
HAL Id: lirmm-02920670
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02920670

Submitted on 24 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data Access With Horn Ontologies: Where Description
Logics Meet Existential Rules

Marie-Laure Mugnier

To cite this version:
Marie-Laure Mugnier. Data Access With Horn Ontologies: Where Description Logics Meet Existential
Rules. KI - Künstliche Intelligenz, 2020, Ontologies and Data Management – Part II, 34 (4), pp.475-
489. �10.1007/s13218-020-00678-3�. �lirmm-02920670�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02920670
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Data Access With Horn Ontologies:
Where Description Logics Meet Existential Rules

Marie-Laure Mugnier

Accepted to KI - Künstliche Intelligenz (special issue on Ontologies and Data Management), June 2020.
https://doi.org/10.1007/s13218-020-00678-3

Abstract Two main families of ontology languages are

considered in the context of data access, namely Horn

description logics and existential rules. In this paper, we

review the semantic relationships between these fami-

lies in the light of the ontology-mediated query answer-

ing problem. To this end, we rely on the standard trans-

lation of description logics in first-order logic and on the

notion of semantic emulation. We focus on description

logics and classes of existential rules for which the con-

junctive query answering problem has polynomial data

complexity.

Keywords Data Access · Ontology-Mediated Query

Answering · Existential Rules · Horn Description

Logics

1 Introduction

Intelligent methods to manage large, complex or het-

erogeneous datasets require domain knowledge, typi-

cally encoded in ontologies. In the last years, there

has been a growing interest in the problem known as

ontology-mediated query answering, which consists in

exploiting ontological knowledge when querying data.

In this framework, an ontology is added on top of data,

which yields a knowledge base (see e.g., [?] for a high-

level overview). By contrast to classical query evalu-

ation against a database, query answering against a

knowledge base takes into account inferences enabled

by the ontology, as illustrated by Example ??.

Marie-Laure Mugnier
University of Montpellier, LIRMM, Inria
E-mail: mugnier@lirmm.fr

Example 1 As a simple illustration, let us consider a

database about literature. Assume a specific individ-

ual a is known in this database as a poet, which we

note Poet(a), without any further information about

his work. A query on this database asking for authors

of poems, like q(x) = ∃y (author(x, y)∧Poem(y)), will

certainly not retrieve a. Adding the knowledge that po-

ets are authors of poems, which can be expressed as

the logical formula ∀x (Poet(x) → ∃y (author(x, y) ∧
Poem(y))), allows inferring that a is an answer to the

query, even if no specific poem of a is known, therefore

palliating data incompleteness.

Two main families of ontology languages are con-

sidered in this context, namely description logics and

existential rules. Description Logics (DLs) have been

specially designed to represent and reason with ontolo-

gies [?]. They notably underlie the Semantic Web on-

tological language OWL [?,?]. A DL ontology contains

axioms that express inclusions between concepts and

between binary relations (called roles), and possibly

other properties of roles (like symmetry or transitiv-

ity). Complex concepts and roles can be built using a

set of constructors. E.g. the knowledge in Example ??

can be seen as the logical translation of the concept in-

clusion Poet v ∃author.Poem, where Poet is simply a

concept name and ∃author.Poem is a complex concept.

The expressiveness of a specific DL depends on the

allowed set of constructors and shape of axioms. His-

torically, description logics focused on so-called stan-

dard reasoning tasks, like checking the satisfiability of

a knowledge base or classifying concepts. When DL-

based data access began to be investigated, it turned

out that answering basic database queries, i.e., conjunc-

tive queries, had a very high complexity with classical

DLs (e.g., it is 2ExpTime-complete for ALCI and its

https://doi.org/10.1007/s13218-020-00678-3

2 Marie-Laure Mugnier

popular extension SHIQ [?,?]). For the DL SROIQ,

which underlies OWL 2, the lastest version of OWL [?],

it is even not known if conjunctive query answering is

decidable (see e.g., [?]). Hence, research on ontology-

mediated query answering studied less expressive DLs.

This includes new lightweight DLs, like the DL-Lite

family, specially tailored for efficient query answering

[?] and the EL family introduced to deal with large on-

tologies [?,?], as well as fragments of classical DLs, like

Horn-SHIQ and Horn-SROIQ [?,?,?]. All these DLs

are often referred to as Horn description logics because

they have the common property of being expressible in

the Horn fragment of first-order logic.

On the other hand, existential rules have emerged

in the last ten years as a new ontological language di-

rected towards data access. Existential rules are a frag-

ment of first-order logic that can be seen as an extension

of datalog, the query language of deductive databases,

to which they bring the capability of inferring the ex-

istence of unknown individuals [?,?]. For instance, the

knowledge in Example ?? is an existential rule, which

expresses that every poet is author of a poem, even if

this poem may be unknown. Such a feature, which is

offered by description logics, is considered as crucial for

reasoning in an open-world perspective, where it can-

not be assumed that all existing individuals are known

in advance and stored in the database. Another line of

work introduced existential rules as the logical transla-

tion of graph-based rules [?,?].

Generally speaking, existential rules and description

logics are incomparable in terms of expressivity. How-

ever, the existential rule framework generalizes Horn

description logics. More specifically, it extends these lat-

ter by two main features. First, predicates in rules have

unrestricted arity, while DLs are usually restricted to

unary and binary predicates. Unrestricted arity allows

for a natural coupling with relational database schemas

in which relations may have any arity, an important

feature in the context of data access. It also provides

greater flexibility; in particular, contextual information,

such as data provenance, can be easily taken into ac-

count by adding new predicate arguments. Second, ar-

bitrarily complex relationships between objects can be

expressed, whereas DL axioms essentially express tree-

like relationships. Unsurprisingly, greater expressivity

comes with undecidability of query answering, even for

the simplest queries (see e.g., [?] in a database context).

However, a wide range of decidable classes of existential

rules have been defined, which provide different trade-

offs between expressivity and tractability of query an-

swering.

The purpose of this paper is to take a closer look

at the relationships between decidable fragments of ex-

istential rules and Horn description logics. Our aim

here is not to be exhaustive but rather to exhibit com-

mon and distinguishing characteristics of both families

of formalisms. We will focus more specifically on rule

classes and DLs for which the complexity of (conjunc-

tive) query answering scales polynomially in the size of

the data (i.e., is polynomial for data complexity), as

this is a desired behavior in the context of data access.

Since description logics have their own syntax, we

will rely on their standard translation in first-order logic

to compare them with the existential rule framework.

This will allow us to identify decidable rule classes that

naturally cover some Horn DLs (in a sense that we

will specify) and discuss the relative complexities of

query answering in these fragments. As we shall see,

some expressive Horn DLs are not covered by decidable

rule classes already investigated in the literature. We

will pinpoint the difficulties in extending relevant rule

classes with knowledge constructs offered by these DLs.

We assume that the reader has basic knowledge on

classical first-order logic and description logics, even if

we will recall some notions and notations to make the

paper self-contained. For a comprehensive introduction

to query answering techniques associated with Horn

description logics, we refer the reader to the survey

chapters [?,?] and to the recent textbook [?]. Introduc-

tions to the existential rule framework can be found in

[?,?,?,?].

The paper is organized as follows. After introducing

preliminary notions, we give overviews of the existen-

tial rule framework and Horn description logics. Con-

cerning existential rules, we will describe in more detail

the greedy bounded-treewidth family because of its rele-

vance to our aim [?,?,?]. Of particular interest are the

subclasses of guarded [?], frontier-one [?] and frontier-

guarded rules [?], for which the query answering prob-

lem is polynomial for data complexity [?,?,?]. Concern-

ing Horn description logics, we will specifically focus on

the lightweight DL-Lite and EL families, as well as on

the more expressive Horn-SHIQ description logic, in

which the query answering problem is still polynomial

for data complexity (note that the survey chapter [?] is

specifically devoted to these description logics). Finally,

we will compare relevant fragments of both ontological

languages from an expressivity and complexity view-

point.

