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ing. Pierre Marquis, Odile Papini and Henri Prade (Eds). Springer, Cham, 2020.
https://doi.org/10.1007/978-3-030-06164-7

Abstract This chapter considers the notion of a formal ontology, which is a concep-
tual vocabulary equipped with a logical semantics. Three families of knowledge rep-
resentation and reasoning formalisms that put ontologies at the core of any knowl-
edge base are presented, namely: description logics, conceptual graphs and existen-
tial rules. We present the main knowledge constructs and dialects of these families,
as well as the main reasoning problems with their complexity. We highlight the rela-
tionships between these families and compare them from an expressivity viewpoint.

1 Introduction

Knowledge-based systems exploit formal representations of knowledge to solve dif-
ferent kinds of problems. The fundamental formalism to represent and do reasoning
on knowledge is classical first-order logic. Whereas a significant amount of work
in knowledge representation aimed to extend classical logic to handle more com-
plex notions (like time, modalities, preferences, ...), most work on ontologies was
devoted to simpler logical fragments and to the study of tradeoffs between the ex-

Meghyn Bienvenu
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pressivity of the representation languages and the computational complexity of rea-
soning in these languages.

A commonly adopted definition of an ontology is that of an explicit specification
of the conceptualisation of a domain [Gruber, 1993]. All ontologies include at least
a conceptual vocabulary, i.e., a set of terms (in the natural language sense) used
to model a domain, provided with a specification of their meaning. These terms
represent concepts (or classes), i.e., the categories of entities in the modeled do-
main, as well as relations (or properties, roles) which may stand between entities.
Concepts and relations may be further specified in different ways, depending on
the expressivity of the ontological language. They are usually organized into a spe-
cialisation/generalisation hierarchy by means of axioms stating that a concept (re-
spectively a relation) is a subconcept (respectively a subrelation) of another. Other
typical ontological axioms include concept disjointness (which expresses that two
concepts cannot have common instances), the domain and range of binary relations
(which specifies the classes of entities that can be linked by this relation), alge-
braic properties of relations (for instance that a relation is symmetric or transitive),
mandatory relations for instances of a class (for instance that every entity of a given
class fulfils a given property), and so on.

Ontologies are widely used in data and knowledge management and they are at
the core of the Semantic Web (see Chapter 6 of Volume 3). We refer the reader to the
chapter on knowledge engineering (Chapter 23 of this volume) for developments on
building and using ontologies.

Without denying the importance of the linguistic aspects in ontologies, we focus
in this chapter on formal ontologies. Therefore, an ontology will be seen as a logical
theory that specifies the expected meaning of the conceptual vocabulary [Guarino,
1998]. More specifically, an ontology is given by a formal vocabulary (or signature)
and a set of formulas built on this vocabulary, which define the acceptable models
of the considered domain. Hence, any reasoning that takes into account an ontology
O considers only the models of O: for instance, given two pieces of knowledge
G and F , deciding if G is a logical consequence of F , which we denote by F |= G,
becomesO,F |=G, i.e., is every model ofO and F a model of G? Moreover, in most
settings, the unique name assumption is made: in this case, distinct logical constants
are necessarily interpreted by distinct elements of the domain of any interpretation.

In this chapter, we consider knowledge bases composed of two types of knowl-
edge: on the one hand, ontological knowledge, which is general knowledge about
the modelled domain, and factual knowledge, composed of facts or assertions about
specific entities. Usually, a fact is a ground atom, i.e., has no variable. 1

A parallel can be drawn between a knowledge base and a classical database (e.g.,
a relational database). Indeed, the database schema, which includes a vocabulary
and integrity constraints, can be associated with an ontology, while data can be
seen as factual knowledge. However, some important differences should be noted.
In databases, data are supposed to encode a complete description of the ‘world’. In
other words, the closed world assumption is made (everything that is not asserted

1 In the Semantic Web area, and specifically concerning the OWL language, the term ontology
often includes both kinds of knowledge. Hence, it corresponds to our notion of knowledge base.
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in the database is considered as false), as well as the related closed domain assump-
tion (the only existing entities are those encoded in the data). By contrast, the open
world assumption is made in knowledge bases (as well as the related open domain
assumption); this often leads to more complex reasoning since a knowledge base
encodes a possibly infinite set of all of the descriptions of the world that include the
known facts and comply with the ontology. For that reason, the use of negation is
often restricted, as the excluded-middle law (stating that a proposition is either true
or false) leads to combinatorial explosion. The open world assumption may lead
to considering existentially quantified variables in facts (and not only constants) to
denote unknown individuals. Moreover, the primary aim of databases is to store and
retrieve data with efficient query answering techniques, whereas knowledge bases
are used to infer new knowledge that was only implicitly represented in the ontol-
ogy. However, the two domains are becoming progressively closer, especially under
the impulse of the Semantic Web. Indeed, there is an increasing interest in answer-
ing complex queries on large knowledge bases, on the one hand, and, on the other
hand, dropping the closed world assumption in databases.

This chapter is devoted to several knowledge representation and reasoning for-
malisms used to build and exploit knowledge bases: description logics, graph-based
representations (issued from conceptual graphs) and the more recent existential rule
framework. Although description logics and graph-based representations are both
rooted in semantic networks [Lehmann, 1992], their development from the 80’s fol-
lowed different research lines, as explained in the next sections. Existential rules
can be seen both as the logical counterpart of the graph-based framework and as a
generalisation of Datalog, the deductive database querying language.

Several different kinds of reasoning over knowledge bases have been considered,
among which we distinguish the following fundamental problems. Given a knowl-
edge base (KB) composed of an ontology O and a set of facts I, we consider the
following questions:

• Knowledge base satisfiability: determine if the KB is satisfiable (or consistent),
i.e., if it has at least one model.

• Ontological knowledge entailment: determine if a piece of ontological knowl-
edge o is entailed by the ontology O, i.e., if O |= o holds.

• Fact entailment: determine if a fact is entailed by the KB, i.e., if O, I |= o holds.
• Ontology-mediated query answering: compute the answers to a query q over the

KB; when q is a Boolean query (i.e., a query with a yes/no answer), the problem
is whether q is entailed by the KB, i.e., whetherO, I |= q holds. The general form
of a query q is a first-order formula with possibly free variables, say (x1, . . . ,xk).
Then an answer to q in the KB is a tuple of constants (c1, . . . ,ck) such that the
Boolean query obtained from q by substituting each variable xi by the constant
ci is entailed by the KB.

The three formalisms presented in this chapter tackle the above problems, the
difference being in their expressivity and the kind of query considered. Description
logics traditionally allowed for rich descriptions of ontological axioms using differ-
ent kinds of constructors; standard reasoning tasks were KB satisfiability, concept
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subsumption (determine if a concept is a specialisation of another, which is a spe-
cial case of ontological knowledge entailment) and instance checking (determine if
a specific individual is an instance of a given concept, which is a special case of
fact entailment). Hence, only very specific queries were considered (single atoms
without variables). The growing interest for exploiting large and complex data led
the description logic community to investigate more expressive queries, however
at the price of less expressive description logics, known as lightweight description
logics. The queries most commonly considered so far in the context of ontology-
mediated query answering are so-called conjunctive queries, which are the basic
queries in databases: these are existentially quantified conjunctions of atoms. Con-
junctive queries are natural queries in the graph-based and existential rule frame-
works, but, on the other hand, these formalisms do not offer the variety of onto-
logical axioms found in classical description logics. Some lightweight description
logics, however, can be seen as special cases of the graph-based and existential rule
frameworks.

The sequel of this chapter introduces each of these three formalisms and com-
pares them from an expressivity viewpoint.

2 Description Logics

Description logics (DLs) [Baader et al., 2003, 2017] are family of knowledge rep-
resentation languages corresponding to decidable2 fragments of first-order logic us-
ing only unary and binary predicates. While the lack of higher-arity predicates may
seem a strong restriction, it turns out that unary and binary predicates (classes and
properties) capture a large part of modelling needs. Indeed, DLs provide the basis
of the OWL Web Ontology Language [W3C, 2004a], a W3C-standardized ontology
language for the Semantic Web [Berners-Lee et al., 2001], and RDF [W3C, 2004b],
a popular format for Web data, is likewise restricted to unary and binary predicates.

A DL knowledge base (KB) has two parts: a TBox that contains general knowl-
edge about the application domain, and an ABox that contains facts about particular
individuals. The TBox can be viewed as an ontology, which provides a conceptual
model for the data stored in the ABox. What distinguishes different DLs is the type
of knowledge that can be expressed in the TBox.

