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Abstract In this paper, a RISE (Robust Integral of the Sign Error) controller
with adaptive feedforward compensation terms based on Associative Memory Neu-
ral Network (AMNN) type B-Spline is proposed to regulate the positioning of a
Delta Parallel Robot (DPR) with three degrees of freedom. Parallel Kinematic
Manipulators (PKMs) are highly nonlinear systems, so the design of a suitable
control scheme represents a significant challenge given that these kinds of systems
are continually dealing with parametric and non-parametric uncertainties and ex-
ternal disturbances. The main contribution of this work is the design of an adaptive
feedforward compensation term using B-Spline Neural Networks (BSNNs). They
make an on-line approximation of the DPR dynamics and integrates it into the
control loop. The BSNNs’ functions are bounded according to the extreme val-
ues of the desired joint space trajectories that are the BSNNs’ inputs, and their
weights are on-line adjusted by gradient descend rules. In order to evaluate the
effectiveness of the proposed control scheme with respect to the standard RISE
controller, numerical simulations for different case studies under different scenarios
were performed.
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1 Introduction

PKMs have gained significant interest in recent decades thanks to their desired
features provided by their construction based on several closed-loop kinematic
chains [1]. This configuration provides some advantages to PKMs over their serial
counterparts. For instance, the overall stiffness in PKMs is higher than concerning
serial manipulators owing to several limbs joined to a fixed base to support the
traveling plate where the end-effector is located, generating more resistance against
the deflections caused by external forces or moments exerted on the end-effector
[2]. Besides, this arrangement allows to PKMs to obtain absolute greater accuracy,
better repeatability, more capacity to carry heavier loads, and the ability to exe-
cute faster and more precise movements [3]. These features make PKMs attractive
solutions for tasks that require high positioning accuracy and precision, and for
these reasons are widely used in product transportation and classification tasks,
haptic devices, agricultural applications, machine tools, laser cutting, 3D printers,
among others [4], [5], [6]. One of the most studied PKM in the literature is the DPR
developed in the 80’s by Reymond Clavel. [7]. The main distinction of the DPR
other existing PKMs concepts is the use of mechanisms based on parallelograms.
The parallelograms restrain the orientation of the traveling plate entirely resulting
in only translational movements over the three axes of the Cartesian space. Be-
sides, its closed kinematic chains are very light, allowing this robot to reach high
extreme accelerations. For these features, the DPR is mainly used in Pick and
Place (P&P) tasks [4]. However, the operational workspace of PKMs is reduced in
comparison to Serial Manipulators. Moreover, PKMs are known for their highly
nonlinear dynamics, which is increases considerably when the PKM is operated
at high speeds/accelerations leading to mechanical vibration issues [8]. Addition-
ally, the closed-loop configuration yields coupling dynamics; therefore, the actua-
tors must work in complete synchronization with each other for not damaging the
PKMs’ mechanism. The previous problem is closely related to unstructured or/and
structured uncertainties. Geometric errors, sensors noise, components degradation,
and modeling simplifications, e.g., not considered friction or actuator dynamics,
are considered the first kind of uncertainties. The second kind of uncertainties is
generated by parameter variations owing to operate environment or inaccurate
knowledge of dynamic parameters [9]. For the PKMs to perform tasks satisfacto-
rily, advanced control techniques should be considered to overcome the issues and
challenges mentioned above, guaranteeing the minimum possible tracking error
[10]. To deal with the discussed control challenges for PKMs, we propose a RISE
controller with an adaptive feedforward term based on AMNNs. The main contri-
bution of the paper is the design of an adaptive feedforward compensation term
based on BSNNs. They make an on-line approximation of the DPR dynamics and
integrated it into the control-loop. The BSNNs’ functions are bounded according
to the extreme values o the desired joint space trajectories that are the BSNNs’
inputs, and their weights are on-line adjusted by gradient descend rules. The re-
mainder of this paper is organized as follows: In Section 2, the state of the art
of proposed control solutions for robotics emphasizing in PKMs is presented. In
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Section 3 the kinematic and dynamic models of a DPR are presented. In Section
4, the proposed RISE controller with adaptive BSNN compensation is set out in
detail. To know the effectiveness of the proposed control scheme, numerical simu-
lations are presented in Section 5, where the control system is proven in two case
studies under various scenarios. Finally, conclusions are detailed in Section 6.