2 Preliminaries

This section recalls some basic logical notions and in-

troduces fundamental notions about knowledge bases

and query answering.

Data Access With Horn Ontologies: 3

2.1 Logical notions

We consider classical first-order logic. A logical vocab-

ulary (also called signature) is composed of finite sets

of predicates and function symbols. We recall that con-

stants are 0-ary function symbols. An atom is of the

form p(t1 . . . tk) where p is a predicate with arity k and

the ti are terms, i.e., variables, constants, or complex

functional terms. Given a formula or set of atoms F ,

we denote by var(F) its set of variables, and term(F)

its set of terms. A formula is atomic if it has a single

atom. A ground atom has no variables. A literal is an

atom or the negation of an atom. A formula is closed

if it has no free variables. Given a sequence of distinct

variables x = x1 . . . xn, we use the notations ∀x and

∃x as shortcuts for ∀x1, . . . ,∀xn and ∃x1, . . . ,∃xn, re-

spectively. Given a formula F without quantifiers, the

universal (respectively existential) closure of F is the

closed formula ∀x F (respectively, ∃x F), where x is an

ordering of var(F). A theory is a finite set of closed for-

mulas. A clause is the universal closure of a disjunction

of literals. A Horn clause is a clause with at most one

positive literal and a definite clause is a Horn clause

with exactly one positive literal. A closed formula is in

clausal form if it is a conjunction of clauses. We consider

the classical notions of an interpretation of a vocabu-

lary, denoted by (∆I , .
I), where ∆I is the domain of I

and .I the interpretation function of I, of a model of

a formula and of (semantic) entailment, denoted by |=
(given formulas f and g, f |= g means that every model

of f is a model of g).

2.2 Knowledge bases

From a conceptual viewpoint, an ontology expresses

general knowledge about a domain, defined on a vocab-

ulary given by sets of concept names, relation names,

and possibly individuals. Relation names of binary arity

are also called properties (e.g., in a Semantic Web set-

ting) or role names (in description logics). From a log-

ical viewpoint, a concept name C is a unary predicate

(also denoted by C), a relation name r is a predicate of

the same arity (also denoted by r), and an individual is

a constant (denoted in the same way). Hence, the logi-

cal vocabulary associated with a given ontology is com-

posed of predicates and constants (however, function

symbols of arity greater than one may be introduced by

the operation called Skolemization, see later). Generally

speaking, an ontology can be seen as a theory composed

of formulas of the form ∀x (condition → conclusion),

where x denotes the set of variables that occur in both

condition and conclusion. In the existential rule frame-

work, an ontology is directly given as a set of such for-

mulas, while in description logics, an ontology (called

a TBox) has a standard translation into such formulas.

A fact is a ground atom on constants and a database

instance (or simply: instance) is a finite set of facts. A

knowledge base (KB) is a pair composed of an ontology

and an instance, on the same vocabulary. The theory

associated with a KB is the union of its ontology and

its instance.

We will need the notion of an extended instance, in

which the atoms may contain variables denoting un-

known entities. Such variables are called nulls, a name

coming from databases. The logical formula assigned

to an extended instance is the existential closure of

the conjunction of its atoms: e.g., {p(x, a), q(x), p(b, y)},
where x, y are variables and a,b constants, corresponds

to the formula ∃x∃y (p(x, a) ∧ q(x) ∧ p(b, y)).

The unique name assumption (UNA), which states

that distinct constants necessarily denote distinct indi-

viduals, is generally made in the framework of existen-

tial rules, and less often in description logics. Whether

this assumption is made or not is only relevant when

equalities / inequalities are involved.

2.3 Semantic emulation

To compare ontological fragments, we will sometimes

transform a theory T1 on a vocabulary V1 into a theory

T2 on a vocabulary V2 that extends V1 by fresh predi-

cates or function symbols, while preserving the seman-

tics of T1. Strictly speaking, we will not be able to say

that these theories are logically equivalent because they

are not defined on the same vocabulary, hence they do

not have the same models. To specify their relationship,
we will rely on the notion of semantic emulation [?]. We

say that a vocabulary V2 extends a vocabulary V1 (no-

tation V1 ⊆ V2) if the set of predicates (respectively

of function symbols) of V1 is included into that of V2.

Given two logical theories T1 and T2 on vocabularies V1
and V2 such that V1 ⊆ V2, we say that T2 semantically

emulates T1 if (1) every model of T2 becomes a model of

T1 when restricted to the interpretation of the symbols

of V1, and (2) every model I1 of T1 can be extended

into a model I2 of T2 that has the same domain as I1
and agrees with I1 on V1. This notion of semantic em-

ulation is close to the classical notion of conservative

extension, for which slightly different definitions can

be found (for instance, the additional constraint that

T1 ⊆ T2 is often enforced). See the DL texbook [?] for a

definition of a conservative extension that corresponds

to the above semantic emulation for DLs specifically.

When T2 is a semantic emulation of T1, both theories

are equisatisfiable (i.e., both satisfiable or both unsat-

isfiable), furthermore they entail exactly the same for-

4 Marie-Laure Mugnier

mulas on V1. In particular, Skolemization is a classical

process that transforms any closed formula into a for-

mula in (or equivalent to) a clausal form. This process

replaces all existentially quantified variables with func-

tional terms, using a fresh set of function symbols. Ap-

plied to a theory T , Skolemization produces a theory

Skolem(T) that is a semantic emulation of T .

2.4 Query answering

We consider conjunctive queries, which are the basic

queries in relational or Semantic Web databases. A con-

junctive query (CQ) is of the form q(x) = ∃y φ[x,y],

where φ is a conjunction of atoms whose terms are con-

stants or variables, and x ∪ y = var(φ) (see Example

??); the free variables in φ (i.e., x) are called answer

variables. A Boolean conjunctive query (BCQ) has no

free variables. An instance I answers positively to a

BCQ q if I |= q. More generally, a tuple of constants

(c1 . . . ck) is an answer to a CQ q(x1 . . . xk) in I if I
entails the BCQ obtained from q by substituting each

xi with ci, i.e., I |= q[c1/x1 . . . ck/xk]. Without loss of

generality, we will restrict our focus to BCQs in the

following.

Given sets of atoms A1 and A2, a homomorphism

h from A1 to A2 is a substitution from var(A1) to

term(A2) such that h(A1) ⊆ A2. It is well-known that

when A1 and A2 stand for two existentially closed con-

junctions of atoms, A1 |= A2 if and only if there is a

homomorphism from A2 to A1. In particular, for a BCQ

q and an instance I, it holds that I |= q if and only if

there is a homomorphism from (the set of atoms of)

q to I. Similarly, a tuple of constants (c1 . . . ck) is an

answer to a CQ q(x1 . . . xk) in I if and only if there

is a homomorphism h from q(x1 . . . xk) to I such that

h(xi) = ci for all i.

The notion of homomorphism can also be defined

on interpretations: given two interpretations I and J of

the same vocabulary, a homomorphism h from I to J

is a mapping from ∆I to ∆J such that h(pI) ⊆ pJ for

each predicate p and h(f I) = fJ for each function sym-

bol f (note that function symbols other than constants

are not relevant for conjunctive queries). An important

property of BCQs is that they are “closed under ho-

momorphism”, which means that for any BCQ q, if an

interpretation I is a model of q, then every interpre-

tation J to which I homomorphically maps is also a

model of q. Indeed, an interpretation I = (∆I , .
I) is a

model of q if there is match of q in I, i.e., a mapping π

from term(q) to ∆I such that π(c) = cI for each con-

stant c occurring in q and π(t1, . . . , tk) ∈ pI for each

atom p(t1, . . . , tk) ∈ q. 1 Given a match π of q in I and

a homomorphism h from I to an interpretation J , the

mapping h ◦ π is a match of q in J .

Finally, the query answering problem (QA) we con-

sider is the following: given a BCQ q and a KB K, does

the theory associated with K entail q (which we denote

by K |= q)?