Traditionally, the main reasoning problems considered by the DL community are:
KB satisfiability, subsumption, and instance checking. Satisfiability testing is essen-
tial for identifying modelling errors, while instance checking and subsumption are
used to identify TBox axioms and ABox assertions that follow from the knowledge
of the KB. As the latter two tasks correspond to forms of logical entailment, they can
be reduced to unsatisfiability testing for all DLs that admit full negation. Our dis-
cussion of DLs will center on these traditional reasoning tasks. However, we should
point out that over the past decade, several additional reasoning tasks for DLs have

2 A few undecidable DLs have been studied.



Reasoning with Ontologies 5

been investigated, most notably, ontology-mediated conjunctive query answering,
which allows for richer queries to be posed over the ABox, but which cannot be re-
duced to satisfiability testing and thus required the development of new algorithmic
techniques (see survey [Bienvenu and Ortiz, 2015] and references therein). There
has also been quite a lot of work on reasoning support for building, debugging, and
evolving ontologies, e.g., providing explanations for why a given entailment holds
[Schlobach and Cornet, 2003; Sebastiani and Vescovi, 2009; Peñaloza and Sertkaya,
2017], or extracting modules of an ontology that conform to some criterion [Grau
et al., 2008; Kontchakov et al., 2010; Konev et al., 2013].

Early work on DLs in the 1980’s mostly focused on building reasoning systems,
and it was only later that it was discovered that some of these DLs were in fact unde-
cidable or at the very least intractable. These initial negative results led to the intro-
duction of simple DLs for which polynomial-time reasoning was possible, but which
turned out to be too limited in their expressivity. In the late 1990’s, however, new
systems were developed based upon highly optimized tableaux algorithms, which
demonstrated acceptable performance for expressive DLs despite their high worst-
case complexity. This line of work continues to this day, with ever more sophisti-
cated optimisations targeting ever more expressive DLs. At the same time, there has
been renewed interest in lightweight DLs that provide the required scalability for ap-
plications involving very large TBoxes and/or ABoxes. Importantly, however, this
new breed of low-complexity DLs provides combinations of modelling constructs
that are much better suited to the needs of real-world applications than the previous
generation of simple DLs.

Nowadays, there is an extensive body of results pinpointing the exact computa-
tional complexity of performing different kinds of reasoning in the whole range of
DLs, allowing one to choose the optimal trade-off between expressivity and effi-
ciency of reasoning for the application at hand. For an overview of the complexity
landscape, interested readers can consult the surveys [Ortiz and Simkus, 2012] and
[Bienvenu and Ortiz, 2015].

In this section, we introduce the basics of description logics, and then present
several concrete DLs and show how varying the expressivity of the DL impacts the
complexity of reasoning.

2.1 Preliminaries: DL syntax and semantics

In DL jargon, classes are called concepts and properties are called roles. DL knowl-
edge bases are built starting from a set NC of atomic concepts (unary predicates), a
set NR of atomic roles (binary predicates), and a set NI of individuals (constants).
We typically use A,B, . . . for atomic concepts, P,Q, . . . for atomic roles, and a,b, . . .
for individuals. More complex concept and role expressions can be built using dif-
ferent constructors, with the set of available constructors depending on the particular
DL (see further for more details). We will use C,D, . . . to denote (possibly complex)
concepts and R,S for (possibly complex) roles.



6 Meghyn Bienvenu, Michel Leclère, Marie-Laure Mugnier, and Marie-Christine Rousset

A DL knowledge baseK is a pair 〈T ,A〉, consisting of a TBox T and an ABoxA.
A TBox is a finite set of axioms expressing the relationships holding between dif-
ferent concepts and roles. The types of axioms allowed in the TBox depends on the
choice of DL, but the most common forms of TBox axioms are concept inclusions
(C v D, with C,D possibly complex concepts) and role inclusions (Rv S, with R,S
possibly complex roles). Equivalences between concepts (C ≡ D) and roles (R≡ S)
are also common and can be seen as shorthand for inclusions in both directions (i.e.,
C ≡ D is an abbreviation for the pair of inclusions C v D and DvC).

An ABox is a finite set of assertions expressing that an individual belongs to a
given concept (C(a)) or that a pair of individuals belongs to a role (R(a,b)). To
simplify the presentation, we will assume in what follows that ABoxes only con-
tain assertions involving atomic concepts and roles. This assumption can usually
be made without loss of generality. For example, if we want to include C(a) in the
ABox, with C a general concept, it suffices to use the atomic assertion AC (with AC
a fresh atomic concept) and add the inclusion C ≡ AC to the TBox.

The semantics of DL knowledge bases is defined in terms of (first-order) inter-
pretations. An interpretation I = (∆I , ·I) consists of a non-empty domain ∆I and
an interpretation function ·I that assigns a set AI ⊆ ∆I to every atomic concept
A ∈ NC, a binary relation PI ⊆ ∆I ×∆I to every atomic role P ∈ NR, and an ele-
ment aI to every individual a ∈ NI. It is common in DLs to adopt the unique name
assumption, which states that distinct individuals are mapped to distinct elements of
the interpretation domain.

An interpretation I satisfies a concept inclusion C v D (resp. role inclusion Rv
S) if CI ⊆DI (resp. RI ⊆ SI). We say I is a model of a TBox T if it satisfies every
axiom in T . A TBox T logically implies an axiom α , written T |=α , if every model
of T satisfies α . A fundamental reasoning task for TBoxes is testing subsumption
between different concepts: given a TBox T and two concepts C and D, decide
whether T |=C v D.

An interpretation I satisfies a concept assertion A(a) (resp. role assertion P(a,b))
if aI ∈AI (resp. (aI ,bI)∈PI). We call I a model of an ABoxA if I satisfies every
assertion in A. An interpretation I is a model of a knowledge base 〈T ,A〉 if it is a
model of both T and A. A KB K is satisfiable (or consistent) if it possesses at least
one model. Testing satisfiability of a given KB is another standard reasoning task.

A KB logically entails a TBox axiom or ABox assertion α , written K |= α , if
every model of K satisfies α . The instance checking problem is defined as follows:
given a KB 〈T ,A〉, a concept C, and an individual a, decide whether K |=C(a).

In the following sections, we give the syntax and semantics of the principal DL
constructors by presenting a variety of DLs, ranging from ‘simple’ DLs EL, FL0,
and DL-Lite which offer polynomial-time reasoning (Sections 2.2 and 2.3), toALC
(Section 2.4) which is often considered the prototypical DL, to highly expressive
DLs like SROIQ (Section 2.5), which provide the logical foundations for OWL.
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2.2 Lightweight description logics: FL0 and EL

We begin by considering two DLs, FL0 and EL, which are deliberately restricted
in expressivity in order to allow for sound and complete polynomial-time reason-
ing. Both logics contain the concept conjunction constructor (C1 uC2), which cor-
responds to intersecting the classes represented by C1 and C2. Additionally, FL0
offers qualified value restrictions (∀R.C), while EL offers qualified existential re-
strictions (∃R.C), which provide suitably restricted forms of universal and existen-
tial quantification. In EL, one can further use the top concept (>), which denotes
the class of all objects.

Figure 1 provides an example of a taxonomy of classes, formulated using a set of
inclusions between atomic concepts. Such simple axioms form the backbone of real-
world ontologies, and they are available in every DL (and in particular, in FL0 and
EL). The axioms in the first line of Figure 1 stipulate that professors and teaching
assistants are both kinds of teaching staff, and every teaching assistant is a graduate
student. The remaining axioms state that teaching staff and admin staff are two types
of staff and that students (resp. courses) can be specialized into undergraduate and
graduate students (resp. courses).

Prof v TeachingStaff TAssistantv TeachingStaff TAssistantv GradStudent
TeachingStaff v Staff AdminStaff v Staff UndergradStudentv Student
GradStudentv Student UndergradCoursev Course GradCoursev Course

Fig. 1 Example taxonomy of classes in the university domain

In FL0 and EL, we can additionally use the conjunction constructor to state that
every student that is part of the teaching staff must be a graduate student:

StudentuTeachingStaff v GradStudent

By making use of qualified value restrictions, we can express in FL0 that grad-
uate students only take graduate courses and that a student that takes only graduate
courses is a graduate student:

GradStudentv∀takes.GradCourse Studentu∀takes.GradCoursevGradStudent

In EL, we can use qualified existential restrictions to formulate the following
axioms:

Studentv ∃takes.Course ∃teaches.>v TeachingStaff

∃teaches.GradCoursev Prof TeachingStaff v ∃teaches.Course

which state respectively that every student must take some course, that everyone
who teaches something is a member of the teaching staff, that everyone who teaches
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a graduate course must be a professor, and that every member of teaching staff must
teach some course.