2 State of the Art

For PKMs, several control techniques have been developed and implemented to
deal with the previously mentioned challenges, highlighting conventional feedback
controllers, nonlinear controllers, robust controllers, adaptive controllers, or a com-
bination of them [2]. Control schemes based on the PD/PID feedback control have
been extensively used for control of PKMs, due to its easy implementation and its
relatively good performance. However, in PKMs, the performance of this type of
controllers decreases notoriously when the system is subjected to sudden changes in
the acceleration and dynamic parameter variation [11], [12]. Robust linear control
techniques such as the H∞ are used for systems affected by the presence of exter-
nal disturbances and parametric variations [13]. An efficient implementation of a
H∞ multivariable controller PKMs is presented in [14]; in such scheme, a linearized
model around an operating equilibrium point is determined to obtain a state-space
representation of the DPR, besides that, the sensitivity and complementary sensi-
tivity transfer functions are calculated. This technique utilizes the perturbations
in the design of the controller, but the design of this scheme is very sophisticated
and complex. RISE is a novel robust nonlinear feedback control technique that is
becoming popular in robotics control. This control scheme outcomes limitations
presented in PD/PID controllers thanks to its robust nonlinear term, and it ensures
semi-global asymptotic stability in the presence of general uncertain disturbances
[15] besides, its implementation is straightforward without many complications as
other robust techniques. This control law has been implemented satisfactorily in
PKMs, as was demonstrated in [16]. Some modifications have been made to the
original RISE control to improve its qualities, e.g., in [17], a RISE control with
nonlinear gains was proposed to regulate the position of a DPR. Moreover, RISE
control is suitable to be combined with model-based terms to enhance the overall
system performance, as was demonstrated in [18], where a RISE controller with
computed feedforward was proposed to regulate the trajectory tracking of a PKM
designed for machining operations. However, for model-based controllers, the lack
of accurate knowledge of parameters may lead to degrading the controller effi-
ciency instead of improving it. Adaptive controllers have been proposed to deal
with the above problems. These control schemes started from the issue that some
dynamic model elements are not accurately known. They included an adaptation
rule which adjusts controller parameters to changes in the controlled system ac-
cording to given criteria [19]. In [20], a RISE controller with adaptive feedforward
was proposed to control a redundantly actuated PKM dealing with the issue of
parametric uncertainties. We can mention other adaptive control proposals solu-
tions making use of artificial intelligence. For instance, in [21], a reinforcement
learning with a complete inverse kinematic solution was proposed to balance the
lower body of an NAO robot. This control solution can compensate external dis-
turbances modifying its value function parameters. In [22], a model-free adaptive
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controller was proposed to control a pneumatic actuator. The controller makes
use of a Q-function to estimate the long-term performance of the adaptive con-
trol. This solution can stabilize the system in the presence of nonparametric and
parametric uncertainties. Some adaptive controllers make use of Artificial Neural
Networks (ANNs) to approximate unknown nonlinear dynamics and integrated it
into the control-loop [23]. In the literature, it has been reported several adaptive
control schemes based on ANNs applied to robotics control. We can distinguish
two architectures of ANN. The first one is the multi-layer ANN. This configuration
increases the computation complexity since the information travels bidirectionally
between the hidden layers of the neural network, besides they entail a considerable
computational cost requiring long training time [24]. The second one is the single-
layer ANN. This kind of ANN requires less computational process due to its single
layer of neurons; the AMNN belongs to this configuration. These kinds of ANN
assume the principle of local generalization, implying that for a specific input, just
a portion of the ANN will be involved; thus, the computational effort is reduced.
Moreover, their activation functions are linear respect to the adaptable weights
so, straightforward instantaneous learning rules can be used to update their ad-
justed weights [25]. There have been some recent advances in the field of robotics
control using ANN. In the branch of multi-layer-based ANN, a nonlinear adap-
tive controller was proposed to regulate the trajectory tracking of a Cable-driven
robot in [26]; the controller can compensate for parametric and non-parametric
uncertainties of the nonlinear robot dynamics; the weights are updated trough
projection operators. Besides, it has been reported several control schemes based
on single-layer ANNs. In [27], a modified version Cerebellar Model Articulation
Controller (CMAC) was proposed to find optimum weigh values to outstrip non-
linearities like gravity. The proposed algorithm freezes a set of adaptive weights
in a feedforward-like component in the CMAC. When the feedforward component
has been established, the algorithm starts to learn another set of weights which
contribute to feedback-like terms in the CMAC and these weights get frozen when
they no longer reduce a cost-functional This control solution based in the CMAC
ANN was validated with numerical simulations to a two-link flexible-joint robot.
In [28], a novel output feedback controller with a feedforward term based on the
Radial Basis Function (RBF) ANN was proposed to compensate for uncertainties
in the dynamic model of a robotic exoskeleton. This advanced control solution re-
quires only position information for the RBF inputs. In [29], a PD controller with
a BSNN feedforward compensation was applied to a DPR to regulate the trajec-
tory tracking for a P&P application, demonstrating that the addition of intelligent
compensation terms may reduce the tracking error considerably and might cancel
the steady-state error for the PD controller. However, only the error signal was
taken into consideration as inputs of the BSNN so that the resulting dynamic
approximation was not accurate.

3 DPR Modeling

3.1 System Description

The DPR is a 3-DOF (Degrees of Freedom) PKM designed for P&P tasks; its
mechanical structure is composed mainly of two platforms, fixed base, and travel-
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ing plate; the last one performs translational movements with a fixed orientation.
The traveling plate is connected to the fixed base through three identical kinematic
chains. Each kinematic chain consists of two parts, a rear-arm and a forearm, which
is composed of two parallel bars, both are connected by way of passive spherical
joints. The DPR rear-arms are mounted directly to the actuators located on the
fixed base through rotational joints, while the forearms are connected to the trav-
eling through a set of passive spherical joints. The dynamic model is represented
in the joint space whose variables are denoted as q = [q1 q2 q3]T however, the

position of the traveling plate is given in Cartesian coordinates as X = [x y z]T .
The schematic diagram of the DPR is shown in Fig. 1.