We will distinguish between two complexity mea-

sures for this problem: combined complexity, where K
and q are part of the problem input, and data complex-

ity, where q and the ontology are supposed to be fixed,

and only the instance is part of the input. This second

complexity measure allows one to focus on the data,

with the assumption that the sizes of the query and the

ontologies are small with respect to the size of the in-

stance. With respect to combined complexity, we will in

turn distinguish two cases, depending on whether the

predicate arity is unbounded or bounded. This distinc-

tion is particularly relevant for a comparison of exis-

tential rules with description logics, since concepts and

roles in DLs correspond to unary and binary predicates.

3 Existential Rules

In this section, we will first present the main ingredi-

ents of the existential rule framework, then provide an

overview of decidable classes of rules, with a special

focus on the “greedy bounded-treewidth” family.

3.1 The existential rule framework

In the existential rule framework, an ontology may con-

tain three kinds of formulas, as illustrated by Example

??: existential rules, negative constraints or equality

rules. We will use the name rule to denote any of these

three constructs.

Example 2 To ease comparison with description logics,

only unary and binary predicates are used in the follow-

ing rules. Universal quantifiers are omitted. The first

three rules are existential rules. Rule 4 is a negative

constraint. Rule 5 is an equality rule.

1. Authors of a common thing are co-authors:

author(x, z) ∧ author(y, z)→ coauthors(x, y)

2. Coauthors who are researchers are authors of a com-

mon research paper:

Researcher(x)∧Researcher(y)∧coauthors(x, y)→
∃z author(x, z) ∧ author(y, z) ∧ResearchPaper(z)

1 If we make the simplifying assumption that I interprets
constants by themselves, a match of q in I can be seen as a
homomorphism from q to the instance naturally associated
with I.

Data Access With Horn Ontologies: 5

3. The author of an impactful research paper is a happy

researcher:

author(x, y)∧ResearchPaper(y)∧hasImpact(y, z)
∧ HighImpact(z)→ HappyResearcher(x)

4. One cannot review a research paper submitted by a

coauthor:

submitted(x, y)∧ResearchPaper(y)∧coauthor(x, z)
∧ reviewer(z, y)→ ⊥

5. Books have at most one ISBN:

Book(x) ∧ hasISBN(x, y) ∧ hasISBN(x, z)

→ y = z

Generally, an existential rule is a closed first-order

formula R = ∀x∀y
(
B[x,y]→ ∃z H[x, z]

)
where B and

H, respectively called the body and the head of R, also

denoted by body(R) and head(R), are finite conjunc-

tions of atoms on constants and variables, and x, y

and z are disjoint sets of variables. Variables z, which

occur only in H, are called the existential variables of

R. Variables x, which are shared between B and H, are

called the frontier of R. The name existential rules is

usually restricted to rules on standard predicates, we

will follow this usage. Besides, two kinds of rules are of-

ten considered, namely negative constraints and equal-

ity rules. A negative constraint has a head restricted to

the special symbol ⊥ (the “absurd” symbol, which has

no model), i.e., it is of the form C = ∀x (B[x] → ⊥).

Note that this formula is equivalent to ∀x ¬B[x]. An

equality rule has a head restricted to an equality, i.e.,

it is of the form Re = ∀x
(
B[x] → x1 = x2), where

x1 and x2 are variables from x.2 A typical use of nega-

tive constraints and equality rules is to assert, respec-

tively, the disjointness of concepts (or relations), e.g.,

C1(x)∧C2(x)→ ⊥, and the functionality of binary re-

lations, e.g., r(x, y) ∧ r(x, z) → y = z. However, they

can express much more, since the shape of their body

is not limited.

These three kinds of rules have long been studied

in database theory, where they represent integrity con-

straints. In this context, existential rules and equality

rules are respectively known as TGDs (tuple-generating

dependencies) and EGDs (equality-generating depen-

dencies) [?]. More general frameworks may consider ex-

istential rules with default negation, e.g., [?,?], or with

disjunction in rule heads [?,?], which we will not con-

sider here.

A KB is a pair K = (R, I), where R is a set of rules

and I is an instance. Hence, the QA problem in this

framework takes as input a KB K = (R, I) and a BCQ

q, and asks whether R∪ I |= q.

2 The framework in [?] considers more general equality
rules, where x1 and x2 may also be constants.

In the following, it is assumed that distinct rules in

R have disjoint sets of variables, even if we reuse vari-

ables in examples for the sake of simplicity. The basic

operation on rules is the application of a rule to an in-

stance. A rule R is applicable to an instance I if there is

a homomorphism h from body(R) to I. The pair (R, h)

is called a trigger on I. The application of R accord-

ing to h (or: the application of (R, h)) produces a set of

atoms obtained from head(R) by replacing each frontier

variable x with h(x) and each existential variable with a

fresh variable, called a null. We denote by hsafe this ex-

tension of h that “safely” renames existential variables,

so that distinct applications of the same rule produce

disjoint sets of nulls. The (extended) instance resulting

from the application of (R, h) to I is I∪hsafe(head(R)).

Example 3 Let I = {Researcher(a), Researcher(b),

Researcher(c), coauthors(a, b), coauthors(a, c)} andR2

be the second rule from Example ??: R2 can be applied

to I according to two homomorphisms, h1 = {x 7→
a, y 7→ b} and h2 = {x 7→ a, y 7→ c}. Assume the trig-

ger (R2, h1) is first applied: this produces the atoms

author(a, z0), author(b, z0),ResearchPaper(z0), where

z0 is a fresh variable. The application of the trigger

(R2, h2) produces the atoms author(a, z1), author(b, z1),

ResearchPaper(z1), where z1 is another fresh variable.

The application of a negative constraint produces

⊥, which shows that the KB is unsatisfiable. The ap-

plication of an equality rule produces an atom of the

form t1 = t2, where each ti is a constant or a null; as-

sume UNA is made and t1 6= t2: if t1 and t2 are two

constants, the KB is unsatisfiable; otherwise, instead

of actually adding the produced atom to the instance,

one usually performs the corresponding substitution of

terms in the instance.

3.2 The chase

The fundamental tool for reasoning in this framework is

a forward chaining procedure known as the chase. The

chase enriches the given instance by applying rules un-

til a fixpoint is reached. This process may be infinite,

as for instance with R = {h(x) → ∃z p(x, z) ∧ h(z)}
(“every human has a parent who is a human”) and

I = {h(a)}. Formally, an R-derivation from I is a pos-

sibly infinite sequence of extended instances and trig-

gers I0(= I) (R1, h1) I1 . . . (Rn, hn) In, . . ., where, for

i ≥ 1, Ri ∈ R, (Ri, hi) is a trigger on Ii−1, Ii results

from the application of (Ri, hi) to Ii−1, and no trig-

ger occurs twice in this sequence. A chase sequence on

K = (R, I) is an R-derivation from I that cannot be

6 Marie-Laure Mugnier

extended, i.e., for any Ii, i ≥ 0, all triggers for Ii occur

in the derivation. The chase is the set of atoms obtained

in the limit of such a chase sequence, i.e.,
⋃

i≥0 Ii. Note

that the name chase is used to denote both the forward

chaining process and its result. The chase terminates

on K if there is a finite chase sequence on K.

Negative constraints or equality rules may lead to

an unsatisfiable KB, while a KB that contains only ex-

istential rules is always satisfiable. For a satisfiable KB

K, the (output of the) chase can be seen as a logical

interpretation I, which is a model of K: the domain of

I is the set of terms in the chase, and its interpreta-

tion function is defined by the atoms of the chase (i.e.,

for each constant c, cI = c holds, and, for each pred-

icate p, pI is the set of all tuples (t1, . . . tk) such that

p(t1, . . . tk) belongs to the chase). This model of K has

the fundamental property of being a universal model

of K, i.e., a model of K that homomorphically maps to

any other model of K [?]. It follows that it can be used

as a canonical model to answer conjunctive queries, and

more generally all kinds of queries that are closed under

homomorphism. Indeed, for any such Boolean query q

and any satisfiable KB K, it holds that K |= q iff MK

is a model of q, where MK is any universal model of

K; in particular, if q is a BCQ, K |= q if and only if q

homomorphically maps to the chase of K.