The semantics of complex concepts built using the preceding constructors is de-
fined recursively as follows (starting from the semantics of atomic concepts and
roles which is directly provided by each interpretation):

• >I = ∆I

• (C1uC2)
I =CI

1 ∩CI
2

• (∃R.C)I = {o1 | there exists (o1,o2) ∈ RI such that o2 ∈CI}
• (∀R.C)I = {o1 | (o1,o2) ∈ RI implies o2 ∈CI}

Every DL concept can be translated into a first-order logic formula with one free
variable. Figure 2 gives the first-order translation of concepts in FL0 and EL, using
X as the free variable. To improve readability, we commit a slight abuse of notation
by using C(X) to designate the translation of the concept C using free variable X .
For example, if C = Au∃R.B, with A and B atomic concepts, then C(X) is the FOL
formula A(X)∧∃Y [R(X ,Y )∧B(Y )].

DL notation Corresponding FOL formula
C1uC2 C1(X)∧C2(X)
∃R.C ∃Y [R(X ,Y )∧C(Y )]
∀R.C ∀Y [R(X ,Y )→C(Y )]

Fig. 2 Translation from DLs to first-order logic (1)

Every TBox axiom can be translated into a corresponding FOL sentence (that
is, a formula without free variables): a concept inclusion C v D gives rise to the
formula ∀X(C(X)→ D(X)) and an equivalence axiom C ≡ D corresponds to the
formula ∀X(C(X)↔ D(X)).

The first polynomial-time reasoning procedures for lightweight DLs relied upon
structural subsumption, in which concept expressions are first put into a normal
form and then compared syntactically. This method can be used to show that sub-
sumption between concepts w.r.t. an empty TBox is tractable in both FL0 and EL.
However, in most applications, one wishes to compute subsumption in the presence
of a non-empty TBox. Rather interestingly, FL0 and EL exhibit dramatically dif-
ferent complexities for the general version of subsumption. In FL0, the problem
becomes EXPTIME-complete (and thus provably intractable) [Baader et al., 2005]
and remains coNP-hard even when restricted to TBoxes in the form of acyclic ter-
minologies [Nebel, 1990]. By contrast, in EL (and several of its extensions), sub-
sumption can be decided in PTIME in the presence of arbitrary TBoxes [Baader
et al., 2005]. This tractability result relies upon forward-chaining algorithms that
construct in an iterative manner a subset of the axioms that are entailed from the
TBox. A similar approach can be used to handle instance checking in EL.

Nowadays, EL and its extensions have become popular ontology languages,
whereas FL0 is no longer much in use. This is due in large part to the much more
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favourable computational properties of EL, but also to the utility of the construc-
tors provided by EL. Indeed, while it was initially believed that value restrictions
were more useful than existential restrictions, it turns out that (slight extensions
of) EL closely match the modelling needs of many applications, particularly those
in the biomedical domain. Indeed, the large-scale professional medical ontology
SNOMED CT3 (Systematized Nomenclature of Medicine, Clinical Terms), devel-
oped by an international consortium for use in the health-care systems of several
countries, is expressed in a tractable DL of the EL family. The importance of EL is
further witnessed by the inclusion of the OWL 2 EL profile [W3C, 2012b], based
upon EL, in the latest version of the W3C OWL standard.

2.3 DL-Lite: Another lightweight description logic

The DL-Lite family of description logics [Calvanese et al., 2007] was proposed in
the mid-2000’s with the aim of supporting tractable reasoning while at the same time
capturing the principal modelling primitives from conceptual modelling (more pre-
cisely, the entity-relationship models utilized in databases and information systems
[Chen, 1976]) and UML4 diagrams from software engineering). Another important
motivation for introducing the DL-Lite family was to make it possible to answer
more expressive queries by means of a reduction to relational databases.

In DL-Lite, complex concepts and roles can be constructed from atomic concepts
and roles according to the following syntax:

B ::= A | ∃R C ::= B | ¬B R ::= P | P− E ::= R | ¬R

where A is an atomic concept, P is an atomic role, and P− is the inverse of P. Here
B is called a basic concept, and C is a general concept. Likewise, we have basic
roles R and general roles E. For completeness, we formally state the semantics of
non-atomic concepts and roles:

• (P−)I = {(o2,o1) | (o1,o2) ∈ PI}
• (∃R)I = {o1 | there exists o2 and (o1,o2) ∈ RI}
• (¬B)I = ∆I \BI and (¬R)I = ∆I ×∆I \RI

Figure 3 gives the corresponding logical formulas. Note that when we write R(X ,Y ),
we mean P(X ,Y ) if R is an atomic role P and P(Y,X) if R is the inverse role P−.

There are several different DL-Lite dialects, each allowing for different TBox
axioms. In the core DL-Lite dialect, TBoxes are comprised of concept inclusions
BvC, where B is a basic concept and C a general concept. Observe that since only
basic concepts are allowed on the left-hand side of inclusions, negation can only
occur on the right-hand side.

3 http://www.snomed.org/snomed-ct
4 http://www.omg.org/uml
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DL notation Corresponding FOL formula
P− P(Y,X)
∃R ∃Y R(X ,Y )
¬B ¬B(X)
¬R ¬R(X ,Y )

Fig. 3 Translation from DLs to first-order logic (2)

∃teachesv TeachingStaff ∃teaches− v Course
∃coordinatorFor v Prof ∃coordinatorFor− v Course
∃takesv Student ∃takes− v Course
coordinatorFor v teaches

Fig. 4 Domain and range constraints and role inclusions in DL-Lite

To illustrate the expressive power of DL-Lite (core), we return to our running ex-
ample of the university domain. We first remark that all of the atomic concept inclu-
sions from Figure 1 can be expressed in DL-Lite. Figure 4 displays DL-Lite axioms
that constrain the domain and range of the roles teaches, takes, and coordinatorFor:

• if X teaches Y, then X is a member of teaching staff and Y is a course
• if X takes Y, then X is a student and Y is a course
• if X coordinatorFor Y, then X is a professor Y is a course

In DL-Lite, we can also express disjointness constraints, stating that two classes
or properties have no elements in common, as well as mandatory participation con-
straints, requiring that elements of a certain class appear in the first or second com-
ponents of a given binary relation. For example, the following axioms express that
Student and AdminStaff are disjoint classes, that every professor must teach some-
thing, and that every course is taught by someone:

Studentv ¬AdminStaff Prof v ∃teaches Coursev ∃teaches−

We remark that if we replaced the inclusion Studentv¬AdminStaff by Studentv
¬Staff, then this would lead to an anomaly in the ontology. Indeed, using the atomic
concept inclusions in Figure 1, we would be able to infer that teaching assistants
belong to the class Staff (from TAssistant v TeachingStaff and TeachingStaff v
Staff) as well as to its complement ¬Staff (using TAssistant v GradStudent,
GradStudentv Student, and Studentv ¬Staff). This would mean that TAssistant
must always be interpreted as the empty class, and thus that including even a single
instance of TAssistant in the ABox would lead to an inconsistent KB.

Two other common dialects, DL-LiteR and DL-LiteF , offer additional TBox
axioms. The former allows for role inclusions of the form R v E, while the latter
authorizes functionality axioms of the form ( f unct R), where R is a basic role, i.e.,
without negation. For example, the following two axioms are expressible in DL-
LiteR and DL-LiteF respectively:
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coordinatorFor v teaches ( f unct coordinatorFor−)

The first axiom expresses that when X coordinatorFor Y, then X teaches Y,
while the second one expresses that the role coordinatorFor− is functional: if Y
coordinatorFor X and Z coordinatorFor X then Y=Z.

A role inclusion R v E is satisfied in an interpretation I if RI ⊆ EI , and a
functionality statement ( f unct R) is satisfied in I if the binary relation RI is a
function, i.e. (o,o1) ∈ RI and (o,o2) ∈ RI implies that o1 = o2.

It has been shown in [Calvanese et al., 2007] that in both DL-LiteR and DL-
LiteF , satisfiability, subsumption, and instance checking can all be performed in
polynomial time (more precisely, these tasks are NLOGSPACE-complete). Rather
surprisingly, however, if we consider the minimal DL that extends both DL-LiteR
and DL-LiteF , then satisfiability testing becomes EXPTIME-complete [Artale et al.,
2009]. Moreover, in both DL-LiteR and DL-LiteF , it is possible to answer conjunc-
tive queries in polynomial time in the size of the ABox by means of a reduction
to the problem of answering first-order queries over relational databases, whereas
no such reduction is possible if both role inclusions and functionality axioms are
allowed [Calvanese et al., 2007]. (Ontology-mediated conjunctive query answering
and the technique of first-order query rewriting will be discussed in more detail in
Sections 3 and 4.)

The importance of the DL-Lite family of DLs is witnessed by the inclusion of the
OWL 2 QL profile [W3C, 2012b], based upon DL-LiteR, in the OWL 2 standard,
which is specifically designed to be the ontology language of choice for applications
involving querying of large amounts of data.