Fig. 1 Illustration of a DPR kinematic chain

3.2 Inverse Kinematic Model

Inverse Kinematic Model (IKM) for PKMs with delta-like architecture is formu-
lated trough the Loop Closure Method [30]. Considering Fig. 1 the closed-loop
equation for the DPR is established as follows:

||BiCi||2 = l2i (1)

Ai = Rb
[
cos(αi) sin(αi) 0

]T
(2)

where Ai, ∀i = 1...3 represents the location of the three actuated joints expressed
in the fixed reference frame. Rb is the fixed-base radius, the actuated joints are
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placed with the following angles α =
[
3π
2

π
6

5π
6

]T
.

The points Bi and Ci whose coordinates are expressed in the fixed reference frame
O − xo, yo, zo are defined as follows:

Bi = Ai + L
[
cos(αi) cos(qi) sin(αi) cos(qi) − sin(qi)

]T
(3)

Ci =
[
Rp cos(αi) + x Rp sin(αi) + y z

]T
(4)

being L the arm length and Rp is the traveling-plate radius. An auxiliary frame
located at Ai-xi, yi, zi is defined, where the auxiliary vectors ixi and iyi are
defined as:

ixi =
[
cos(αi) sin(αi) 0

]T
(5)

iyi =
[
− sin(αi) cos(αi) 0

]T
(6)

Having defined all the equations that involve the closed-loop equation the expres-
sion (1) is re-write in the following form to obtain the values of qi.

Di sin(qi) + Ei cos(qi) + Fi = 0 ∀i = 1, 2, 3 (7)

where Di = 2Li(AiCi · zo), Ei = 2Li(AiCi ·i xi), and Fi = l2i − L2
i − ||AiCi||2.

Solving (7) the values of qi can be obtained using the following expression:

qi = arctan

(
−Di ±

√
∆i

Fi − Ei

)
(8)

Being equation (8) the corresponding IKM for the DPR, with ∆i = D2
i +E2

i −F 2
i .

3.3 Inverse Dynamic Model

The Inverse Dynamic Model (IDM) for the DPR has been developed considering
the methodology presented in [20]. For PKMs with delta-like architecture, some
simplifications to develop their dynamic model are considered, these simplifications
are discussed in more detail in [30] and [31]. The simplifications are the following:

– Since obtaining an accurate frictional model for PKMs, the frictional forces
dry and viscous are omitted in the analysis.

– The rotational inertia of the forearms is neglected. Nevertheless, its mass is
divided into two equivalent parts; one part is added to the rear-arm mass,
and the other part is joined to the traveling plate mass. This simplification is
justified if the mass of the forearms is smaller than the other components of
the robot.

We can establish the inverse dynamic model in function of the torques produced
by the actuators Γact ∈ R3×1, the rear-arms with a half mass of the forearms
Γrf ∈ R3×1 and, the traveling plate with the other half mass of the forearms
Γftp ∈ R3×1 as follows:

Γ = Γact + Γrf + Γftp (9)

The produced torques owing to motor’s inertia are obtained as follows:

Γact = Iactq̈ (10)
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where Iact = diag([Iact]) ∈ R3×3 is a square diagonal matrix containing the inertia
values of each motor. Considering the second simplification mentioned above, one
can derive the dynamics of the rear-arms and forearms as follows. For the rear-arms
torques are computed through the following equation:

Γra(t) = Iraq̈ + MragLc cos(q) (11)

where Ira = diag([Ira]) ∈ R3×3 is the inertia matrix of the rear-arms’, cos(q) is
a vector of 3 × 1, representing the cosine of each angle qi ∀i = 1, ..., 3, Mra =
diag([mra]) ∈ R3×3 is the mass matrix of the rear-arms’, Lc is the distance from
the rotational axis of the rear-arm to its gravity center, and cos(q) is composed as
follows:

cos(q) = [cos(q1) cos(q2) cos(q3)]T (12)

Considering the second simplification, one may express the torque contributions
of the forearms by means the following expression:

Γfa(t) = Ifaq̈ + MfagLcos(q) + JTinvMnfa(Ẍ + G) (13)

Where Ifa = diag([L2mfa

2 ]) ∈ R3×3, Mfa = diag([
mfa

2 ]) ∈ R3×3,and Mnfa ∈
R3×3 = diag([3

mfa

2 ]) where mfa is the forearm mass considering the two parallel

bars. Jinv ∈ R3×3 is the inverse Jacobian matrix, Ẍ ∈ R3×1 is the Cartesian
acceleration vector of the traveling plate, L is the rear-arm length, and G =[
0 0 g

]T ∈ R3×1 is the gravity vector with g = 9.81 m/s2. Applying the Newton-
Euler equation to the traveling plate we obtain the following expression:

Fp = Gp (14)

where Fp and Gp are the inertial and gravity forces acting on the traveling plate
represented in the following expressions:

Fp = MpẌ (15)

Gp = −MpG (16)

being Ẍ ∈ R3×1 the Cartesian acceleration vector. The mass matrix of the travel-
ing plate is composed as follows:

Mp = diag([mp mp mp]) (17)

where mp is the traveling plate mass. The inverse Jacobian matrix is used to
compute the traveling plate torque contributions produced by the inertial forces
and gravity force as follows:

Γtp = JTinvMp(Ẍ + G) (18)

The dynamic equation of the forearms (13) should be split into two parts, one part
is added to (18), and the other part is added to (18) to obtain Γrf and Γftp. The
torque contributions due to the rear-arms and the half mass of the forearms are
given as follows:

Γrf = Irf q̈ + Mrfgcos(q) (19)
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Table 1 Summary of the DPR kinematic parameters