Actually, several variants of the chase have been de-

fined in the literature (for a presentation of the main

ones, see in particular [?]). The above chase is the sim-

plest chase, known as the naive or oblivious chase [?].

More sophisticated chase variants try to avoid some (or

even all) redundancies that can be introduced by nulls.

Hence, they compute subsets of the oblivious chase,

which are still universal models. To illustrate, let us

consider the following example.

Example 4 Let I = {Researcher(a), Researcher(b),

author(a, c), author(b, c), ResearchPaper(c)} and R1,

R2 be two first rules from Example ??. Assume R1

is first applied, leading to I1 = I ∪ {coauthor(a, b)}.
Then R2 can be applied, which leads to I2 = I1 ∪
{author(a, z0),

author(b, z0), ResearchPaper(z0)},with z0 a null. How-

ever, I2 is logically equivalent to I1: indeed, it homo-

morphically maps to I1 (with z0 being mapped to c)

and the converse is trivially true as I1 ⊆ I2. Hence, the

second rule application only adds redundant atoms. A

cleverer chase variant like the restricted chase [?] would

avoid it.

Crucially, the power of detecting redundancies is di-

rectly related to the power of terminating, as illustrated

next (Example ??). The most powerful chase, known as

the core chase [?], maintains at each step the extended

instance as a core, i.e., as a set of atoms that does not

homomorphically map to any of its strict subsets.3 A

fundamental property of the core chase is that it termi-

nates on a (satisfiable) KB if and only if this KB has

a finite universal model [?]. However, keeping a core is

costly,4 hence the other chase variants achieve tradeoffs

between redundancy elimination and computational ef-

ficiency.

Example 5 Let I = {p(a, b), r(b)} and R = {R1, R2}
with R1 = p(x, y) → ∃z p(y, z) and R2 = r(x) ∧
p(x, y) → p(x, x). Note that R2 is not applicable to

I. The oblivious chase does not terminate on this KB,

since R1 can be applied indefinitely. The core chase

outputs the finite instance I ∪ {p(b, b)}, obtained by

first applying the trigger (R1, {x 7→ a, y 7→ b}), which

produces p(b, z0), and at some later step the trigger

(R2, {x 7→ b, y 7→ z0}, which produces p(b, b): then,

all atoms already produced become redundant with re-

spect to p(b, b). Among known chase variants, only the

core chase is able to terminate on this example.

3.3 Alternative forms of existential rules

Existential rules are sometimes translated into specific

logic-programming rules, corresponding to Horn clauses.

This is done by Skolemization. More precisely, given an

existential rule R with frontier x, a fresh function sym-

bol fRz of arity |x| is assigned to each existential variable

z. Then, the Skolemization of R is the rule obtained

from R by replacing each existential variable z with

the functional term fRz (x). For instance, the Skolem-

ization of the rule R2 in Example ?? replaces z with

fz(x, y) (we omit the R2 superscript), which yields the

formula ∀x∀y (R(x) ∧ R(y) ∧ c(x, y)→ a(x, fz(x, y)) ∧
a(y, fz(x, y))∧RP (fz(x, y))) (here predicates have been

abbreviated), equivalent to a clausal form with three

definite clauses:

(¬R(x) ∨ ¬R(y) ∨ ¬c(x, y) ∨ a(x, fz(x, y))),

(¬R(x) ∨ ¬R(y) ∨ ¬c(x, y) ∨ a(y, fz(x, y))),

(¬R(x) ∨ ¬R(y) ∨ ¬c(x, y) ∨RP (fz(x, y))).

Moreover, a negative constraint directly yields a Horn

(but not definite) clause, e.g., the rule R4 from Exam-

ple ?? yields the clause (¬s(x, y)∨¬RP (y)∨¬c(x, z)∨
¬r(z, y)), while an equality rule yields a definite clause.

3 Note that the core chase is not defined when it does not
terminate [?].
4 First, computing the core of an extended instance is dif-

ficult. The associated decision problem is both NP-hard and
coNP-hard, precisely DP-complete [?]. Second, the extended
instance built by the core chase does not grow monotonically,
which in practice does not allow to update it incrementally.

Data Access With Horn Ontologies: 7

Hence, any ontology in the existential rule framework

can be translated into a set of Horn clauses. As pointed

out in Section ??, Skolem(K), obtained from K by the

Skolemization of R, is a semantic emulation of K. In

particular, it preserves the entailment of BCQs, in which

the Skolem symbols do not occur: given a BCQ q, K |= q

holds if and only if Skolem(K) |= q holds. The associ-

ated chase variant is known as the Skolem chase [?].

Independently, it is sometimes assumed that exis-

tential rules have an atomic head (i.e., restricted to a

single atom), based on the fact that any existential rule

can be decomposed into a set of atomic-head rules by

adding a fresh predicate, whose arity is the number of

variables in the rule head. For instance, the ruleR2 from

Example ?? can be decomposed into four atomic-head

rules, using a fresh ternary predicate pR2
:

body(R2)→ ∃z pR2
(x, y, z),

pR2(x, y, z)→ a(x, z),

pR2
(x, y, z)→ a(y, z),

pR2
(x, y, z)→ RP (z).

The obtained KB is again a semantic emulation of the

initial KB, hence it preserves entailment of BCQs. As a

consequence of this property, the query answering prob-

lem remains undecidable with atomic-head existential

rules. Note, however, that this translation can generally

not be done in a bounded predicate arity setting (as the

arity of the fresh predicate is not bounded).

3.4 The decidable landscape

Existential variables in rule heads associated with arbi-

trarily complex conjunctions of atoms in bodies and

heads make query answering undecidable. Decidable

classes are obtained by imposing syntactic restrictions

on rules, which apply to each rule individually (like hav-

ing a body restricted to a single atom) or to a set of rules

(like forbidding cyclic interactions between rules). Most

of these restrictions fall into three “abstract” classes, in-

troduced in [?] to describe the behavior of associated

query answering procedures.

The first abstract class, called finite expansion sets

(fes), ensures that the core chase will halt on any in-

stance. Finite expansion sets are exactly those sets of

rules R for which (R, I) has a finite universal model for

any instance I. Hence, query answering can be solved

by first running the (core) chase, then evaluating the

query on the chase output, an approach called materi-

alisation. More restricted classes can be defined to also

ensure the termination of a weaker chase variant.

The second abstract class, called finite unification

sets (fus), ensures that any BCQ q can be rewritten

using the rules into a union of BCQs Q (i.e., a finite

disjunction of BCQs) such that: for any instance I, it

holds that R, I |= q if and only if I |= Q. Hence, query

answering can be solved by first rewriting the query,

then evaluating the rewriting on the (unchanged) in-

stance. The fus property is actually equivalent to the

property called first-order rewritability,5 which was first

introduced in the context of DL-Lite [?]. Put in our set-

ting: R is first-order rewritable if, for any BCQ q, there

is a first-order query q′ (i.e., a first-order formula on

variables and constants), such that R, I |= q if and

only if I |= q′, for any instance I.

The third class, called bounded-treewidth sets (bts),

generalizes fes by accepting sets of existential rules that

have a universal model that may not be finite but has

a tree-like structure (formally, a bounded-treewidth).

Contrarily to the two first classes, the bts class is not

directly associated with a practical query answering al-

gorithm. 6 However, an expressive subclass of bts was

later defined, namely “greedy bounded-treewidth sets”

(gbts), which comes with an effective query answering

technique [?,?,?,?]. This class enjoys the following prop-

erty: for any instance, there is a bound b, which depends

on the set of rules and the instance, such that a tree de-

composition of the chase of width b can be built greedily

(hence the name of the class). Then, a finite represen-

tation of the infinite chase can be built by detecting

regularities in the chase.