2.4 ALC: The prototypical description logic

The description logic ALC can be seen as the result of adding (full) concept nega-
tion to EL. InALC, it is possible to construct the disjunction (or union) of two con-
cepts C1tC2 (which is just shorthand for ¬(¬C1u¬C2)), qualified value restrictions
(since ∀R.C is equivalent to ¬(∃R.¬C)), and the bottom concept ⊥ (corresponding
to ¬>, which is always interpreted as the empty set).
ALC is often considered to be the prototypical DL because it is a fragment of

a natural first-order logic (allowing the standard Boolean operators plus restricted
forms of universal and existential quantification) and because ALC concepts cor-
respond precisely to the formulas expressible in the basic multi-modal logic Kn
[Blackburn et al., 2006].

Returning to our university example, we first note since ALC extends both FL0
and EL, all axioms from Section 2.2 can be expressed in ALC. Additionally, the
new constructors available inALC allow us to express disjointness constraints, as in
DL-Lite, and covering constraints, e.g., that every course is either an undergraduate
course or a graduate course:
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Studentv ¬Prof Coursev UndergradCoursetGradCourse

For completeness, we formally specify the semantics of the new constructors:

• ⊥I = /0
• ¬CI = ∆I \CI

• (C1tC2)
I =CI

1 ∪CI
2

The problem of testing satisfiability ofALC KBs has been shown to be EXPTIME-
complete [Schild, 1991]. The same result holds for subsumption testing and instance
checking, which can be straightforwardly reduced to (un)satisfiability:

• T |=C v D iff the KB 〈T ∪{AC ≡C,A¬D ≡ ¬D},{AC(a),A¬D(a)}〉 is unsatis-
fiable

• K |=C(a) iff the KB K∪{A¬C ≡ ¬C},{A¬C(a)} is unsatisfiable.

To determine whether a given ALC KB is satisfiable, one can use tableaux algo-
rithms, which work by exploring in an exhaustive manner all ways of constructing
a model of the KB. If a (compact representation of a) model is found, the KB is sat-
isfiable, and if all attempts fail, then one can conclude that the KB is unsatisfiable.

2.5 From ALC to SHIQ to SROIQ: Highly expressive DLs

The description logicALC is the starting point for defining other (highly) expressive
DLs. For example, the DL SHIQ [Horrocks et al., 1999] extendsALC with inverse
roles (P−, as in DL-Lite), (qualified) cardinality restrictions (≥ nR.C, ≤ nR.C),
role inclusions (R v R′), and transitive roles (using transitivity axioms of the form
(Trans R)), where R,R′ can be either plain or inverse roles.

In our university example, we could use cardinality restrictions to express that
every professor must teach at least 2 courses, and students that take at most 3 courses
are part-time students:

Prof v≥ 2teaches.Course Studentu ≤ 3takes.Course v PartTimeStudent

The even more expressive SROIQ [Horrocks et al., 2006], which provides
the logical underpinnings of OWL 2 (the latest version of OWL standard) [W3C,
2012a], extends SHIQ with nominals ({a}), the universal role (u), and more com-
plex role axioms of the forms R◦Sv R and S◦Rv R (where ◦ denotes role compo-
sition). It further allows for roles to be declared as reflexive, irreflexive, or antisym-
metric, and for pairs of role to be declared disjoint.

The semantics of the new constructors is as follows:

• (≥ nP.C)I = {d ∈ ∆I | ]{e | (d,e) ∈ PI and e ∈CI} ≥ n}
• (≤ nP)I = {d ∈ ∆I | ]{e | (d,e) ∈ PI and e ∈CI} ≤ n}
• {a}I = {aI}
• uI = ∆I ×∆I
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• (R◦S)I = {(d1,d3)∈∆I×∆I | there exists d2 ∈∆I such that (d1,d2)∈RI and
(d2,d3) ∈ SI}

An axiom of the form (Trans R) is satisfied in I if RI is a transitive relation, i.e.,
(d1,d2) ∈ RI and (d2,d3) ∈ RI implies (d1,d3) ∈ RI . TBox axioms declaring roles
to be reflexive, irreflexive, or antisymmetric are handled analogously.

In the DL SHIQ, the standard reasoning tasks (satisfiability, subsumption, and
instance checking) are all EXPTIME-complete, and thus of the same complexity as
in ALC. For the DL SHOIQ obtained by adding nominals to SHIQ, the com-
plexity rises to NEXPTIME-complete, and for SRIQ, which extends SHIQ with
complex role inclusions and additional types of axioms concerning roles, the prob-
lem becomes 2EXPTIME-complete. If we move all the way up to SROIQ, then
reasoning becomes even more difficult (2NEXPTIME-complete).

The preceding complexity results show that automated reasoning with (highly)
expressive DLs like ALC, SHIQ, and SROIQ may require (doubly) exponential
time in the worst case. However, in practice, modern DL reasoners5, mainly employ-
ing highly optimized tableaux algorithms, demonstrate acceptable performance for
reasonably-sized ontologies. The reason is that the type of ontological constraints
that are needed to model even complex real-world applications do not give rise to
the pathological combinations of constructors that are required for establishing the
negative complexity results.

Finally, several proposals have been made to overcome a limitation of description
logics, which is the tree-shaped structure of terminological descriptions, in particu-
lar by combining them with Datalog rules. These proposals impose restrictions on
the interaction between DL axioms and datalog rules, as early work has shown un-
decidability of standard reasoning if no restriction was made [Levy and Rousset,
1998]. The existential rules presented in Section 4 can be seen as another way of
overcoming the tree-shaped structure limitation of description logics.

3 Conceptual Graphs

Conceptual graphs [Sowa, 1976, 1984] are mainly rooted in semantic networks, nat-
ural language processing and Peirce’s existential graphs, a diagrammatical system
of logic alternative to predicate logic. They have been studied along different di-
rections. One research line consists in developing conceptual graphs as a graphical
interface to first-order logic. Another research line follows the existential graph ap-
proach: conceptual graphs are then seen as diagrams, rather than graphs in the graph-
theoretic meaning, and inferences are based on diagrammatic operations that do not
aim to be automated (see, in particular, [Dau, 2003]). A third research line, which is
the one presented in this chapter, develops conceptual graphs as a knowledge repre-
sentation and reasoning formalism, equipped with its own reasoning mechanisms.
This formalism is both graph- and logic-based: on the one hand, the basic objects

5 See http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/ for an up-to-date list of DL reasoners.
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are labelled graphs and reasoning is based on graph operations, with graph homo-
morphism at the core; on the other hand, these objects have a logical semantics and
reasoning mechanisms are sound and complete with respect to this semantics. This
approach to conceptual graphs is similar to the description logic approach in the
sense that it defines and studies a family of formalisms that offer different tradeoffs
between expressivity and complexity of reasoning. However, we will see in Section
3.5 that the logical fragments studied in both families are quite different. The inter-
ested reader will find an in-depth presentation of theoretical and algorithmic results
on conceptual graphs in [Chein and Mugnier, 2009]. All aspects presented here are
implemented in the software tools CoGUI6 and CoGITaNT7.

3.1 The Kernel: Basic conceptual graphs

A basic conceptual graph (BG) defines entities and relationships among these en-
tities. Hence, it is a bipartite graph: one class of nodes, called concept nodes, rep-
resents entities, and the other class, called relation nodes, represent relationships
among these entities. Nodes are labelled according to a vocabulary, which contains
a set of concept types and a set of relation symbols, with both sets being partially
ordered by specialisation. This vocabulary can be seen as a lightweight ontology,
which can be further enriched by rules and constraints in more complex conceptual
graph fragments.

3.1.1 Syntax

A vocabulary, also called a support, is a triple (TC,TR, I) where:

• TC is a finite set of concept types, partially ordered by ≤, and provided with a
greatest element, denoted by >;

• TR is a finite set of relation symbols (or simply relations) of any arity, partially
ordered by ≤, such that only relations with the same arity are comparable;

• I is a possibly infinite set of elements called individual markers; furthermore, the
symbol ∗ denotes the generic marker, with ∗ 6∈ I. The set of all markers I ∪{∗}
is partially ordered by ≤ as follows: for all m ∈ I, m ≤ ∗, and elements in I are
pairwise incomparable.

• TC, TR and I are pairwise disjoint sets.

The partial orders on TC and TR encode a specialisation relation, i.e., t ′ ≤ t means
that “t ′ is a specialisation of t”. Figure 5 pictures a set of concept types, which
correspond to the set of DL inclusions from Figure 1 except for the part in italics.
Each individual marker refers to a specific and distinct entity (i.e., the unique name
assumption is made) and the generic marker refers to an unspecified entity.

