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For a graph G and an integer-valued threshold function τ on its vertex set, a dynamic monopoly is a set of vertices of G such that iteratively adding to it vertices u of G that have at least τ (u) neighbors in it eventually yields the vertex set of G. We show that the problem of finding a dynamic monopoly of minimum order can be solved in polynomial time for interval graphs with bounded threshold functions, but is NP-hard for chordal graphs allowing unbounded threshold functions.

Introduction

Dynamic monopolies are a simple model for various types of viral processes in networks [START_REF] Domingos | Mining the network value of customers[END_REF][START_REF] Dreyer | Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion[END_REF][START_REF] Kempe | Maximizing the spread of influence through a social network[END_REF].

Let G be a finite, simple, and undirected graph. A threshold function for G is an integer-valued function whose domain contains the vertex set V (G) of G. Let τ be a threshold function for G.

For a set D of vertices of G, the hull H (G,τ ) (D) of D in (G, τ ) is the set obtained by starting with the empty set, and iteratively adding vertices u to the current set that belong to D or have at least τ (u) neighbors in the current set as long as possible. The set D is a dynamic monopoly or a target set of (G, τ ) if H (G,τ ) (D) equals V (G), and the minimum order of a dynamic monopoly of (G, τ ) is denoted by dyn(G, τ ).

The parameter dyn(G, τ ) is computationally hard even when restricted to instances with bounded threshold functions [START_REF] Centeno | Irreversible conversion of graphs[END_REF][START_REF] Chen | On the approximability of influence in social networks[END_REF][START_REF] Dreyer | Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion[END_REF][START_REF] Kynčl | Irreversible 2-conversion set in graphs of bounded degree[END_REF]. Efficient algorithms that work for unbounded threshold functions are known for trees [START_REF] Centeno | Irreversible conversion of graphs[END_REF][START_REF] Chen | On the approximability of influence in social networks[END_REF][START_REF] Dreyer | Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion[END_REF], block-cactus graphs [START_REF] Chiang | Some results on the target set selection problem[END_REF], graphs of bounded treewidth [START_REF] Ben-Zwi | Treewidth governs the complexity of target set selection[END_REF], and graphs whose blocks have bounded order [START_REF] Centeno | Irreversible conversion of graphs[END_REF]. For bounded threshold functions, some more instances become tractable, and dyn(G, τ ) can be computed efficiently if G is cubic and τ = 2 [START_REF] Barbosa | On minimal and minimum hull sets[END_REF][START_REF] Kynčl | Irreversible 2-conversion set in graphs of bounded degree[END_REF] or if G is chordal and τ ≤ 2 [START_REF] Centeno | Irreversible conversion of graphs[END_REF][START_REF] Chiang | Some results on the target set selection problem[END_REF]. The latter result relies on the case t = 2 of the following theorem.

Theorem 1.1 (Chiang et al. [START_REF] Chiang | Some results on the target set selection problem[END_REF]). If t is a non-negative integer, G is a t-connected chordal graph, and τ is a threshold function for G with τ (u) ≤ t for every vertex u of G, then dyn(G, τ ) ≤ t.

Since this result holds for arbitrary t, it suggests that there might be an efficient algorithm for chordal graphs and bounded threshold functions. In the present paper we show that this is at least true for interval graphs, which form a prominent subclass of chordal graphs. Theorem 1.2. Let t be a non-negative integer. For a given interval graph G, and a given threshold function τ for G with τ (u) ≤ t for every vertex u of G, the value of dyn(G, τ ) can be determined in polynomial time.

It is open [START_REF] Chopin | Constant thresholds can make target set selection tractable[END_REF] whether dyn(G, τ ) is fixed parameter tractable for instances with bounded threshold functions when parameterized by the distance to interval graphs. Note that Theorem 1.2 would be a consequence of such a fixed parameter tractability.

As our second result we show that dynamic monopolies remain hard for chordal graphs with unbounded threshold functions.

Theorem 1.3. For a given triple (G, τ, k), where G is a chordal graph, τ is a threshold function for G, and k is a positive integer, it is NP-complete to decide whether dyn(G, τ ) ≤ k.