Unsurprisingly, whether a set of rules is fes (or en-

sures the termination of some chase variant), fus or bts

is an undecidable problem [?,?]. The question is open

for gbts.

Before defining the gbts class and its “concrete” sub-

classes (that is, subclasses defined by syntactic condi-

tions), let us briefly discuss the impact of negative con-

straints and equality rules on the decidability of query

answering. Negative constraints can make a KB unsat-

isfiable, but have no influence of the query answering

process itself. Moreover, a KB (R+∪R−, I), whereR is

partitioned into positive rules (R+), i.e., existential and

equality rules, and negative constraints (R−), is satis-

fiable if and only if (R+, I) satisfies each constraint C

in R−, i.e., does not entail body(C), which can be seen

as a BCQ. Hence, the presence of negative constraints

has no influence on the decidability of query answering,

and does generally not increase its complexity. On the

5 The equivalence between the rewritability into a union
of CQs and first-order rewritability follows from the (Finite)
Homomorphism Preservation Theorem [?].
6 The decidability of query answering in the bts class fol-

lows from a theorem by Courcelle [?], which states that satis-
fiability is decidable for any class of first-order formulas enjoy-
ing the bounded-treewidth model property (i.e., satisfiability
implies the existence of a model with a bounded-treewidth).

8 Marie-Laure Mugnier

contrary, equality rules are a well-known cause of unde-

cidability, in particular when added to (g)bts rules, as

they may destroy the tree-like structure of the chase.

A way of dealing with them is to enforce a separability

condition between existential rules and equality rules,

which essentially turns equality rules into constraints

on the (initial) instance [?].

3.5 Greedy bounded-treewidth sets

The gbts class is defined by a simple condition: when

a rule is applied during the chase, all frontier variables

that are not mapped to constants7 are jointly mapped

to nulls introduced by a single previous rule applica-

tion. Formally, anR-derivation I0(= I) (R1, h1) I1 . . .
(Rn, hn) In is said to be greedy if, for all i with 0 < i ≤
n, there is 0 ≤ j < i such that:

hi(fr(Ri)) ⊆ var(hsafej (head(Rj)) ∪ C

where fr(Ri) is the frontier of Ri, h
safe
j (head(Rj)) is the

set of atoms produced by (Rj , hj), and C is the set of

constants occurring in I andR. A set of existential rules

R is a greedy bounded-treewidth set if any R-derivation

(from any instance) is greedy.

When the set of rules is gbts, the output of the chase

can be decomposed into a tree (in the classical sense of a

tree decomposition), whose root corresponds to the ini-

tial instance and each node corresponds to the atoms

brought by a rule application. Moreover, this tree can

be built in a greedy manner: each rule application cre-

ates a new node, which is attached as a child of the

highest node in the tree that fulfills the condition on

frontier variables.

Among types of rules often desired in knowledge

modeling, some are well-known to endanger the gbts

property. As already mentioned, this is the case of equal-

ity rules. This is also the case of existential rules that

compose binary relations, such as transitivity rules (stat-

ing that a binary relation is transitive), as illustrated

by the next example. The syntactic conditions associ-

ated with concrete gbts classes exclude such rules or

constrain the way they can be applied to nulls, in order

to preserve the tree-like structure of the chase.

Example 6 Let R = {R1 : r(x) → ∃z p(x, z), R2 :

s(x) → ∃z p(z, x), R3 : p(x, y) ∧ p(y, z) → p(x, z)},
where the last rule expresses that p is transitive. Let

I = {r(a), s(a)}. By applying R1, which creates a null

7 Constants may occur in the initial instance but they may
also be brought by the rules, since rule heads may contain
constants.

z0 and produces the atom p(a, z0), then R2, which cre-

ates another null z1 and produces p(z1, a), and finally

R3, one obtains a nongreedy derivation: I0 = I (R1, {x 7→
a}) I1 (R2, {x 7→ a}) I2 (R3, {x 7→ z1, y 7→ a, z 7→
z0}) I3. Indeed, x and z, the frontier variables of R3,

are mapped to nulls introduced by distinct rule appli-

cations. Hence, R is not gbts.

3.6 Concrete gbts classes

We now review the main concrete gbts classes. These

classes are pictured in Figure ??. There are three ba-

sic classes, with each of them providing a different way

of enforcing greedy bounded-treewidth: (plain) datalog

(e.g., [?]), in which there are no existential variables at

all; guarded rules (g), in which at least one body atom,

called a guard, contains all the variables from the body

[?,?]; frontier-one rules (fr1), in which the frontier of

the rule is restricted to (at most) one variable [?]. An

important subclass of guarded rules are linear rules,

whose body is restricted to a single atom [?,?]. Notably,

linear rules generalize relational database inclusion de-

pendencies.

Combining guardedness and frontier-based restric-

tions leads to frontier-guarded rules (fg), in which only

the frontier of the rule needs to be guarded: at least one

body atom contains the rule frontier [?]. Beside, com-

bining guardedness and conditions on how variables are

mapped during the chase leads to weakly-guarded rules

(wg), in which only so-called affected variables need to

be guarded: a variable from a rule body is said to be

affected if it is possibly mapped to a null during the

chase (which can be recognized by a simple marking

procedure on the ruleset); then a set of rules is weakly-

guarded if in each rule an atom of the body contains

(or: guards) all affected variables [?]. Note that weak-

guardedness is a property of a set of rules, as the notion

of affected variable requires taking into account inter-

actions between rules. The most general member of the

gbts family is weakly-frontier guarded (wfg) rules, which

generalize both frontier-guarded and weakly-guarded

rules: in each rule, an atom contains all the affected

variables from the rule frontier [?]. This class essen-

tially has the same expressivity as gbts itself, since each

gbts KB can be semantically emulated by a wfg KB

(note that the translation is polynomial but is not data-

independent, as it requires to transform the instance as

well) [?,?].

Finally, we mention restrictions of frontier-guarded

rules obtained by imposing that the rule bodies are

acyclic. These restrictions are relevant, because, if a

description logic axiom can be logically translated into

Data Access With Horn Ontologies: 9

a frontier-guarded rule, then the obtained rule gener-

ally falls into one of these body-acyclic classes. Here,

the considered acyclicity notion is that of hypergraph-

acyclicity, since the set of atoms composing the body of

a rule can naturally be seen as a hypergraph (see e.g.,

[?]). Intuitively, a frontier-guarded rule is acyclic if its

body can be decomposed into a rooted tree, in which a

node may contain several atoms provided that this set

of atoms has a guard, and the root of the tree contains

the frontier of the rule. Importantly, guarded rules are a

special case of body-acyclic frontier-guarded rules. Re-

strictions of frontier-guarded to rules with an acyclic

body include the class of body-acyclic frontier-guarded

rules (ba-fg), its direct subclasses guarded rules and

body-acyclic frontier-one rules (ba-fr1), and the com-

mon specialization of these two classes, namely guarded

frontier-one rules (g-fr1) [?,?].

Example 7 Consider the three existential rules from Ex-

ample ??. The frontier of R1 is {x, y}, hence R1 is not

frontier-guarded. Rules R2 and R3 are frontier-guarded.

R2 is more specifically guarded (as the atom c(x, y) con-

tains all the variables from the body), and R3 is not

guarded but its frontier is {x}, hence it is frontier-one,

and more specifically body-acyclic frontier-one. Finally,

the only affected variable in the rule set is z in R1 (be-

cause it can be mapped to a null created by R2), but

{z} is guarded in R1, hence the whole rule set is weakly-

guarded, hence weakly-frontier guarded as well.