Parameter Description Value

L Rear-arm length 0.3 m
l Forearm length 0.624 m
Rb Base platform radio 0.1267 m
Rp Traveling plate radio 0.0497 m

Table 2 Summary of the DPR dynamic parameters

Parameter Description Value

mtp Mobile platform mass 0.19 Kg
mra Rear-arm mass 0.29 Kg
mfa Forearm mass 0.28 Kg
Ira Rear-arm inertia 0.0213 Kgm2

Iact Motor inertia 3.8 ×10−6 Kgm2

Where Irf ∈ R3×3 is a square diagonal matrix whose elements are formed by:
Irf = Ira + L2mfa

2 . The resulting mass matrix is expressed as:

Mrf = diag([mrf mrf mrf ]) (20)

With mrf = mraLc +
mfaL

2 . To express the inverse dynamic model in function
of the joint space variables, it is essential to take into consideration the following
relations based on the inverse Jacobian matrix:

Ẋ = Jinvq̇ (21)

Ẍ = Jinvq̈ + J̇invq̇ (22)

Substituting (18), (19), and (10) in (9) and taking into account (12) we state the
inverse dynamic model as follows:

M(q)q̈ + C(q, q̇)q̇ + G(q) = Γ (23)

where:

– M(q) = Iact + Irf + JTinvMpJinv
– C(q, q̇) = JTinvMpJ̇inv
– G(q) = (Mrfcos(q) + JTinvMp)G

The kinematic and dynamic parameters of the DPR are shown in Tables 1 and 2
respectively.

4 Control Strategy

The main objective of a DPR is to perform high speed and high accuracy P&P
operations with the smallest possible tracking error. To reach this objective, it is
crucially essential to design a control scheme capable of keeping the precision un-
der abrupt changes of mass and acceleration. To satisfy these demands, we propose
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integrating the RISE control algorithm with an adaptive feedforward compensa-
tion term. The main feature of RISE controller can ensure semi-global asymptotic
stability in the presence of general uncertain disturbances [32]. It is well known in
robotics control that the addition of a feedforward term can compensate the inher-
ent nonlinearities and improve the system performance. However, sometimes, the
dynamic model or dynamic parameters as masses and inertia are unknown or not
measurable. Consequently, wrong parameter estimation or an inaccurate dynamic
model can harm the efficiency of the control scheme instead of improving. ANNs
are an attractive solution for nonlinear modeling systems due to their ability to
identify unknown dynamic models through a set of inputs and outputs related
to each other. BSNN is a kind of ANN formed by three parts: A lattice used to
normalize the inputs, a single layer set of basis functions defined over the lattice,
and the network output, which is a linear combination of the basis functions with
the adjustable weights [33]. This ANN is very suitable for nonlinear model iden-
tification in real-time due to its construction formed by only one hidden layer of
basis functions avoiding large number calculus compared to any multilayer ANN.
In this work, we employed BSNNs to approximate the inverse dynamics for each
kinematic chain of the DPR. Having in mind the benefits of RISE control and
ANN, we establish the following control scheme for the DPR:

Γ = ΓRISE + Σ̂(qd, q̇d, q̈d, e1) (24)

where ΓRISE ∈ R3×1 corresponds to feedback RISE feedback control and the term
Σ̂(qd, q̇d, q̈d, e1) ∈ R3×1 is the intelligent vector-based term on BSNNs. Fig. 2
illustrates a general overview of the proposed control technique.

Trajectory Generator

in Cartesian Space

Inverse Kinematic

Algorithm

RISE Controller

Xd=[xd, yd, zd]
T

 qd=[q1d, q2d, q3d]
T

BSNN Compensator

+

e1(t)=eq(t)+ 1eq(t)
.

+
+

eq

q=[q1, q2, q3]
T

RISE

^

Trajectory Generation

in joint space

qd qd qd

. ..

Fig. 2 Representation of the proposed control scheme with BSNN compensation for the DPR

The position tracking error in joint space eq(t) ∈ R3×1, is defined as:

eq = qd − q (25)

where qd is the desired joint position and q is the actual joint position. RISE
control requires the evaluation of the combined filtered tracking error in joint
space denoted by the following expression:

e1 = ėq + α1eq (26)
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where α1, ∈ R3×3 is a positive-definite, diagonal matrix. The RISE feedback
control expression is defined by the following equation:

ΓRISE = (Ks + I)e1(t)− (Ks + I)e1(t0)+∫ t

0

[(Ks + I)α2e1(τ) + βsgn(e1(τ))]dτ
(27)

where Ks, α2, β ∈ R3×3 are positive-definite, diagonal matrices, I ∈ R4×4 is the
identity matrix, and sgn(.) is the vector of the sign functions of the first filtered
tracking error. The term (Ks + I)e1(t0) is used to ensure a zero initial control
input at t = 0. The vector containing the BSNNs outputs is defined as:

Σ̂ = [σ̂1 σ̂2 σ̂3]T (28)

where σ̂i ∀i = 1, 2, 3 denotes the respective BSNN output used to approximate
the dynamics of one DPR kinematic chain.

