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Extended Abstract

The notion of homomorphisms of 2-edge-colored graphs has already been studied as a way of extending classical results in graph coloring such as Hadwiger's conjecture. Guenin [START_REF] Guenin | Packing odd circuit covers: A conjecture[END_REF] introduced the notion of switching homomorphisms for its relation with a well-known conjecture of Seymour. In 2012, this notion has been further developed by Naserasr et al. [START_REF] Naserasr | Homomorphisms of signed graphs[END_REF] as it captures a number of well-known conjectures that can be reformulated using the definition of switching homomorphisms. In this extended abstract, we study homomorphisms of 2-edge colored graphs and switching homomorphisms of bounded degree graphs.

A 2-edge-colored graph G = (V, E, s) is a simple graph (V, E) with two kinds of edges: positive and negative edges. The signature s : E(G) → {-1, +1} assigns to each edge its sign. In the sequel, D k (resp. D c k ) denotes the class of 2-edge-colored graphs (resp. connected 2-edge-colored graphs) with maximum degree k.

Given two 2-edge-colored graphs G and H, the mapping ϕ : V (G) → V (H) is a homomorphism if ϕ maps every edge of G to an edge of H with the same sign. This can be seen as coloring the graph G by using the vertices of H as colors. The target graph H gives us the rules that this coloring must obey. If vertices 1 and 2 in H are connected with a positive (resp. negative) edge, then every pair of adjacent vertices in G colored with 1 and 2 must be connected with a positive (resp. negative) edge. The chromatic number χ 2 (G) of a 2-edge-colored graph G is the order of a smallest 2-edge-colored graph H such that G admits a homomorphism to H. The chromatic number χ 2 (C) of a class of 2-edge-colored graphs C is the maximum of the chromatic numbers of the graphs in the class. This number can be infinite.

2-edge-colored graphs are, in some sense, similar to oriented graphs since a pair of vertices can be adjacent in two different ways in both kinds of graphs: with a positive or a negative edge in the case of 2-edge-colored graphs, with a toward or a backward arc in the oriented case.

The notion of homomorphism of oriented graphs has been introduced by Courcell [3] in 1994 and has been widely studied since then. Due to the similarity above-mentioned, we try to adapt techniques used to study the homomorphisms of oriented graphs of bounded degree to 2-edge-colored graphs of bounded degree. We also study switching homomorphisms of 2-edge-colored graphs in order to obtain results on signed graphs.

Switching a vertex v of a 2-edge-colored graph corresponds to reversing the signs of all edges incident to v.

Two 2-edge-colored graphs G and G are switching equivalent if it is possible to turn G into G after some number of switches. We call the classes created by this equivalence relation switching classes (note that switching classes are equivalent to the notion of signed graphs).

Given two 2-edge-colored graphs G and H, the mapping ϕ : V (G) → V (H) is a switching homomorphism if there is a graph G switching equivalent to G such that ϕ maps every edge of G to an edge of H with the same sign. The switching chromatic number χ s (G) of a 2-edge-colored graph G is the order of a smallest 2-edge-colored graph H such that G admits a switching homomorphism to H. Table 1 summarizes results on the chromatic number and switching chromatic number of the classes of (connected) 2-edge-colored graphs of bounded degree.

The first two lines of Table 1 are more or less folklore. Let us explain in the following the difference that exists between the connected case and the non-connected case for the
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Table 1: Results on the chromatic number and switching chromatic number of the classes of (connected) 2-edge-colored graphs of bounded degree.