3.7 Complexity results for gbts classes

The data complexity of BCQ answering under gbts is
pictured in Figure ??. Rule classes are grouped into

three complexity classes: AC0 (a low subclass of PTime),

PTime-complete and ExpTime-complete. Linear rules

are first-order rewritable and query rewriting is inde-

pendent from the data; hence, the data complexity of

BCQ answering under linear rules is that of answer-

ing a union of BCQs on a relational database, i.e.,

AC0. All classes up to frontier-guarded have polyno-

mial data complexity. Syntactically, a guarded rule is

a body-acyclic frontier-guarded rule, and, in turn, any

body-acyclic frontier-guarded rule can be polynomially

decomposed into a set of guarded rules that semanti-

cally emulates it, using fresh predicates [?]. The trans-

lation from ba-fg to guarded is without predicate arity

increase, hence these two classes behave similarly for all

complexity measures. As soon as the notion of guard-

edness of affected variables comes in (i.e., for wg, wfg,

gbts), the data complexity raises to ExpTime-complete.

Combined complexities are not pictured in Figure

?? but given in Table ?? for existential rule classes di-

Fig. 1 Greedy-bounded-treewidth classes ordered by syntac-
tic inclusion and their data complexity

rectly relevant to main Horn DLs. Combined complex-

ity with unbounded arity goes from PSpace-complete

for linear rules, to ExpTime-complete for datalog and

g-fr1, and 2ExpTime-complete for the other classes (fr1,

g, fg, wg, wfg, gbts)8. When arity is bounded, com-

bined complexity drops to NP-complete for linear rules

and datalog, and to ExpTime-complete for guarded and

wg rules; it remains ExpTime-complete for g-fr1 and

2ExpTime-complete for the other classes (fr1, fg, wfg,

gbts). For proofs of these data and combined complex-

ity results, see [?,?,?,?,?,?,?], with the last reference

providing an updated picture of results on the gbts fam-

ily.

4 Horn Description Logics

This section is devoted to Horn description logics and

popular members of this family. We will first recall basic

notations about description logics and their standard

translation in first-order logic.

8 For ba-fr1, 2ExpTime-hardness is still open in the un-
bounded arity case, while ExpTime-completeness holds in the
bounded arity case [?].

10 Marie-Laure Mugnier

4.1 Description logics as first-order logic fragments

A DL KB is a pair K = (T ,A), where T , the TBox, is

composed of concept inclusions C1 v C2, role inclusions

r1 v r2, and possibly other axioms asserting properties

of roles (like transitivity), and A, the ABox, contains

factual assertions of the form C(a) and r(a, b), with C

a concept name, r a relation name, and a, b individuals

(i.e., constants). Note that we do not allow for complex

concepts and relations in ABoxes, contrarily to some

description logics. However, a knowledge base can gen-

erally be put in a normal form such that no complex

concept or relation appears in the ABox.

The constructors used in this paper and their stan-

dard translation in first-order logic are shown in Table

?? (see e.g., [?]). These constructors are those found

in the classical DL ALC (concept conjunction, disjunc-

tion and negation; existential and universal restrictions)

and the Horn DLs we consider (which leads to add

number restrictions and several role constructors: in-

verse roles, role conjunction and negation).9 Concept

and role names are respectively viewed as unary and

binary predicates. To define the formulas assigned to

concepts and roles, we use translation functions, of the

form φx(C) to translate a concept C into a formula with

free variable x (expressing that x is an instance of C),

and φx,y(r) to translate a role r into a formula with free

variables x and y (expressing that x is linked to y by

r). A concept name C is translated into C(x) and a role

name r into r(x, y), then complex concepts and roles are

inductively defined according to their structure. In the

DL setting, > and ⊥ are special concept names, respec-

tively interpreted as the whole domain and the empty

set in any interpretation of the vocabulary. The transla-

tion of TBox axioms (concept inclusions, role inclusions

and transitivity axioms) is shown at the bottom of the

table.

The semantics of DLs are usually defined in a model

theory. Since concept and role names can be considered

as predicates, and individuals as constants, an inter-

pretation in the usual DL sense can be seen as an in-

terpretation in first-order logic. Then a DL axiom and

its translation have the same models. Finally, the QA

problem is defined as in Section ??, considering that the

theory associated with a KB K = (T ,A) is the theory

obtained by the logical translation of T and A.

9 To simplify the discussion, we chose not to include nomi-
nals nor role composition (except for its restricted use in the
transitivity axiom can be seen as a specific which could be
written r ◦ r v r).

4.2 Horn DLs: avoiding disjunctive reasoning

Intuitively, the characteristic of a Horn DL is that it

is unable express disjunction in the right hand side of

inclusions (C1 v C2 t C3), or equivalently, negation

in the left hand side of inclusions (C1 u ¬C2 v C3).

This restriction makes reasoning generally simpler, as

disjunction leads to reasoning by cases. Indeed, whereas

C1 t C2 v C3 is equivalent to the simpler inclusions

C1 v C3 and C2 v C3, the converse inclusion C3 v
C1 t C2 cannot be rewritten without using t or ¬.

Example 8 Let K = (T ,A) with A = {A(a)} and T =

{A v B t C;B v D;C v D}. From A(a) and the first

axiom, B(a) or C(a) must be true. In both cases, the

other axioms imply that D(a) is true, hence K |= D(a).

Note that K does not have a universal model.

To illustrate the specificities of Horn DLs, let us

begin with the central DL ALC. An ALC TBox con-

tains only concept inclusions, where concepts have the

following form:

C := > |⊥ | A | C1 u C2 | ∃r.C | ¬C | C1 t C2 | ∀r.C

with A a concept name and r a role name. Note that

C1 tC2 and ∀r.C can be equivalently written ¬(¬C1 u
¬C2) and ¬∃r.¬C, hence could be omitted. Similarly,

C1uC2 and ∃r.C are redundant with C1tC2 and ∀r.C.

Finally, the same holds for > (Ct¬C) and ⊥ (Cu¬C).

To define Horn-ALC, the Horn subset of ALC, by

a syntactic restriction of ALC concept inclusions, we

have to distinguish between both sides of inclusions.

In particular, ∀r.C v B is excluded, while B v ∀r.C
is allowed. Indeed, ∀r.C v B hides a negation in the

left hand side of the inclusion, as it is equivalent to

¬(∃r.¬C) v B, whereas B v ∀r.C is equivalent to

∃r−.B v C (we use here the inverse role constructor,

even if it is not part of ALC definition). Using the con-

structors of ALC, Horn-ALC axioms are of the form

Cl v Cr with:

Cl := > |⊥ | A | C1 u C2 | ∃r.C | C1 t C2

Cr := > |⊥ | A | C1 u C2 | ∃r.C | ∀r.C

More generally, the term Horn DL refers to descrip-

tion logics whose TBoxes can be semantically emulated

by a set of Horn clauses. This set of Horn clauses is

typically obtained by the standard logical translation

of each TBox axiom, followed by a Skolemization step.

As already pointed out (Section ??), Skolemization pre-

serves entailment of Boolean conjunctive queries.

Consider for instance the ALC axiom ∀r.C v B: as-

suming that r, C and B are simply names, its clausal

Data Access With Horn Ontologies: 11

Table 1 Logical translation of concepts, roles and TBox axioms

Name Syntax Logical translation
Concept name A, >,⊥ φx(A) = A(x), φx(>) = >, φx(⊥) = ⊥
Role name r φx,y(r) = r(x, y)
Concept/role conjunction C1 u C2, r1 u r2 φx(C1 u C2) = φx(C1) ∧ φx(C2), φx,y(r1 u r2) = φx,y(r1) ∧ φx,y(r2)
Concept/role negation ¬C,¬r φx(¬C) = ¬φx(C), φx,y(¬r) = ¬φx,y(r)
Concept disjunction C1 t C2 φx(C1 t C2) = φx(C1) ∨ φx(C2)
Existential restriction ∃r.C φx(∃r.C) = ∃y (φx,y(r) ∧ φy(C))
Universal restriction ∀r.C φx(∀r.C) = ∀y (φx,y(r)→ φy(C))
Inverse role r− φx,y(r−) = φy,x(r)
Number restriction ≤ 1 r.C φx(≤ 1 r.C) = ∃y1∃y2(φx,y1