6 http://www.lirmm.fr/cogui
7 http://cogitant.sourceforge.net
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Fig. 5 A set of concept types

A basic conceptual graph (BG) G = (CG,RG,EG, lG) defined over a support S =
(TC, TR, I) is a finite, labelled, undirected and bipartite multigraph (i.e., there may
be several edges between two nodes), where CG is the set of concept nodes, RG is
the set of relation nodes, EG is the multiset of edges, and lG is a labelling function
of the nodes and edges that satisfies the following conditions:

• each concept node c is labelled by a concept type tc and a marker m such that
(tc,m) ∈ TC× (I∪{∗}) ; if m = ∗, c is called generic, otherwise it is individual;

• each relation node r is labelled by a relation tr ∈ TR and the number of edges
incident to r is equal to the arity of tr; these edges are labelled from 1 to the arity
of tr; we denote by (c1 . . .ck) the list of arguments of r, where c j denotes the
extremity of the j-th edge incident to r.

Note that a BG is not necessarily connected. By convention, concept nodes are
pictured as rectangles and relation nodes as ovals. For instance, the BG H pictured in
Figure 6 may represent the following knowledge “there is a professor coordinator for
a course on databases and a course on logics in the graduate degree MSc IA”. A BG
can also be seen as a hypergraph, with the relations being encoded by hyperedges.
Then the graph view of a BG corresponds to the incidence bipartite graph of this
hypergraph.

The notion of a support can be extended to allow for multi-instantiation. Then a
concept node is labelled by a set of concept types, called a conjunctive type, instead
of a single concept type. For instance, a course can be both a course in mathe-
matics and a course in computer science, which is denoted by the conjunctive type
{Maths,CS}. The set of concept types TC is then defined in intension by a partially
ordered set of primitive types, and its elements are all the conjunctive types that
can be built with from primitive types. The partial order on conjunctive types is the
natural extension of the order on primitives types: given conjunctive types t1 and t2,
t2 ≤ t1 if for all primitive type t1i in t1, there is a primitive type t2 j in t2 with t2 j ≤ t1i .
For instance, {Logics} ≤ {CS,Maths} (note that {CS,Maths} 6≤ {Logics}).
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Fig. 6 Basic Conceptual Graphs

3.1.2 Semantics

This basic formalism is provided with a semantics in first-order logic by a trans-
lation denoted by Φ . Concept types are translated into unary predicates, relation
symbols into predicates with the same arity and individual markers into constants
(for simplicity, the same names are used for the elements of the support and their
translation). To a support S is assigned a set of formulas Φ(S) that translates the par-
tial orders on TC and TR, i.e., if t2 ≤ t1, one has the formula ∀x1 . . .xk (t2(x1 . . .xk)→
t1(x1 . . .xk)), where k is the arity of predicates t1 and t2.

A BG is translated into a formula Φ(G) built as follows: to each con-
cept node is assigned a term, which is a new variable if its marker is
generic, otherwise the constant assigned to its individual marker; to each re-
lation (resp. concept) node is assigned an atom t(e1, . . . ,ek) where t is the
predicate assigned to its label (resp. concept type) and (e1, . . . ,ek) is the
list of terms assigned to its arguments (resp. the term assigned to the con-
cept node); Φ(G) is then the existential closure of the conjunction of these
atoms. For instance, for H in Figure 6: Φ(H) = ∃x∃y∃z(Pro f (x) ∧ DBs(y) ∧
Logics(z)∧ coordinatorFor(x,y)∧ coordinatorFor(x,z)∧ curriculum(y,MScIA)∧
curriculum(z,MScIA)∧GradDegree(MScIA)).

The BG fragment is equivalent to the existential, positive and conjunctive frag-
ment of first-order logic (without functional symbols except for constants). Indeed, a
polynomial translation of the support and BGs, which preserves logical entailment,
allows one to obtain a “flat” support S′ for which Φ(S′) = /0.

The fundamental notion for reasoning on BGs is a homomorphism (often called
“projection” in the conceptual graph community). A homomorphism from a BG G
to a BG H is a mapping from CG∪RG to CH ∪RH that preserves the node bipartition
and the edges, and may specialize node labels, i.e.,
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• for all relation r ∈ RG with arguments (c1 . . .ck), h(r) has arguments
(h(c1) . . .h(ck)) (equivalently: for all edge rc in G, there is an edge h(r)h(c) with
the same label in H) ;

• for all node x ∈CG∪RG, lH(h(x))≤ lG(x) (for concept nodes one considers the
product order on TC× (I∪{?}), i.e., (t,m)≤ (t ′,m′) if t ≤ t ′ and m≤ m′).

Consider the graphs in Figure 6 and assume that coordinatorFor ≤ teaches is the
only comparable pair of distinct relations: there are two homomorphisms from G
to H. The first one maps concept nodes in this way: a 7→ x, b 7→ y , c 7→ z, d 7→ t,
e 7→ t; each relation node teaches is mapped to a relation node coordinatorFor and
each relation node curriculum is mapped to a node with the same label. Note that
both entities of type GradDegree are mapped to a single entity, which is identified as
“the MSc AI”. The second homomorphism maps concept nodes in this way: a 7→ x,
b 7→ z , c 7→ z, d 7→ t, e 7→ t. This homomorphism uses the fact that Logics is a
specialisation of both Maths and CS, which allows one to map b and c to z.

BG-homomorphism induces a preorder on BGs, called the “specialisation / gen-
eralisation” relation: in the following, we note H ≤ G (H is a specialisation of G)
if there is a homomorphism from G to H. This relation is sound and complete with
respect to logical entailment on the formulas assigned to the BGs (also using the
formulas assigned to the support), i.e., for all BGs G and H on a support S, H ≤ G
if and only if Φ(S),Φ(H) |= Φ(G). Completeness is up to a normality condition for
H: an individual marker has to occur at most once in H (in other words, two dis-
tinct nodes cannot refer to the same identified entity). The following problem, called
BG-Homomorphism is thus the fundamental problem on BGs: given two BGs G
and H, is there a homomorphism from G to H? This problem is NP-complete in
general, but belongs to PTime when the source graph (i.e., G) is an acyclic graph (or
an acyclic hypergraph, this latter notion being more general than the former), and
more generally if it has a bounded treewidth (or hypertreewidth).

Homomorphism being a fundamental notion in the study of relational structures,
it is not surprising that BG-Homomorphism is strongly equivalent to other funda-
mental problems in AI and databases, which allows one to import algorithmic tech-
niques from one domain to another. The logical translation of a BG is the same as a
(Boolean) conjunctive query (CQ) in databases. The problems of evaluating a con-
junctive query (e.g., given a CQ q and a relational database instance D, does D con-
tain an answer to q?) or determining if a conjunctive query is contained in another
(given two CQs q1 and q2, is the set of answers to q1 included in the set of answers
to q2 for any database instance?) are essentially the same as BG-Homomorphism.
The same remark holds for the basic constraint satisfaction problem (CSP): given a
constraint network (in which constraints are given in extension), does this network
have a solution? (see Chapter 6 of Volume 2).

Finally, let us consider the ontology-mediated query answering problem in the
conceptual graph framework, where the knowledge base is composed of a support
(the ontology) and of BGs (the facts), and the query is itself a BG. Checking if
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the query is entailed by the KB is NP-complete in combined complexity (since it
amounts to a BG-homomorphism test) and polynomial in data complexity.8

3.2 Simple extensions of the support

Two simple extensions of the support are often considered, namely relation signa-
tures and concept type incompatibility. A relation signature specifies the maximal
type of each of its arguments. Formally, one adds to the support a mapping σ that
assigns to each relation r with arity k a signature σ(r) ∈ (TC)

k. Let σi(r) denote the
i-th element of σ(r); the formula assigned to σ(r) is:

∀x1 . . .xk(r(x1 . . .xk)→ σ1(r)(x1)∧ . . .∧σk(r)(xk))

Figure 7 shows a partially ordered set of relations with their signature that corre-
sponds to the set of DL inclusions from Figure 4, except for the part in italics.

coordinatorFor(Prof,Course)

takes(Student,Course)teaches(TeachingStaff,Course)

curriculum(Course,Degree)

teachesTo(TeachingStaff,Student)

Fig. 7 Relations and their signatures

Relation signatures must be covariant with respect to the partial orders on concept
types and relations: for all relations r1 et r2 with arity k, if r1 ≤ r2 then σ(r1) ≤
σ(r2), i.e., for all i, σi(r1) ≤ σi(r2). This covariance condition translates the fact
that when a relation is specialized into another, the maximal type of each argument
can be specialized as well, but not generalized. For instance, if the relation teaches
links an entity of type TeachingStaff to an entity of type Course, its specialisation
into the relation coordinatorFor may enforce that the first argument is of type Prof,
which is a specialisation of TeachingStaff.

The support added with relation signatures can be seen as a generalisation of the
ontological part of RDFS (i.e., the schema) with relations of any arity (see [Baget
et al., 2010] for translations between RDFS and basic conceptual graphs).