4.1 Design of the feedfoward term based on BSNNs

As it was mentioned above, the BSNNs aims to estimate on-line the dynamic
behavior of the DPR to include it into the control loop as a feedforward compen-
sation term. In robotics the feedforward control is represented by the following
expression:

M(qd)q̈d + C(qd, q̇d)q̇d + G(qd) = ΓFW (29)

However, for the proposed control scheme M ∈ R3×3, C ∈ R3×3, G ∈ R3×1 are
considered unknown. One can see that the Inertia, Centripetal/Coriolis matrices,
and the gravity vector are evaluated with the desired trajectories qd, q̇d, q̈d.
Therefore, we set the trajectories values as the data input for the BSNNs. An
important aspect of the design of each BSNN is to define the input space lattice
formed by a set of n knot-vectors, one-knot vector for each input axis. Once the
input data is established, the next step is to define the K order, shape, number,
and distribution of the basis functions. The K order defines the shape of the basis
functions, i.e., if K = 1, we obtain piecewise constant functions, K = 2 leads to
piecewise linear functions, K = 3 generates piecewise quadratic functions and,
when K = 4 piecewise cubic functions are obtained. Selecting a higher-order for
the functions result in a better approximation. The number of knots and the value
of each one, as well as the interval between them, are set by prior knowledge of the
selected BSNN inputs. Dynamics of Parallel Robots are highly and complex; thus,
we selected basis functions of third-order to acquire an accurate approximation of
the dynamics behavior without making a greater number of calculations as may
occur with cubic functions. A knot-vector is defined for each input axis considering
the extreme admissible values of the trajectories as the maximum and minimum
values of the input vectors. For the axes where qd are the inputs the minimum
and maximum values are from -1 to 1 rad respectively, -10 to 10 rad/s for q̇d and
-200 to 200 rad/s2 for q̈d. Once the input range is already defined for the input
axes, the next step is to define the number and distribution of j − th knots of
the vector. Each knot-vector is formed by 8 knot-points and they are distributed
in groups of four elements to generate three b-spline functions that share some
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Fig. 3 Distribution of the proposed activation functions of order 3 for the respective inputs

Table 3 Knot-points Vectors’ distribution

Input Knot-points Vector

[−1 −0.75 −0.5 −0.25]
qd [−0.5 −0.25 0.25 0.5]

[0.25 0.5 0.75 1]

[−10 −7.5 −5 −2.5]
q̇d [−5 −2.5 2.5 5]

[2.5 5 7.5 10]

[−200 −150 −100 −50]
q̈d [−100 −50 50 100]

[50 100 150 200]

knot-points among them. We selected this configuration because it gives a good
approximation of the system behavior, as being reported in the results section. In
Fig. 3, the distribution of the knot-points and B-spline functions for each input
axis are depicted. The knot-points values for the input axes are given in Table 3.

We proceeded to present the expression of univariate B-Spline basis function,
which is defined through the following recurrence relationship [34]:

SjK(u) =

(
u− λj−K

λj−1 − λj−K

)
Sj−1
K−1(u) +

(
λj − u

λj − λj−K+1

)
SjK−1(u)

Sj1(u) =

{
1 if u ∈ Ij
0 other cases

(30)

where u corresponds to the input, λj is the jth knot point and Ij = [λj−1, λj) is
the jth interval between two-knot points, and K is the order of the output function.
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Fig. 4 Diagram of the proposed BSNN used as a compensation term for each kinematic chain
of the DPR

The output of each one of the BSNN can be written as follows [35]:

σ̂i =
P∑

m=1

amwm = aTi wi ∀i = 1, 2, 3 (31)

where ai is a P -dimensional vector which contains the outputs of the BSNN basis
functions and, wi is the weights vector. The diagram depicted in Fig. 4 represents
the BSNN configuration for the DPR dynamic estimation.

4.2 Training algorithm

An instantaneous training algorithm is used for the BSNN; this algorithm only
adjusts the weights corresponding to the active basis functions. The instantaneous
learning rule is formulated, minimizing an instantaneous estimation of a perfor-
mance function of the Mean Square Error (MSE) of the output, and the parameters
are updated using descending gradient rules. The MSE estimate is given by:

J(t) = (σ̂(t)− σ(t))2 (32)

A variation of the standard descending gradient is the Normalized Least Mean
Square (NLMS) algorithm employed for instantaneous training. We used this for-
mulation as a learning rule because it uses few computational resources, which is
essential for real-time implementation. The learning rule is given as follows [35]:

Wi = Wi(t− 1) +
γσ̃i(t)

||ai(t)||22
ai(t) ∀i = 1, 2, 3 (33)
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Table 4 Controllers parameters RISE/RISE BSNN

Parameter Value

α1 110
α2 8
Ks 60
β 3
γ 0.53

where γ is the learning rate, ai is the vector that contains the output of the basis
functions, Wi is the adjustable weights vector, and σ̃i(t) = σi(t) − σ̂i(t) is the
BSNN output error. To do the on-line training of the BSNN, it is necessary an er-
ror signal that is the difference between the real variable and the estimated by the
BSNN. However, in this case, the real value is not available since it is required to
obtain through the BSNN. For this reason, it is consistent with using the measure-
ment of the robot’s position and comparing it with the values of the established
desired trajectory to obtain an error signal. In this case, σ̃i(t) is estimated using
the composed tracking error e1, as illustrated in Fig 2.