(r) ∧ φx,y2
(r) ∧ φy1

(C) ∧ φy2
(C))→ y1 = y2

at most 1/ at least m ≥ m r.C φx(≥ m r.C) = ∃y1 . . . ym(
m∧

i=1

(φx,yi
(r) ∧ φyi

(C)
i−1∧
j=1

yi 6= yj))

Concept inclusion C1 v C2 ∀x (φx(C1)→ φx(C2))
Role inclusion r1 v r2 ∀x∀y (φx,y(r1)→ φx,y(r2))
Transitive role trans(r) ∀x∀y∀z (φx,y(r) ∧ φy,z(r)→ φx,z(r))

Table 2 Normalized axioms in Horn DLs

(1) A1 u . . . uAn v A
(2) A1 u . . . uAn v ⊥
(3) ∃r.A1 v A2

(4) ∃r.A1 v ⊥
(5) A1 v ∃r.A2

(6) A1 v ≤1 r.A2

(7) A1 v ≥m r.A2

(8) r1 v r2
(9) r1 u r2 v ⊥ (equivalent to r1 v ¬r2)
(10) trans(r)
where A(i) denotes a concept name or >,
and r(i) denotes a role name or its inverse.

form is ∀x∀y ((r(x, y)∨B(x))∧ (¬C(x)∨B(x))), where

the first clause is not Horn; in contrast, B v ∀r.C yields

the definite clause ∀x∀y (¬B(y)∨¬r(y, x)∨C(x)). Fresh

functional symbols are introduced to convert existential

restrictions that (explicitly or implicitly) occur in the

right hand side of inclusions; e.g., the standard trans-

lation of A v ∃r.B is ∀x (A(x) → ∃y r(x, y) ∧ B(y)),

which yields the clausal form ∀x ((¬A(x)∨r(x, fy(x)))∧
(¬A(x) ∨B(fy(x)))).

One could also see Horn DLs as the DLs for which

all TBoxes can be semantically emulated in the exis-

tential rule framework, again based on their standard

translation (Table ??), although this is not the usual

way of defining them. Such translation would avoid the

Skolemization step.

From a semantic viewpoint, Horn DLs share with

existential rules the desirable universal model property :

every satisfiable KB has a universal model.

4.3 Horn DLs defined by normalized axioms

Defining the Horn restriction of a DL, based on the

constructors allowed in this DL, can be cumbersome,

since it requires analysing all possible interactions be-

tween constructors to fully eliminate disjunctive rea-

soning (see in particular [?,?] which define Horn restric-

tions of expressive DLs, in particular Horn-SHIQ that

we will review later). A simpler approach consists in

considering normalized axioms for a specific Horn DL,

such that any TBox on this DL can be semantically

emulated by a TBox that uses solely the normalized

axioms.

Table ?? shows a set of normalized axioms, similar

to those selected in [?], that define a Horn DL (actually

a slight generalization of Horn-SHIQ). These axioms

cover all the Horn DLs we shall consider, up to TBox

normalization. For instance, ∃r.∃s.A v B1 u B2 can

be rewritten as three normalized axioms: ∃s.A v B3,

∃r.B3 v B1 and ∃r.B3 v B2, where B3 is a fresh con-

cept name. In particular, Horn-ALC can be defined by

axioms (1)-(5); note these axioms use the inverse role

constructor, which is not considered in the definition of

ALC.

Let us review the ten axioms of Table ?? from the

angle of rules. Axioms (1), (3), (5), (8) and (10) yield

existential rules; axioms (2), (4) and (9) yield negative

constraints; axiom (6) yields an equality rule. The case

of axiom (7) requires more attention; although it intro-

duces inequalities, it can be rewritten into the following

set of axioms, using m fresh concept names B1 . . . Bm:

axioms A1 v ∃r.Bi (axiom (5)) and Bi v A2 (axiom

(1)) for 1 ≤ i ≤ m, as well as axioms Bi u Bj v ⊥ for

i < j ≤ m, stating that the Bi concepts are pairwise

disjoint (axiom (9)). Note that the 6= relation could also

be processed here as a standard relation, provided with

rules that axiomatize its behavior, i.e., a rule stating

that 6= is symmetric and a negative constraint stating

that it is irreflexive.

12 Marie-Laure Mugnier

Let us now introduce some salient Horn DLs. Their

precise relationships with decidable rule classes will be

studied in the next section. Our focus will be on DLs

for which query answering scales polynomially in the

size of the data: the lightweight families DL-Lite and

EL, and the expressive Horn-SHIQ, which generalizes

Horn-ALC.
The most well-known member of the family is DL-

LiteR, in which TBox axioms have the following shape:

B1 v B2 B1 v ¬B2 s1 v s2 s1 v ¬s2

where Bi := A | ∃s.> and si := r | r−, with A and r

names.

In terms of Table ??, DL-LiteR provides the follow-

ing axioms: (1) with n = 1, (2) with n = 2, (3) and (5)

with A2 = >, (8) and (9). For a systematic study of the

DL-Lite family, see [?].

The EL family is named after its simplest member,

the DL EL, in which a TBox contains only concept

inclusions, with concepts of the following shape:

C := > | A | C1 u C2 | ∃r.C

where A and r are names.

In terms of Table ??, EL provides axioms (1), (3)

and (5) with r restricted to a role name. Extensions

of EL with inverse roles (indicated by letter I) and

role hierarchies (indicated by letter H) yield the Horn

DLs ELI, ELH and ELHI. Furthermore, the concept

name ⊥ (indicated by letter ⊥) can be added at no

computational cost. Note that Horn-ALC is included

in ELI⊥.

The DL Horn-SHI extends Horn-ALC with tran-

sitivity, role hierarchies and role inverses. Horn-SHIQ
is the extension of Horn-SHI with restricted forms of

cardinalities, see axioms (6) and (7) in Table ??. More-

over, in these cardinality axioms, r has to be a so-called

simple role, i.e., it is not transitive and does not have a

transitive subrole. Up to this constraint, Horn-SHIQ
provides all axioms from Table ?? except role disjoint-

ness (axiom (9)), which could be added at no cost.

5 Relationships between Horn Description

Logics and Decidable Existential Rule Classes

We now study in more detail the relationships between

Horn DLs and decidable rule classes. Note that none

of the above Horn DLs yields a fes rule class and only

one (DL-LiteR) is fus, and it is also gbts. Hence, we

will focus on the gbts family. We will ask ourselves the

following questions: How do these Horn DLs fit into

the gbts landscape? Does the shift from a Horn DL

to a strictly more general gbts class necessarily imply

an increase in the complexity of query answering? Can

gbts rule classes be extended to handle features like

transitivity, which are often offered by Horn DLs?

5.1 From Horn DLs to gbts

Let us consider again the Horn DL axioms from Ta-

ble ??. Concept inclusions are naturally translated into

frontier-one rules (plus negative constraints). Further-

more, the obtained rules are body-acyclic. Similarly,

role inclusions are naturally translated into linear rules

(plus negative constraints). By contrast, the transitivity

axiom is only captured by datalog. Indeed, let p(x, y)∧
p(y, z) → p(x, z) be a transitivity rule: this rule is

not frontier-guarded and, to be allowed in a weakly-

(frontier)-guarded set of rules, it must satisfy the con-

straint that x and z are not both affected. Note that

some other role axioms not mentioned in the table do

naturally fit into gbts, like symmetry (a linear rule),

irreflexivity and anti-symmetry (negative constraints).