When multi-instantiation is allowed, i.e., when conjunctive concept types are
considered, it is useful to express incompatibility between concept types. This can
be achieved by stating that some conjunctive types are forbidden. The logical for-
mula assigned to a banned type {t1, t2} is the following:

8 For query answering problems, the distinction between combined and data complexities is often
made: data complexity is the complexity with respect to the size of the data (here the fact base),
while combined complexity considers all components of the problem (here, the knowledge base
and the query).
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∀x¬(t1(x)∧ t2(x))

The set of banned types is said to be compatible with the set of primitive types
if no primitive type is a specialization of a banned type. For instance, the banned
type {Student, Staff} (which corresponds to the DL inclusion Student v ¬Staff ) is
not compatible with Student ≤ Staff, a fortiori with GradStudent ≤ Staff. A BG
complies with the set of banned types if no node is labelled by a concept type that
specializes a banned type. Note that the logical translation Φ(S) of a support S added
with banned types is always consistent. However, for a BG F on S, Φ(S)∪Φ(F)
may be inconsistent.

3.3 Conceptual graph rules

Rules of the form “ if premise then conclusion” are an essential knowledge construct
in AI. They represent implicit knowledge that can be made explicit by applying them
to factual knowledge. A basic graph rule is a pair R = (P(c11 . . .c1k),C(c21 . . .c2k)),
where k ≥ 0, P and C are BGs, and the c1i (respectively c2i ) are distinct generic
concept nodes from P (respectively C) called the frontier nodes of the rule. In Figure
8 the bijection between the frontier nodes of the premise and of the conclusion is
depicted by dotted lines; the blue nodes form the conclusion of the rule. This rule
represents the following knowledge: “if a student X takes a course Y then there is a
teaching staff member Z who teaches Y and teaches to X”.

takes
1 2

CourseStudent

2

11

2

IF

THEN
1 2

Course

teachesTo

takes

teaches

TeachingStaff

Student

Fig. 8 Conceptual Graph Rule

The logical translation of a BG-rule R = (P(c11 . . .c1k),C(c21 . . .c2k)) is the for-
mula Φ(R) = ∀x1 . . .xk (Φ ′(P) → Φ ′(C)), in which the same variable xi is as-
signed to frontier nodes c1i and c2i , and Φ ′(P) (resp. Φ ′(C)) is obtained from
Φ(P) (resp. Φ(C)) by leaving variables x1 . . .xk free. Equivalently, all the vari-
ables in the premise of the rule can be universally quantified, in which case their
scope is the whole formula. The logical translation of a rule is thus exactly an ex-
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istential rule, as defined in the next section. For instance, the logical translation of
the rule R from Figure 8 is Φ(R) = ∀x∀y((Student(x)∧Course(y)∧ takes(x,y))→
∃z(TeachingSta f f (z)∧ teaches(z,y)∧ teachesTo(z,x))).

BG-rules are provided with forward and backward chaining mechanisms that
proceed directly on their graphical form. A BG-rule R is applicable to a BG F if
there is a homomorphism h from its premise to F ; applying R to F according to
h consists of adding C to F , then merging each frontier node c2i from C with the
node h(c1i) from F . 9 Rule application is the basis of a sound and complete forward
chaining mechanism, i.e., given a knowledge base K = (S,F,R), where S is the
support, F is the fact base (remember that a BG needs not to be connected) and R
is the set of rules, and a BG Q (which can be seen as a query), Φ(K) |= Φ(Q) if and
only if there is a sequence of applications of rules in R leading from F to a BG F ′

such that F ′ ≤ Q.
The backward chaining mechanism relies on a specific unification operation (be-

tween two subgraphs, respectively of a rule conclusion and of the current BG query),
which exploits the complex structure of rule conclusions induced by non-frontier
concept nodes (see the existential variables in existential rules). Hence, instead of
processing a goal atom by atom as backward chaining a la Prolog would do, entire
subgraphs are unified at once. This mechanism is also sound and complete.

Note that the partial orders on concept types and relations can be en-
coded by BG-rules. Indeed, t1 ≤ t2 is logically translated into the logical rule
∀x1 . . .xk(t1(x1...xk)→ t2(x1...xk)), where k is the arity of the associated predicates.
However, the fact that the partial orders are intrinsically taken into account in BG-
homomorphism (which allows one to compare concept types or relations in constant
time, or almost constant time, depending on the order encoding) leads to better al-
gorithmic efficiency.

BG-rules are able to simulate the behavior of a Turing machine, hence they pro-
vide a model of computation. Therefore, the associated entailment problems are
undecidable. However, many decidable cases obtained by syntactic restrictions on
rules, or sets of rules, have been defined, mostly in the framework of existential rules
(see Section 4.3).

3.4 Conceptual graph constraints

A BG-constraint has the same shape as a BG-rule. It can be positive or negative, de-
pending on whether it expresses an obligation or a prohibition. A positive constraint
(P,C) expresses knowledge of the form “whenever P is true, C must also be true”.

9 If c1i and c2i have the same concept type, the obtained node is labelled by the same label as
h(c1i ) ; if the type of c2i is strictly more specific than the type of c1i , it may happen that the labels
of h(c1i ) and c2i are incompatible (with respect to banned types), which points to an inconsistency
in the knowledge base; otherwise, the label of the obtained node is the greatest lower bound of both
labels: the obtained type is the conjunction of the types of h(c1i ) and c2i and the obtained marker
is the smallest of both markers.
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It is satisfied by a BG if every homomorphism from P to F can be extended to a
homomorphism from C to F (i.e., given h the considered homomorphism from P to
F , there is a homomorphism h′ from C to F such that h′(c2i) = h(c1i) for all frontier
nodes). A negative constraint (P,C) expresses knowledge of the form “whenever P
is true, C must not be true”. It is satisfied by a BG if no homomorphism from P
to F can be extended to a homomorphism from C to F . A negative constraint can
also be represented as a BG, let C−, obtained by merging P and C on their frontier
nodes (with each c1i being merged with c2i ); then C− is satisfied by F if there is no
homomorphism from C− to F .

For instance, the constraint that a student cannot belong to the administrative
staff can be expressed by the formula ∀x(Student(x)→ ¬AdminSta f f (x)), which
corresponds to the form (P,C), or by the equivalent formula ¬∃x(Student(x) ∧
AdminSta f f (x)), which amounts to forbid a BG. Note that the extensions to the
support introduced in Section 3.2 can be encoded by constraints, namely relation
signatures by positive constraints and banned types by negative constraints. Other
frequent forms of constraints in ontologies are cardinality constraints: positive con-
straints allow one to express the condition “at least 1” (like “every professor must
teach at least one undergraduate course”) and negative constraints the condition “at
most 0” (like “no teaching assistant can be coordinator for a course”).

Negative constraints can actually be seen as particular positive constraints (with
C restricted to a concept node with banned type). Positive constraints strictly gen-
eralize negative constraints, in the sense that the associated consistency problems
are not in the same complexity class: the problem of determining whether a given
BG satisfies a given constraint is co-NP-complete if the constraint is negative, and
Π 2

P-complete otherwise.
Finally, equality is represented in conceptual graphs by so-called “co-reference

links” which pairwise connect concept nodes that refer to the same entity. While
co-reference links do not increase the expressivity of BG (though their use may be
interesting for visualisation purposes), they do increase the expressivity of BG-rules,
allowing in particular to express functional dependencies.

3.5 Relationships with description logics

Description logics and conceptual graphs are both rooted in semantic networks.
They both remedy two criticisms on these common ancestors, i.e., the lack of dis-
tinction between factual and ontological knowledge, and the lack of formal seman-
tics. Due to these common properties, their relationships have often been ques-
tioned.

Provided that relations are restricted to binary relations, a support can be seen
as a simple TBox composed of atomic concept and atomic role inclusions. Relation
signatures then correspond to the notions of domain and range, and banned concept
types to class disjointness constraints. On the other hand, an ABox can be seen as a
particular BG without generic concept nodes.
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With the aim of characterizing the intersection of BGs (on a simple support)
and DLs, two equivalent fragments were identified in [Baader et al., 1999b]. On
the CG side, we obtain rooted BG trees with binary relations. On the DL side, we
obtain the DL ELIRO1 (a DL specially tailored for the comparison), in which the
constructors are ∃R.C (existential restriction), CuD (concept intersection), R−(role
inverse), RuR′ (role intersection) and {i} (unary one-of, where i is an individual,
which allows one to integrate specific individuals in concept expressions). It is to be
noticed that this comparison with conceptual graphs was one of the sources of the
EL family, in which homomorphism is a central notion [Baader et al., 1999a].

In this intersection, both formalisms lose some natural features: on the CG side,
relations of any arity and unrestricted structure, in particular cycles on generic con-
cept nodes, while, on the DL side, the variety of constructors.