5 Simulation and results

The performance of the proposed control scheme is compared to the standard RISE
controller under different scenarios for two case studies. The first one consists of a
high-speed P&P trajectory task, and the second one is a spiral trajectory track-
ing evaluated under different speeds. The performance of each control scheme is
quantified using the Root Mean Square Error (RMSE) formula. The following two
equations established the RMSE in Cartesian and joint space form respectively:

RMSEC =

√√√√ 1

N

N∑
k=1

(e2x(k) + e2y(k) + e2z(k)) (34)

RMSEJ =

√√√√ 1

N

N∑
k=1

(e2q1(k) + e2q2(k) + e2q3(k) (35)

where ex, ey, ez denote the Cartesian position tracking error of the traveling plate
along the x, y, z axes, while eq1, eq2, eq3 are the different joint space tracking errors.
Moreover, N is the number of samples and k the current sample. The controller
parameters for RISE and RISE BSNN are shown in Table 4.

5.1 Case study 1

The P&P trajectory used for this case study is represented in Cartesian space
by Fig. 5, and it composes of two illustrations. The left illustration represents the
tracking trajectory for the first scenario executed by the DPR without any payload,
while in the second scenario, the DPR moves masses of 1 Kg along trajectory
sections. The sections of the trajectory where the traveling plate of the DPR
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moves a mass are depicted with a dotted line in red color, whereas the solid lines
in blue are the sections of the trajectory where the DPR is moving without any
payload. This trajectory is generated using the polynomial interpolation of fifth-
order [36], [37]. This polynomial function is generated thanks to the following two
expressions:

xf = xi + r(t)∆x, for 0 ≤ t ≤ tf (36)

And:

r(t) = 10

(
t

tf

)3

− 15

(
t

tf

)4

+ 6

(
t

tf

)5

(37)

where xi is the initial position, xf is the final position; both are given in Cartesian
space, r(t) is the trajectory function of two points, ∆x = xf − xi, and tf is the
duration of the movement. The desired trajectories respect to time in Cartesian
space are generated through equations (36) and (37), they are represented in Fig.
6. The sequence of movements for the P&P trajectory in the (x,y) plane is the
following.

1. Start-Pick: from (-0.2,-0.1) to (-0.1,0.1).
2. Pick-Place: from (-0.1,0.1) to (0,-0.1).
3. Place-Pick: from (0,-0.1) to (0.1,0.1).
4. Pick-Place: from (0.1,0.1) to (0.2,-0.1).
5. Place-Pick: from (0.2,-0.1) to (0.2,0.1).
6. Pick-Place: from (0.2,0.1) to (-0.2,0.1).
7. Place-Pick: from (-0.2,0.1) to (-0.2,-0.1).
8. Pick-Place: from (-0.2,-0.1) to (0.2,-0.1).

The previous movement sequences are performed in 0.3 seconds for both scenarios.
The simulation results for the first scenario are presented in Figs. 7 and 8. Fig.
7 shows the tracking error graphs in Cartesian and joint space. As it can be
noted, the tracking errors of RISE BSNN are noticeably smaller than those of
Standard RISE control due to the BSNN compensation terms reducing the effect
of nonlinearities, resulting in a better tracking performance. Fig. 8 displays the
generated torques by the Standard RISE and our proposed RISE BSNN in the
first column graphs, whereas the control signals that form our proposed controller
(i.e., RISE contribution and BSNN contribution) are in the second column. It is
noteworthy that the behavior of the BSNNs outputs is very similar to the torques
produced for both control schemes, this is due to the accurate approximation of the
inverse dynamic model of DPR computed by the BSNNs. Moreover, as can be seen
in the same figure, the BSNN control term produces most of the torque required
to reach the desired position, this is due to its good approximation of the inverse
dynamic model for the DPR and, on the other hand, the term corresponding to
the RISE control produces the extra torque needed to achieve the desired position
accurately. The obtained tracking errors for the second scenario are displayed in
the graphs of Fig. 9. It can be appreciated that the amplitude of tracking errors
has increased for the two controllers as a consequence of the addition of the moving
mass. However, the RISE BSNN control law’s performance is still widely better
than the Standard RISE controller. The values of produced torques of this second
scenario and the contribution signals of the RISE BSNN controller are exposed in
Fig. 10. It can be seen that the curves have doubled compared to control signals
for scenario owing to both controllers requiring more energy to move the payload
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from one point to another. Fig. 11 shows the evolution of the BSNNs’ adaptive
weighs for each kinematic chain of the DPR for the two scenarios. It can be seen
in all cases that the initial value of the weights is zero, and as the trajectories are
executed, not all the weights evolve together; this is because of the BSNNs update
only the associate weights to the current input values of the BSNNs. Besides, as
it can be observed, some of the adaptive weights associated with extreme input
values always remain zero; this is because the desired trajectories used as inputs
to the BSNNs are not at those extreme range values. For example, for the case
study 2 where a change in the speed was tested, for the lower speed scenario, only
the weights related to the position are updated because the desired trajectory
reaches the limits of the cartesian space, i.e., the main requirement for the task
is only the position. In the same way, for the medium speed scenario, the related
weights to the speed are now updated, too, due to the speed requirement. Finally,
for the high-speed scenario, the associated weights are updated now due to the
acceleration requirement. Table 5 summarizes the performance of both controllers
of the proposed two scenarios using the RMSE formulas; as it can be seen, the
enhancement of RISE BSNN respect to Standard RISE is over 80% and 79% for
Cartesian and joint space, respectively in two scenarios, reinforcing the presented
results in Figs. 7 and 9.
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(a) Desired trajectory in Cartesian space for scenario 1 case study 1
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(b) Desired trajectory in Cartesian space for scenario 2 case study 1