Let us now review the specific Horn DLs introduced

in the previous section. DL-LiteR is generalized by lin-

ear rules (plus negative constraints). The DLs EL, Horn-

ALC, and ELI, the extension of EL to inverse roles, are

captured by body-acyclic frontier-one rules, and, if we

consider their normalized axioms (as in Table ??), by

the subclass of guarded frontier-one rules. As soon as

role hierarchies come in (ELH and ELHI), the closest

covering rule fragment is body-acyclic frontier-guarded

rules, which we recall is equivalent to the guarded rule

fragment. Note that the standard translation of these

DLs directly produces existential rules in the target

class. Even if we exclude constants from rules and con-

sider only predicates with unary and binary arity, these

inclusions are strict. For instance, the atom p(x, x) can-

not be expressed, neither can rules that create complex

structures, like the rule q(x)→ ∃y∃z p(x, y) ∧ p(x, z) ∧
p(y, z), which belongs to the simplest gbts classes (note

that the decomposition into atomic heads given in Sec-

tion ?? would require here a ternary predicate). On the

other hand, Horn-SHI cannot be translated into a gbts

class, as it allows for unrestricted transitivity.

Table ?? synthetizes these relationships and shows

the data and combined complexities for these Horn DLs

and related existential rule classes. Specific references to

these complexity results can be obtained from the work

cited in Section ?? for the gbts family and from [?] for

Horn DLs. Each DL is separated by a dotted line from

the closest covering rule class. Concerning DLs, note

that inverse roles in the EL family are responsible for a

combined complexity increase, which is not the case for

role hierarchies. Concerning frontier-guarded rules and

Data Access With Horn Ontologies: 13

its subclasses, bounding the predicate arity does not

always decrease the combined complexity: it does for

linear, guarded and ba-fg (which are all body-acyclic

classes), but not for fg, fr1 and the body-acyclic class

gfr1 (while the question remains open for ba-fr1)10.

Finally, we can see in the table that the most expres-

sive DL covered by a rule class behaves like this class

with respect to data and bounded-arity combined com-

plexity, i.e., DL-LiteR compared to linear, ELI com-

pared to g-fr1, and ELHI compared to guarded. Hence,

these rule fragments can be considered as achieving bet-

ter expressivity-tractability tradeoff than their DL coun-

terpart. Nevertheless, beyond worse-case complexity, al-

gorithmic aspects should also be taken into account.

Indeed, these DLs have been provided with dedicated

query answering techniques (see [?,?] for an introduc-

tion), which are often not transferable to more general

rule fragments because they heavily rely on the specific

shapes of their axioms. See in particular [?] about the

impact of higher-arity predicates on algorithmic tech-

niques, in the context of guarded existential rules.

Table 3 Data and combined complexities for Horn DLs and
related existential rule classes.

Class Data arity arity
bounded unbounded

linear AC0 NP-c PSpace-c
DL-LiteR AC0 NP-c —
fr1 PTime-c 2ExpTime-c 2ExpTime-c
ba-fr1 PTime-c ExpTime-c in 2ExpTime
g-fr1 PTime-c ExpTime-c ExpTime-c
ELI PTime-c ExpTime-c —
EL PTime-c NP-c —
fg PTime-c 2ExpTime-c 2ExpTime-c
ba-fg, PTime-c ExpTime-c 2ExpTime-c
guarded
ELHI PTime-c ExpTime-c —
ELH PTime-c NP-c —
Horn-SHI(Q) PTime-c ExpTime-c —
fr1+trans PTime-c 2ExpTime-c 2ExpTime-c

5.2 Pushing gbts further

Transitivity is an emblematic example of feature whose

full support goes beyond the gbts fragment. In con-

trast, several expressive Horn DLs, like Horn-SHI(Q),

include transitivity axioms, while controlling the inter-

action with cardinality constraints. This feature does

often not increase the complexity of query answering

10 Surpringly, ba-fr1 is not in a lower complexity class than
ba-fg for data and bounded-arity combined complexity.

(e.g., Horn-SHI(Q) with respect to ELHI). However,

the design of query answering algorithms becomes much

more delicate because DL algorithms typically exploit

the tree-like structure of the chase, which is destroyed

by transitivity.

Fully understanding the effects of adding transitiv-

ity rules to decidable existential rule classes is still on-

going research (see [?] for a synthesis). Let us review

results obtained on the gbts landscape. Given a rule

class C, we denote by C + trans the class obtained by

adding the ability to express unrestricted transitivity

rules. Atomic entailment over guarded+trans KBs is

undecidable, even under very strong restrictions: when

the guarded rules are restricted to the two-variable frag-

ment of first-order logic, using only unary and binary

predicates and only two transitive predicates [?]. In the

wider fg+trans class, conjunctive query answering is de-

cidable at the condition that transitivity and guarded-

ness do not interact (i.e., each rule body has a frontier-

guard that does not use a “directly or undirectly” tran-

sitive predicate) [?]. 11 The same article shows that

fr1+trans is decidable without restrictions and not more

difficult than fr1 (Table ??). Surpringly, it is currently

not known if query answering with linear+trans is de-

cidable without restrictions. On the positive side, lin-

ear+trans has been shown decidable for atomic entail-

ment, as well as for conjunctive query answering when

a (seemingly minor) safety condition is enforced [?,?].

This safety condition is always satisfied for unary and

binary predicates but is not as soon as ternary pred-

icates are allowed. Under this safety condition, query

answering is in NL (a subclass of PTime) for data com-

plexity and ExpTime-complete for combined complex-

ity. Since linear rules are first-order rewritable, it may

be interesting to notice that fus+trans is undecidable,

even with the restriction to unary and binary predicates

[?,?].

Similarly to transitivity, the ability of expressing

the functionality of binary relations (as specific equal-

ity rules) is a feature that destroys the tree-structure

of the chase if no restriction is enforced. Whereas it is

offered by several DLs, how to integrate it in the gbts

framework by suitable restrictions is again ongoing re-

search.

6 Concluding remarks

Description logics and the existential rule framework

both offer a variety of specific fragments, providing dif-

ferent expressivity-tractability tradeoffs. While classical

11 Actually, this result is established for a larger first-order
logic fragment, itself included in the so-called guarded nega-
tion fragment.

14 Marie-Laure Mugnier

DLs based on ALC and existential rules are quite “or-

thogonal” formalisms, the more recent Horn DLs can

be naturally translated into the existential rule frame-

work. More specifically, lightweight Horn DLs are cov-

ered by decidable rule classes from the greedy bounded-

treewidth family. These rule classes allow for higher

predicate arity and complex structures in rule heads,

at no additional computational cost compared to the

closest DLs when predicate arity is bounded, at least

with respect to worst-case complexity. On the other

hand, thanks to a careful control of the interactions

between constructors, expressive Horn DLs can acco-

modate both transitivity and functionality, which are

often desirable features in data modeling. These latter

DLs do not have natural covering classes in the existen-

tial rule landscape. In both research fields, the question

of how to extend well-behaved fragments with practi-

cally useful features without sacrifying computational

efficiency is actively studied, which should provide new

insight in the near future.

Finally, let us put the approach we adopted here in

a wider context. We relied on semantic emulation, us-

ing the standard translation of description logic axioms

into first-order logic, which quite directly yields rules

from the existential rule framework. This led to con-

ceptually simple translations, moreover computable in

polynomial time, which made the comparison in terms

of combined complexity relevant. A more general way of

comparing the expressivity of two ontological languages

is to require only that answers to queries are preserved,

without enforcing a correspondence between the mod-

els of the ontologies. This latter approach is notably fol-

lowed by a large body of research that investigates the

relative expressivity of ontological languages coupled

with database query languages. In this context, the ob-

jects of study are so-called ontology-mediated queries

(OMQs), which are pairs (T , q), where T is a TBox

in some DL (more generally, a theory in some logical

fragment) and q a conjunctive query (more generally, a

database query). Then, an OMQ languageQ1 is deemed

at least as expressive as another OMQ language Q2 if

every OMQ in Q2 can be expressed as an OMQ in Q1,

in such a way that both queries yields the same answers

on all databases. Prominent work in this area includes

in particular [?] for DLs and [?] for guarded existential

rules and related classes.

Acknowledgements Many thanks to the anonymous re-
viewers for their helpful comments and suggestions, and to
Jean-François Baget for proofreading an earlier version of this
paper. This work was partially funded by the ANR project
CQFD (ANR-18-CE23-0003).