Other results support the claim that both formalisms are quite “orthogonal”. On
the one hand, it is known that even the most expressive DLs cannot express the
whole existential positive conjunctive fragment of first-order logic [Borgida, 1996].
On the other hand, BG-homomorphism cannot handle negation in a logically com-
plete way, even when restricted to atomic negation on primitive concept types.

More relationships between DLs and CGs can be found if we turn our attention
to richer fragments of conceptual graphs including some classes of BG-rules and
negative BG-constraints on the one hand, and to the ontology-mediated query an-
swering problem on the other hand. Indeed, description logics historically focused
on reasoning about the ontology (i.e., the TBox). The instance checking problem
can only be seen as a very specific querying problem, which asks if a given indi-
vidual belongs to a given concept. To handle conjunctive queries, new description
logics were considered more recently (see Sections 2.2 and 2.3), such as the DL-
Lite family, specifically designed to query data, the EL family, and more generally
Horn description logics. These DLs can be seen as specific fragments of the existen-
tial rule framework (see the next section), which in turn can be seen as the logical
translation of the conceptual graph framework described in this section.

4 Existential Rules

As already mentioned, the increasing volume of complex and heterogeneous data
has spurred an intense research effort on the issue of ontology-mediated query an-
swering in recent years. This work has deeply modified the description logic field
and led to the emergence of new dialects and algorithmic techniques (Section 2.3).
Meanwhile, the framework of existential rules has been developed to address this
issue. The existential rule framework has a double origin: on the one hand it corre-
sponds to the logical translation of the conceptual graph fragment (BGs, rules and
negative constraints) presented in the previous section [Baget et al., 2011a], on the
other hand it has been proposed as an extension to Datalog, the language of deduc-
tive databases, under the name Datalog± [Calı̀ et al., 2009].
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In the relational database field, Datalog was originally designed to provide first-
order queries (or equivalently, core SQL queries) with recursivity [Abiteboul et al.,
1995]. In its plain version (i.e., without negation nor disjunction), a Datalog query
can be seen as a set of rules, which are closed formulas of the form ∀x1 . . .xn (B→
H) , where B and H, respectively called the body and the head of the rule (according
to the logic programming terminology), are conjunctions of atoms; moreover, these
rules satisfy the constraint of being “range-restricted”, i.e., all the variables that
occur in the head of a rule must also occur in its body. Hence, a plain Datalog rule is
logically translated into a Horn clause without function symbols. These rules could
be used as a means of encoding implicit background knowledge. However, they
lack a property considered crucial for representing ontological knowledge, which is
the ability to reason on open domains. Indeed, when the open-world assumption is
made, it cannot be assumed that the only existing entities are those encoded in the
data. Hence, one should be able to infer knowledge on unknown individuals, which
may (or may not) be equal to entities from the data. These considerations motivated
the extension of Datalog rules with existentially quantified variables in rule heads.

4.1 The existential rule framework

Formally, an existential rule is of the form R = ∀x∀y (B[x,y]→ ∃z H[y,z]), where
x,y and z are sets of variables, and B, H are conjunctions of atoms, also denoted by
body(R) and head(R). The frontier of R is the set of variables shared between the
body and the head of R, i.e., y. The existential variables in R are the existentially
quantified variables, i.e., z.

We now consider knowledge bases of the form K = (F,R), where F is a fact
base10 andR is a set of (pure) existential rules.

The logical translation of the BG-rules seen in the preceding section yields ex-
istential rules. For instance, the formula assigned to the BG-rule R from Figure
8 is Φ(R) = ∀x∀y((Student(x)∧Course(y)∧ takes(x,y))→ ∃z(TeachingStaff(z)∧
teaches(z,y)∧ teachesTo(z,x))), where the frontier is {x,y} (note that here all the
variables from the body are frontier variables) and the only existential variable is z.
Any conceptual graph KB of the form K = (S,F,R) can be translated into a logi-
cally equivalent existential rule KB of the form K′ = (F ′,R′), and reciprocally. In
the following, we omit quantifiers in rules as there is no ambiguity.

Beside these “pure” existential rules, two other kinds of rules are generally con-
sidered in the framework: negative constraints, which are existential rules with a
head restricted to ⊥, and equality rules, which are existential rules with a head re-
stricted to an equality of the form e1 = e2, where the ei are variables from the body or
constants. These rules also correspond to constructs in the conceptual graph frame-

10 A fact is usually defined as a ground atom. However, in the existential rule setting, a more
general notion of a fact can be considered, where a fact is an existentially closed conjunction of
atoms, which is in line with the view of a fact as a rule with an empty body. This generalized notion
allows one to encode unknown values in a natural way.
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work, namely negative BG-constraints and BG-rules with a conclusion restricted to
two co-referent concept nodes.

Existential rules and classical description logics likeALC are incomparable with
respect to expressivity. For instance, theALC inclusions ∃coordinatorFor.Coursev
Prof or the SHIQ transitivity axiom (Trans P) can be expressed by existential
rules, but not the ALC inclusion Course v UndergradCoursetGradCourse which
would require a disjunctive head, and the existential rule R from the previous exam-
ple cannot be expressed in a description logic.

On the other hand, existential rules are strictly more expressive than so-called
Horn description logics, which can be seen as DLs whose logical translation yield
existential rules (in other words, the skolemisation of their logical translation yields
Horn clauses with possibly functional symbols). The lightweight description logics
EL and the DL-Lite dialects seen in Section 2 are examples of Horn description log-
ics. Existential rules can be seen as overcoming two limitations of (Horn) descrip-
tion logics: first, predicates of any arity are allowed; second, there is no restriction
on the atoms composing the body and the head of a rule, which allows one to de-
scribe complex relationships between entities (see e.g., the above rule R), whereas
description logics are essentially limited to “acyclic” structures.

4.2 Relationships with database theory

An important connection with relational database theory has to be pointed out. In-
deed, existential rules have the same logical form as Tuple-Generating Dependen-
cies (TGDs), a high-level class of database constraints that generalize many con-
straints of practical database systems (and correspond to the CG positive constraints
from the preceding section). Negative constraints are also considered in databases
and equality rules (with equality between two variables) have the same logical form
as the database Equality Generating Dependencies (EGDs), which generalize con-
straints on keys (see e.g., [Abiteboul et al., 1995]). Note that, despite their syntactic
correspondence, database constructs and rules have different roles: TGDs/EGDs act
as constraints to check the consistency of a database instance, whereas rules act as
ontological knowledge to generate new data. However, in the database setting, it
is possible to repair constraint violations with respect to TGDs/EGDs by applying
them in a forward chaining manner as if they were rules. This process, known as the
chase, is considered as one of the fundamental tools in database theory. The sim-
ilarities between the studied objects explain that many theoretical results obtained
in one domain are actually of interest to the other. In particular, it has long been
shown that the entailment of an atom from a set of TGDs (hence a set of pure exis-
tential rules) and a database instance is an undecidable problem when no restriction
is made.

An existential rule R can be applied to a fact base F if there is a homomorphism
h from body(R) to F , i.e., a substitution h of the variables in body(R) by terms in
F such that h(body(R))⊆ F (both seen as sets of atoms). Applying R to F accord-
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ing to h consists in adding h(head(R)) to F , where h(head(R)) is obtained from
H by substituting each frontier variable x by h(x) and safely renaming existential
variables by fresh existential variables. The saturation of the fact base consists in it-
eratively applying rules on it until no rule application is possible. This process may
of course not terminate since entailment is undecidable. Several forward chaining
(or chase) variants have been defined, which differ in how they deal with the possible
redundancies introduced by existential variables. It is well known that the (possibly
infinite) saturation obtained by any of these chase variants forms a universal model
of the knowledge base, i.e., a model that can be mapped by homomorphism to any
other model of the KB. Hence, a universal model acts as a representative of all
models of the KB, sufficient to decide conjunctive query entailment from the KB.

4.3 Decidability results

Interest in the existential rule framework gave rise to fruitful work on finding
classes of existential rules for which (conjunctive) query answering is decidable.
A wide range of rule classes offering various expressivity/tractability tradeoffs is
now known (see e.g., [Mugnier, 2011; Gottlob et al., 2012; Thomazo, 2013; Mug-
nier and Thomazo, 2014] for syntheses). Most of these classes can be understood
according to abstract properties that underlie decidability:

1. The set of rules R ensures that any KB K = (F,R) has a finite universal model.
In other words, some chase variant is guaranteed to halt on any fact base. Hence,
for any (Boolean) CQ q, K |= q if and only if F∗ |= q, where F∗ is the saturation
of F . Such sets of rules are called finite expansion sets (fes) [Baget et al., 2011a].