chromatic number of 2-edge-colored graphs with maximum degree 1 or 2. An edge of a 2edge-colored graph has chromatic number 2 and thus χ 2 (D c 1 ) = 2; however, a 2-edge-colored graph with two non-adjacent edges, one positive and one negative, has chromatic number 3 (the target graph needs a positive and a negative edge, hence at least three vertices) and thus χ 2 (D 1 ) = 3. We therefore have a difference between the chromatic numbers of connected and non-connected 2-edge-colored graphs with maximum degree 1. This difference does not exist for switching homomorphisms since a negative edge can be changed into a positive one after a switch. This difference (and lack thereof for switching homomorphisms) appears also in graphs with maximum degree 2. We have χ 2 (D 2 ) ≥ 6 since there is no 2-edge-colored graph on 5 vertices that can color all the four graphs depicted in Figure 1. However, every connected 2-edge-colored graph with maximum degree 2 admits a homomorphism to one of the two graphs on 5 vertices depicted in Figure 2 and thus χ 2 (D c

2 ) ≤ 5. In order to color any graph of D 2 , we need a target graph that contains both graphs depicted in Figure 2 as subgraphs. This is possible with 6 vertices so χ 2 (D 2 ) = 6. We do not know yet if this is also the case for graphs with maximum degree at least 3. The last three lines of Table 1 are dedicated to graphs with maximum degree at least 3. Our main results are the following: Theorem 1 We have:

• 8 ≤ χ 2 (D 3 ) ≤ 11, • 12 ≤ χ 2 (D 4 ) ≤ 31, • 10 ≤ χ s (D 4 ) ≤ 16.
In order to find an upper bound for a class of graphs, we need to find a target graph that can color every graph in the class. In the case of oriented homomorphisms, oriented graphs that are antiautomorphic, K n -transitive for some n, or that have Property P n,k for some n and k are good candidates. We analogously define these properties in term of 2-edge-colored graphs.

A 2-edge-colored graph (V, E, s) is said to be antiautomorphic if it is isomorphic to (V, E, -s).

A 2-edge-colored graph G = (V, E, s) is said to be K n -transitive if for every pair of cliques {u 1 , u 2 , . . . , u n } and {v 1 , v 2 , . . . , v n } in G such that for all i = j, s(u i u j ) = s(v i v j ) there exists an automorphism that maps u i to v i for all i. For n = 1, 2, or 3, we say that the graph is vertex, edge, or triangle-transitive, respectively.

A 2-edge-colored graph G has Property P k,n if for every sequence of k distinct vertices (v 1 , v 2 , . . . , v k ) that induces a clique in G and for every sign vector

(α 1 , α 2 , ..., α k ) ∈ {-1, +1} k there exist at least n distinct vertices {u 1 , u 2 , ..., u n } such that s(v i u j ) = α i for 1 ≤ i ≤ k and 1 ≤ j ≤ n.
Given an integer q ≡ 1 (mod 4), we consider the family of complete signed Paley graphs SP q built from the field of order q which has the above-mentioned properties. The vertices of SP q are the elements of the field of order q and s(uv) = +1 if u-v is a square and s(uv) = -1 otherwise.

Lemma 2 ([7]

) Graph SP q is vertex-transitive, edge-transitive, antiautomorphic, and has properties P 1, q-1 2 and P 2, q-5 4 .

Let us consider the following operation. Given a 2-edge-colored graph G, we create the antitwinned graph of G denoted by ρ(G) as follows. Let G +1 , G -1 be two copies of G. The vertex corresponding to

v ∈ V (G) in G i is denoted by v i , V (ρ(G)) = V (G + ) ∪ V (G -), E(ρ(G)) = {u i v j : uv ∈ E(G), i, j ∈ {-1, +1}} and s ρ(G) (u i v j ) = i × j × s G (u, v).

Lemma 3 ([2]

) Let G and H be two 2-edge-colored graphs. The graph G admits a homomorphism to ρ(H) if and only if it admits a switching homomorphism to H.

In other words, if a 2-edge-colored graph admits a homomorphism to an antitwinned target graph on n vertices, then it also admits a switching homomorphism to a target graph on n 2 vertices. The family ρ(SP q ) also are interesting target graphs (especially for bounding the switching chromatic number since they are antitwinned).

