f ∈ I implies ψ(f) ∈ ψ(I). Assume
that the property holds for 0 ≤ i ≤ n. We show that it
holds for rank n + 1. Let f be any atom of rank n + 1 pro-
duced by the trigger (σ, π). This means that for all body atom
fB = p(x1, . . . , xk) ∈ body(σ) we know that π(fB) =
p(v1, . . . , vn) ∈ so-chasen(I,Σ). Hence, by induction
ψ(π(fB)) = p+(v1, . . . , vn, z

+) ∈ so-chasen(ψ(I), ψ(Σ))
where z+ = zπ(fB) if π(fB) ∈ I , or z+ = z(ψ(σ′),π′

|fr(σ′)
)

if π(fB) has been generated by a trigger (σ′, π′). Then, the
trigger (ψ(σ), π ∪

⋃

fB
{zfB 7→ z+}) is applicable and pro-

duces ψ(π(f)). Since f is of rank n+ 1 there does not exist
another rule application that could have generated the same
atom at a previous rank, and the same holds for its image.

For point (3), we build a transformation φ from any
instance I ′ on ψ(V) to an instance I on V such that



so-chase(I ′, ψ(Σ)) and so-chase(I,Σ) have the same rank.
[Note that the proof does not follow exactly point (3) here:
we consider directly I instead of ψ(I)].

The transformation φ assigns to each atom α =
p+(v1, . . . , vk, z) on ψ(V) the atom φ(α) = p(v1, . . . , vk).
Let I = φ(I ′) =

⋃

α∈I′ φ(α). We show that for each

fact f = p+(v1, . . . , vn, z) ∈ so-chasei(I ′, ψ(Σ)) gener-
ated by a trigger (ψ(σ), π), it holds that p(v1, . . . , vn) ∈
so-chasei(I,Σ). By induction on the rank i of the so-chase.
If i = 0 then by definition f ∈ I ′ implies φ(f) ∈ I . As-
sume that the property holds for 0 ≤ i ≤ n. We show
that it holds for rank n + 1. Let f be any atom of rank
n + 1 produced by the trigger (ψ(σ), π). This means that
for all body atom fB = p+(v1, . . . , vk, z) ∈ body(ψ(σ)) we
know that π(fB) ∈ so-chasen(I ′, ψ(Σ)). Hence, by induc-
tion φ(π(fB)) ∈ so-chasen(I,Σ). Then, the trigger (σ, π′)
(where π′ is the appropriate restriction of π) is applicable and
produces φ(π(f)). Since f is of rank n + 1 there does not
exist another rule application that could have generated the
same atom at a previous rank; as the chase is semi-oblivious,
and the last component of a predicate never occurs in the fron-
tier, φ(π(f)) is also of rank n+ 1.

So, let an instance I on V . Let us note that φ(ψ(I)) = I .
By what precedes so-chase(I,Σ) and so-chase(ψ(I), ψ(Σ))
have the same rank. Now, let an instance I ′ on ψ(V) and
I = φ(I ′): by what precedes the rank of so-chase(I,Σ)
is at least the rank of so-chase(I ′, ψ(Σ)). Furthermore, by
embedding ψ(I) in I ′, we can by using similar arguments
prove that the rank of so-chase(I ′, ψ(Σ)) is at least the rank
of so-chase(I,Σ). So, so-chase(I ′, ψ(Σ)) and so-chase(I,Σ)
have the same rank.

Proof of Theorem 17 The k-boundedness problem is:

• in 2Exptime on general existential rules for the o-chase
and so-chase;

• co-NExptime-complete on datalog;

• in co-NExptime on FE-rules for the o-chase.

Proof. The upper bound results mostly come from
[Delivorias et al., 2018] [Delivorias et al., 2020]. Indeed,
from these papers, a ruleset is k-bounded for the (s)o-chase
iff the (s)o-chase stops within k steps for instances of size at
most bk+1, with b the maximum number of atoms in a rule
body. So, to disprove k-boundedness, it suffices to guess
a breadth-first derivation from an instance of size at most
bk+1 to a fact of rank k + 1, which can be done in NExptime
for datalog. This gives also the 2Exptime upper bound by
checking exhaustively for each of these instances that there is
no breadth-first derivation of depth k + 1. When the ruleset
is fully existential, it can be proven that a rule set is not
k−bounded for the o-chase iff there exists a non-necessarly
breadth-first partial derivation of depth k + 1 from the
critical instance. So, by guessing such a derivation, we get
also a co-NExptime decision procedure on FE-rules for the
o-chase. See also [Gallois, 2019] for detailed proofs of the
above results.

Co-NExptime-hardness of k-boundedness for datalog rules
is proven by reduction from the co-NExptime-hard in-
clusion problem of non-recursive Boolean datalog queries
[Benedikt and Gottlob, 2010]. Let Q1, Q2 two non-recursive
Boolean datalog queries and P0 (resp. P 2

0 ) their respective
distinguished 0-ary predicate. As they are non-recursive,
Q1 (resp. Q2) is k1-(resp.k2) bounded with k1 (resp. k2)
the number of predicates in Q1 (resp. Q2). Let p =
max(k1, k2) + 2. Let us note that the size of p encoded in
unary is bounded by the size of (Q1, Q2). Let us define a new
rulesetQ′

1∪Q
′
2: Q′

1 (resp. Q′
2) is obtained fromQ1 (resp. Q2

) by adding 0-ary predicates Pi and rules Pi−1 → Pi (resp.
P0 → Pi) with 1 ≤ i ≤ p. The size of Q′

1 ∪ Q′
2 is linear

w.r.t. the size of (Q1, Q2). We will prove that Q′
1 ∪ Q′

2 is
p− 1-bounded iff Q1 is contained in Q2

Let us first suppose that Q1 is contained in Q2. Let I be
any instance. If P0 can be derived from (I,Q2), all the Pi are
generated in at most k2+1 steps and so the breadth-first chase
for (I,Q′

1∪Q
′
2) stops aftermax(k1, k2+1) steps. Otherwise,

P0 can neither be derived from (I,Q1) and the breadth-first
chase for (I,Q′

1 ∪ Q
′
2) stops after max(k1, k2) steps. So, in

both cases, Q′
1 ∪Q

′
2 is (p− 1)-bounded.

If Q1 is not contained in Q2, there exists I such that P0

can be derived from (I,Q1) whereas P 2
0 can not be derived

from (I,Q2). As P 2
0 is not generated by the Q′

2 part, Pk will
be generated by theQ′

1 part, and so the breadth-first chase for
(I,Q′

1 ∪Q
′
2) will need at least p steps.

SoQ′
1∪Q

′
2 is p−1-bounded iffQ1 is contained inQ2.
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