2. The set of rules R ensures that any (Boolean) CQ q can be rewritten using the
rules into a (finite) union of conjunctive queries Q such that for any KB K =
(F,R) holds that K |= q if and only if F |= Q. Such sets of rules are called
UCQ-rewritable or finite unification sets (fus) [Baget et al., 2011a]. More general
forms of rewritings can be considered, such as first-order queries, which may
produce a more succinct rewriting, or Datalog queries, which may provide a finite
rewriting when there is no finite rewriting as a first-order query (see [Gottlob and
Schwentick, 2012; Bienvenu et al., 2018] among others). It is known that UCQ-
rewritability and first-order rewritability are actually equivalent properties (e.g.,
[Gottlob et al., 2014]).

3. The existence of a finite universal model may not be guaranted, but the set of
rulesR ensures that the saturation of any KB K = (F,R), seen as a graph, has a
bounded treewidth. This allows for finite encodings of infinite saturations. Such
sets of rules are called (greedy) bounded-treewidth sets ((g)bts) [Baget et al.,
2011a,b; Thomazo, 2013].

The two first families of rules clearly enable one to come back to a classical
database query answering problem: either the knowledge that can be entailed by
the rules is encoded in the facts, or the relevant part of the rules is encoded in the
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query. In the third case, querying the finite encoding is more involved. Deciding
whether a given set of rules satisfies one of these three abstract properties is unde-
cidable, however each abstract property admits some “concrete” cases defined by
recognizable syntactic criteria. Generalisations or combinations of these properties
have been defined, however their presentation is outside the scope of this chapter.

Table 1 presents the main currently known concrete rule classes for which
ontology-mediated conjunctive query answering has polynomial time data complex-
ity. We chose to present the simplest classes, in order to highlight the fundamental
ideas, even if most of these classes admit generalisations that often keep the same
data complexity. The existence of a finite universal model (fes property) is ensured
by some acyclicity conditions that prevent infinite creation of new variables during
the chase. Such classes include range-restricted rules (i.e., Datalog rules), weakly-
acyclic rules, and aGRD rules. These two last classes are both defined by an acyclic-
ity condition on a directed graph, which encodes variables sharing between positions
in predicates in the first case, and dependencies between rules in the second case.
In the first graph, called position (dependency) graph [Fagin et al., 2005], the nodes
represent all positions in predicates occurring in rules, i.e., the node (p,i) represents
the position i in some predicate p. Then, for each rule R and each variable x in
body(R) occurring in position (p, i), edges with origin (p, i) are built as follows: if
x is a frontier variable, there is an edge from (p, i) to each position of x in head(R);
furthermore, for each existential variable y in head(R) occurring in position (q, j),
there is a special edge from (p, i) to (q, j). A set of rules is said to be weakly acyclic
if its position graph has no circuit passing through a special edge. Intuitively, this
condition ensures that the introduction of an existential variable in a given position
can never lead to create another existential variable in the same position, hence an
infinite number of existential variables.

For example, let R1 = h(x)→ p(x,y) and R2 = p(u,v),q(v)→ h(v). The position
graph of {R1,R2} contains a special edge from (h,1) to (p,2) due to R1 and an edge
from (p,2) to (h,1) due to R2. Hence, {R1,R2} is not weakly-acyclic.

Range-restricted rules are a special case of weakly-acyclic rules since they do
not have existential variables at all.

The second graph is called graph of rule dependencies (GRD) [Baget et al.,
2011a; Grau et al., 2013]. Intuitively, a rule R j depends on a rule Ri if there is a
fact base such that an application of Ri on this fact base leads to a new application
of R j. This abstract condition can be effectively computed by a specific unifier be-
tween the head of Ri and the body of R j. The GRD of a set of rules R has a set of
nodes in bijection with R and edges (Ri,R j) whenever the rule R j depends on the
rule Ri. A set of rules is aGRD if its GRD has no circuit. In the above example, R1
depends on R2 but not the contrary (indeed, one can check that an application of
R1 can never lead to trigger an application of R2: it produces an atom of the form
p(x,y), where y is a new existential variable, but it does not produce the atom q(y),
which on the other hand cannot exist in the fact base since y is new, hence no new
application of R2 is made possible); hence, {R1,R2} is aGRD. Weak-acyclicity and
aGRD are in fact incomparable properties, but they admit common generalisations
[Grau et al., 2013; Rocher, 2016].
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The fus property is ensured by conditions that allow one to bound the maximal
size of a non-redundant CQ generated during the rewriting. Concrete fus classes
include in particular linear rules and sticky rules (these two classes being incompa-
rable). A linear rule has a body restricted to a single atom. The stickiness of a set of
rules is defined by a marking procedure of the variables occurring in rules; then the
set of rules is said to be sticky if no marked variable in a rule body occurs in two dif-
ferent atoms; intuitively, this ensures that a variable generated during the rewriting
process occurs in at most one atom [Calı̀ et al., 2010; Thomazo, 2013]. The decid-
ability of ontology-mediated query answering for sets of rules with the bts property
comes from an indirect argument (following a result by Courcelle), which does not
directly provide a suitable algorithm. However, the expressive subclass known as
gbts allows one to greedily build a tree decomposition of the (possibly infinite) sat-
urated fact base, such that this tree decomposition has a bounded width. Concrete
rule classes in the gbts family are also known as the guarded family, inspired by
the guarded fragment of first-order logic. We list here the main members of this
family [Calı̀ et al., 2008; Baget et al., 2011a]. A rule is guarded if an atom of its
body (called a guard) contains all the variables that occur in its body. Note that a
linear rule is by definition guarded, hence it is not only fus but also gbts. A rule is
frontier-one if it has only one frontier variable. A rule is frontier-guarded if an atom
of its body guards all the variables of its frontier (hence, this class generalizes both
guarded and frontier-one rules).

Rule Class Data Complexity
Datalog PTime-c [Dantsin et al., 2001]
weakly-acyclic PTime-c [Dantsin et al., 2001](LB) [Fagin et al., 2005](UB)
aGRD AC0(1)
linear AC0 [Calı̀ et al., 2009] (1)
sticky AC0 [Calı̀ et al., 2010] (1)
guarded PTime-c [Calı̀ et al., 2009]
frontier-guarded PTime-c [Baget et al., 2011b]
frontier-1 PTime-c [Baget et al., 2011b]

(1) The AC0 membership for data complexity follows from the FO-rewritability

Table 1 Fundamental classes of existential rules with polynomial-time data complexity

Most Horn description logics belong to the gbts family, except those including
transitivity, and more generally composition, of binary relations. Indeed, transitivity
destroys the tree-like structure of the saturation. For instance, EL and ELHI are
frontier-guarded, while DL-LiteR is linear (hence, also fus).
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5 Conclusion

Reasoning with ontologies is becoming central in many data-centric applications for
which ontologies are a way to integrate heterogeneous data by providing a common
conceptual vocabulary. In this setting, it is crucial to deeply understand the impact of
the ontological constructs on the complexity of the main reasoning problems. This
chapter provides the required formal background and results to help data practition-
ers to choose the knowledge representation formalism with the best expressivity /
complexity tradeoff regarding their application needs.

Ontology-mediated query answering is a vibrant area at the crossroads of sev-
eral domains, namely data management, knowledge representation and reasoning,
and the Semantic Web. Undoubtedly, many issues remain to be solved before the
widespread adoption of the framework in practice. We will mention some of the
challenges currently addressed in the area, without any claim to be exhaustive. Up
to recently, most work were limited to conjunctive queries, or slight extensions of
them, while the ability to process more complex queries is required. The combina-
tion of conjunctive queries and navigational queries has begun to be investigated
(e.g., [Stefanoni et al., 2014; Bienvenu et al., 2015; Baget et al., 2017]). New algo-
rithmic techniques are being developed to meet the challenge of scalability beyond
simple ontological languages (e.g., approaches that combine materialization of in-
ferences and query rewriting [Lutz et al., 2013; Feier et al., 2015]). The integration
of heterogeneous data under the form of a (possibly virtual) fact base relies on so-
called mappings from these data to facts over the ontological vocabulary [Poggi
et al., 2008]: while mappings are a classical notion in data integration, their intro-
duction poses new challenges in the presence of an ontology (e.g., [Bienvenu and
Rosati, 2016; Botoeva et al., 2016]). Representing and reasoning with temporal and
spatial data, as well as information about their reliability and provenance, are of ut-
termost importance in most data-centric applications and have only recently begun
to be explored in the context of ontology-mediated query answering [Artale et al.,
2015; Borgwardt et al., 2015; Bereta and Koubarakis, 2016; Brandt et al., 2017].
Last but not least, practically robust query answering has to be tolerant to data in-
consistencies, which are likely to occur in large datasets especially when the data
issues from multiple data sources (e.g., [Lembo et al., 2015; Lukasiewicz et al.,
2015; Bienvenu and Bourgaux, 2016]).
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