Lemma 4 ([7])

The graph ρ(SP q ) is vertex-transitive, antiautomorphic, and has properties P 1,q-1 , P 2, q-3 2 , and P 3,max( q-9 4 ,0) . One last family of interesting target graphs are the Tromp-Paley graphs (this construction due to Tromp (unpublished) has been widely used in the case of oriented homomorphisms). Let SP + q be SP q with an additional vertex that is connected to every other vertex with a positive edge. The Tromp-Paley graph T R(SP q ) corresponds to ρ(SP + q ). This construction improves the properties of ρ(SP q ) at the cost of having two more vertices. Since Tromp-Paley graphs are antitwinned, they are interesting for bounding the switching chromatic number.

Lemma 5 ([7]

) T R(SP q ) is vertex-transitive, edge-transitive, antiautomorphic, and has properties P 1,q , P 2, q-1 2 , and P 3, q-5 4 .

Bensmail et al. [1] recently proved that every 2-edge-colored graph with maximum degree 3 except the all positive and all negative K 4 admits a homomorphism to T R(SP 5 ), hence χ 2 (D c

3 ) ≤ 12, and χ s (D c 3 ) ≤ 6 by Lemma 3. In the non-connected case, we can easily get χ 2 (D 3 ) ≤ 14 and thus χ s (D 3 ) ≤ 7 by Lemma 3 (it is possible to create an all positive K 4 and an all negative K 4 in T R(SP 5 ) by adding two vertices). Their proof uses a computer to show that a minimal counter-example cannot contain some configurations and then concludes by using the properties of T R(SP 5 ). Theorem 1 improves the upper bound of 14 to 11.

Let us give a sketch of proof of the first result of Theorem 1, namely χ 2 (D 3 ) ≤ 11.
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 1 Figure 1: Four examples of 2-edge-colored graphs with chromatic number 5.

Figure 2 :

 2 Figure 2: Target graphs for connected 2-edge-colored graphs of maximum degree 2.

Consider the graph SP * 9 obtained from SP 9 by adding two new vertices 0 and 1 as follows. Take the two vertices 0 and 1 of SP 9 (note that s(01) = +1), and link 0 and 1 to the vertices of SP 9 in the same way as 0 and 1 are, respectively; add an edge 0 1 with s(0 1 ) = -1; finally we add edges 00 and 11 with s(00 ) = -1 and s(11 ) = +1. We will prove that every graph from D 3 admits a homomorphism to SP * 9 .

We first show that every connected 2-degenerate 2-edge-colored graph with maximum degree 3 admits a homomorphism to SP 9 by using its structural properties given by Lemma 2 (a unique exception exists and is separately treated).

Let G be a connected 3-regular 2-edge-colored graph. If G is all positive, then we color it using an all positive K 4 that SP * 9 contains as a subgraph. Assume now that G is not all positive. Let uv be a negative edge of G. We remove uv from G to create a new graph G . Graph G is 2-degenerate so it admits a homomorphism ϕ to SP 9 . If s(ϕ (u)ϕ (v)) = -1, then ϕ is also a homomorphism from G to SP 9 .

If s(ϕ (u)ϕ (v)) = +1, then by edge-transitivity of SP 9 we can recolor the vertices of G such that ϕ (u) = 0 and ϕ (v) = 1. We can then extend ϕ to a homomorphism ϕ of G to SP * 9 by recoloring u and v such that ϕ(u) = 0 and ϕ(v) = 1 since s(0 1 ) = -1.

Finally, if ϕ (u) = ϕ (v), then by vertex-transitivity of SP 9 we can recolor the vertices of G such that ϕ (u) = ϕ (v) = 0. We can then extend ϕ to a homomorphism ϕ of G to SP * 9 by recoloring v such that ϕ(v) = 0 since s(00 ) = -1.

We have proven that every graph in D c 3 admits a homomorphism to SP * 9 which means that SP * 9 is universal for D 3 . This concludes the proof. To prove the two other upper bounds of Theorem 1, we use the same method on target graphs SP 29 and T R(SP 13 ).