Fig. 5 Desired 3D trajectory for a P&P Task. The lines in red correspond to trajectory
portions where the DPR is moving with a payload and the blue lines are the corresponding
portions without payload



Title Suppressed Due to Excessive Length 17

Fig. 6 Evolution of the desired trajectories in Cartesian space versus time for case study 1

Fig. 7 Evolution of the tracking errors versus time in Cartesian and joint space for scenario
1 case study 1
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Fig. 8 Evolution of the control signals generated by RISE and RISE BSNN controllers (first
column), and the control contributions of RISE BSNN (second column) versus time for scenario
1 case study 1

Fig. 9 Evolution of the tracking errors versus time in Cartesian and joint space for scenario
2 case study 1



Title Suppressed Due to Excessive Length 19

0 0.5 1 1.5 2 2.5

Γ
1

[N
m

]

-10

0

10
RISE RISE BSNN

0 0.5 1 1.5 2 2.5

Γ
2

[N
m

]

-10

0

10

Time [Sec]

0 0.5 1 1.5 2 2.5

Γ
3

[N
m

]

-10

0

10

0 0.5 1 1.5 2 2.5

Γ
R

IS
E

1
, 
σ

1
[N

m
]

-10

0

10

RISE Comp BSNN Comp

0 0.5 1 1.5 2 2.5

Γ
R

IS
E

2
, 
σ

2
[N

m
]

-10

0

10

Time [Sec]

0 0.5 1 1.5 2 2.5

Γ
R

IS
E

3
, 
σ

3
[N

m
]

-10

0

10

Fig. 10 Evolution of the control signals generated by RISE and RISE BSNN controllers (first
column), and the control contributions of RISE BSNN (second column) versus time for scenario
2 case study 1
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Fig. 11 Evolution of the BSNNs’ weights of case study 1 for scenarios 1 and 2
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Table 5 Controllers performance evaluation case study 1

Scenario Controller RMSEC[cm] RMSEJ[Deg]

RISE 0.0285 0.0491
Scenario 1 RISE BSNN 0.0055 0.0102

Enhancement 80.6% 79.1%

RISE 0.0571 0.0929
Scenario 2 RISE BSNN 0.0109 0.0194

Enhancement 80.9% 79.1%

5.2 Case study 2

The desired trajectory for this case study is a spiral path on the plane (x,y) (see
Fig. 12). The three scenarios proposed for this case study are subject to changes
in the speed execution of the trajectory (low, medium, and high). The following
equations are used to generate the desired spiral trajectory:

xd =r cos(2πft)

yd =r sin(2πft)

zd =− 0.6

(38)

r = 0.04ft (39)

where r denotes the separation distance between circular turns and f is the fre-
quency of the circular movements. The speed changes are achieved by modifying
the value of f , we define:

– f = 0.33Hz for low speed
– f = 1.75Hz for medium speed
– f = 3.5Hz for high speed

The initial and final positions of the spiral trajectory given in Cartesian coordinates
are (0,0,-0.6) and (0,0.2,-0.6). The objective of this study case is to know how
much the changes in speed affect the controllers’ performance. The tracking errors
in Cartesian and Joint space are exhibits in Figs. 13, 15, and 17 for the three
scenarios. As it can be noticed, as the speed is increasing, the overshoots amplitude
on the tracking error signals also increases. Nevertheless, the tracking errors of the
proposed controller always remain lower than the standard RISE controller. The
spiral trajectory is expected to be completed in 14.8 s, 2.85 s, and 1.42 s for
scenarios 1, 2, and 3, respectively. The produced torques of both controllers and
the control signals of the RISE BSNN are presented in Figs. 14, 16, and 18. It is
possible to see that when the speed increases, also the amplitude of the computed
control signals increase. However, as in the previous case study for RISE BSNN,
the control actions of the BSNNs contribute in a more significant proportion than
the RISE contribution. Fig 19 presents the weighs evolution respect to time for
the three scenarios (low, medium, and high speed) of this case study. As can be
noted in the graphs, all the weights values are initialized in zero. In low speed,
we can see that only four weights are changed along the trajectories owing to the
input values of the desired trajectories stay in the range values of only one basis
function; unlike in high speed where all weights are in involved since the desired
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trajectories reach the maximum limits of the knot-points distribution. Table 6
presents the comparison of different RMSEs for the three scenarios reinforcing the
advantages of our proposed control solution. In all scenarios of this case study, the
improvement of our controller compared to Standard RISE is between 60% and
80%. To have a better comprehension of how great the deterioration of the control
schemes as the speed increases is, the RMSE is plotted in Fig. 20.

Fig. 12 Desired spiral trajectory in the plane (x,y) for case study 2

Fig. 13 Evolution of the tracking errors versus time in Cartesian and joint space corresponding
to low speed for case study 2
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Fig. 14 Evolution of the control signals generated by RISE and RISE BSNN controllers
(first column), and the control contributions of RISE BSNN (second column) versus time that
corresponds to low speed case study 2

Fig. 15 Evolution of the tracking errors versus time in Cartesian and joint space corresponding
to medium speed for case study 2
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Fig. 16 Evolution of the control signals generated by RISE and RISE BSNN controllers
(first column), and the control contributions of RISE BSNN (second column) versus time that
corresponds to medium speed case study 2

Fig. 17 Evolution of the tracking errors versus time in Cartesian and joint space corresponding
to high speed for case study 2
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Fig. 18 Evolution of the control signals generated by RISE and RISE BSNN controllers
(first column), and the control contributions of RISE BSNN (second column) versus time that
corresponds to medium high case study 2
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Fig. 19 Evolution of the BSNNs’ weights for case study 2 when the DPR is subjected to
changes in the speed
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Table 6 Controllers performance evaluation case study 2

Speed Controller RMSEC[cm] RMSEJ[Deg]

RISE 4.622× 10−4 0.0010
Low RISE BSNN 1.314× 10−4 2.670× 10−4

Enhancement 71.5% 73.6%

RISE 0.0262 0.0362
Medium RISE BSNN 0.0052 0.0073

Enhancement 80.0% 79.8%

RISE 0.1413 0.1947
High RISE BSNN 0.0434 0.0606

Enhancement 69.8% 68.5%

(a) RMSE Cartesian Space

(b) RMSE Joint Space

Fig. 20 Degradation graphs of RMSE at different speeds for Cartesian and joint space case
study 2

To justify the presented simulation results, in the previous graphs it can be
seen a comparison between the tracking errors of RISE and RISE BSNN in all case
studies and scenarios that the signals of the RISE BSNN errors are considerably
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smaller than those produced by standard RISE control. Since the learning rule of
the BSNN minimizes an error signal provided by the composed tracking error to
estimate on-line the dynamic behavior of the modeled system, it may be concluded
that if the resulting tracking error of the RISE BSNN is smaller than produced by
standard RISE, so that, the BSNN approximation is reasonably accurate. One of
the most critical things in the design of the BSNN feedforward term is the selection
and distribution of the knot-points. However, there are no specific criteria for the
selection of these parameters, and everything depends on the prior knowledge of
the system to be approximated by the designer. If the BSNNs are not properly
configured, the obtained signal will deteriorate the controller performance instead
of being improved. The other problem is related to the learning rule that is based-
on gradient descend rules; these kinds of rules may fall in local minima problems
[38].

5.3 Comparison of BSNN compensation against nominal feedforward

In the previous case studies, our proposed RISE with BSNN compensation was
evaluated to standard RISE control, and the results obtained were notably supe-
rior. However, as it was mentioned before, the BSNN compensation term aims to
emulate the Nominal feedforward term. Therefore, in this section, our proposed
control solution is compared to the RISE feedforward, being the combination of
(27) and (29) to validate the approximation of the dynamics. The case study 1,
including the two scenarios, is considered for this validation. Fig. 22 depicts the
tracking error in the joint space of RISE feedforward and RISE BSNN and the
components compensation of both controllers when no payload is moving. It can
be appreciated that the tracking error of RISE feedforward is prominently better
than our proposition due to the evaluated dynamic parameters in the feedforward
part are entirely known, unlike RISE BSNN, where the dynamic behavior of the
DPR is on-line estimated. However, note that the produced compensation terms
of the BSNN are similar to those produced by the nominal feedforward even with-
out any information on the system dynamics. The obtained RMSEq is 0.0045 for
RISE feedforward and 0.0102 for RISE BSNN, the first controller outcomes the
second one in 56.69% for this scenario. Nevertheless, for the second scenario where
a mass of 1 kg is moved in some portions of the trajectory, the performance of the
RISE BSNN is better than RISE feedforward, due to RISE BSNN can compen-
sate for the parametric uncertainty produced by the changes in the payload along
the trajectory, unlike RISE feedforward, where the dynamic parameters are not
updated (see Fig. 22). The resulting RMSEq for the second scenario is 0.0494 for
RISE feedforward and 0.0194 for RISE BSNN, yielding an improvement of 60% of
RISE BSNN over RISE feedforward.
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Fig. 21 Performance comparison between RISE feedforward and RISE BSNN scenario 1 case
study 1
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Fig. 22 Performance comparison between RISE feedforward and RISE BSNN scenario 2 case
study 1
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6 Conclusion

In this work, a RISE controller with adaptive feedforward compensation founded
on the BSNN has been proposed. Three BSNN have been implemented in order to
approximate the inverse dynamic of each kinematic chain of the DPR. The election
of AMNN is mainly due to the low computational cost that carries out this kind of
ANN since the computed weights are updated according to the current input value
so, not all the weights are updated at the same time. The precise approximation
of the inverse dynamics lies mostly in the choosing inputs, the selected order for
the basis functions, and the distribution of the knots points. To validate the ef-
fectiveness of the proposed control scheme, numerical simulations were performed,
the obtained results were compared in a first instance to those of standard RISE
controller. The control system was evaluated in two case studies, the first one P&P
trajectory execution with changes in the payload, and the second one a spiral path
with changes in the speed. For all the scenarios of the case studies, the obtained
results showed that the proposed control scheme presented improvements greater
than 60%. Thereby, the use of the BSNNs as a feedforward compensation term is
a suitable alternative to improving the trajectory tracking in PKMS even if the
system is dealing with parametric uncertainties as sudden changes in the payload.
Moreover, the dynamic approximation of the BSNNs is good enough according to
the comparison of the curves with the nominal Feedforward of a RISE Feedforward
controller.
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