Proofs

Our approach to prove Theorem 1.2 is to construct a sequence

G 1 ⊆ G 2 ⊆ . . . ⊆ G k of sub-
graphs of G in such a way that G k = G, and Theorem 1.1 implies that every minimum dynamic monopoly D for (G, τ ) intersects a suitable supergraph ∂G i of each G i -V (G i-1 ) in at most t vertices. This enables us to apply dynamic programming efficiently calculating partial information for each G i by emulating the formation of the hull of D within ∂G i , and exploit previously computed information for G i-1 . A notion that is useful in this context is the one of a cascade for a dynamic monopoly D of (G, τ ), defined as a linear order u 1 ≺ . . . ≺ u n of the vertices of G such that, for every i in [n], either u i ∈ D or u i ∈ D and |N G (u i ) ∩ {u j : j ∈ [i -1]}| ≥ τ (u j ), where [k] denotes the set of positive integers that are less than or equal to some integer k. A cascade encodes the order in which the vertices of G can be added to the hull of D starting with the empty set. Clearly, every dynamic monopoly admits at least one cascade ≺. Furthermore, we may assume that u ≺ v for every u ∈ D and every v ∈ V (G) \ D.

We proceed to the proof of our first result.

Proof of Theorem 1.2. Let t, G, and τ be as in the statement. Clearly, we may assume that G is connected. Let n be the order of G. In linear time [START_REF] Booth | Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms[END_REF], we can determine an interval representation (I(u)) u∈V (G) of G, that is, two distinct vertices u and v of G are adjacent if and only if the intervals I(u) and I(v) intersect. By applying well-known manipulations, we may assume that each interval I(u) is closed, and that the 2n endpoints of the n intervals are all distinct. Let x 1 < x 2 < . . . < x 2n be the endpoints of the intervals. For each i ∈ [2n -1], let C i be the set of vertices u of G with I i := [x i , x i+1 ] ⊆ I(u), and let c i = |C i |. Since each x i is either the right endpoint of exactly one interval or the left endpoint of exactly one interval, we have

|c i+1 -c i | = 1 for every i ∈ [2n -1]. Bi-2 Bi-1 Bi Bi+1 ∂V i-1 ∂V i ∂V i+1 V i-1 V i V i+1
Figure 1: Sets B i , V i and ∂V i on the interval representation of G (for instance, B i contains all the intervals crossing the corresponding dotted line, ∂V i contains all the intervals intersecting the zone between B i-1 and B i , and V i contains all the intervals intersecting the corresponding zone).

Our first claim states a folklore property of interval graphs; we include a proof for the sake of completeness.

Claim 1. If C is a minimal vertex cut of G, then C = C i for some i ∈ [2n -2] \ {1} with c i < min{c i-1 , c i+1 }. Proof of Claim 1. Clearly, if i ∈ [2n -2] \ {1} is such that c i < min{c i-1 , c i+1 }, then C i is a minimal vertex cut separating the unique vertex in C i-1 \ C i from the unique vertex in C i+1 \ C i .
Conversely, let C be a minimal vertex cut of G. Let u and v be vertices in distinct components of G -C. We may assume that the right endpoint r(u) of I(u) is less than the left endpoint ℓ(v) of I(v). There are indices i 1 and i

2 such that [r(u), ℓ(v)] = i 2 j=i 1 I j . Since G -C contains no
path between u and v, there is some index i with i 1 ≤ i ≤ i 2 and C i ⊆ C. Since G -C i contains no path between u and v, the minimality of C implies C ⊆ C i , and, hence,

C = C i . If i = i 1 , then c i < c i-1 , because I(u) ends in i 1 . If i > i 1 and c i > c i-1 , then C i-1 is a proper subset of C i ,
and also G -C i-1 contains no path between u and v, contradicting the minimality of C.

Therefore, c i < c i-1 , and, by symmetry, also 

c i < c i+1 . Let j 1 < j 2 < . . . < j k-1 be the indices i in [2n -1] \ {1} with c i < min{c i-1 , c i+1 , t}, and let j k = 2n -1. For i ∈ [k], let G i be the subgraph of G induced by V i := C 1 ∪ • • • ∪ C j i ,

and let

B i = C j i . Note that B i contains all vertices in V i that have a neighbor in V (G) \ V i , and that |B i | < t. Let ∂V 1 = V 1 , and, for i ∈ [k] \ {1}, let ∂V i = (V i \ V i-1 ) ∪ B i-1 . For i ∈ [k], let ∂G i be the subgraph of G induced by ∂V i , cf. Figure 1. Claim 2. For every i ∈ [k],
∂V i = i 2 j=i 1 C j . Now, either c j < t for every index j with i 1 ≤ j ≤ i 2 , which implies that there is an index ℓ with i 1 < ℓ < i 2 and c i 1 < . . . < c ℓ-1 < c ℓ > c ℓ+1 > . . . > c i 2 , in which case ∂G i is a clique of order c ℓ < t; or there are indices i ′ 1 and i ′ 2 with i 1 < i ′ 1 ≤ i ′ 2 < i 2 such that c i 1 < c i 1 +1 < . . . < c i ′ 1 , c j ≥ t for every index j with i ′ 1 ≤ j ≤ i ′ 2 , and c i ′ 2 > c i ′ 2 +1 > . . . > c i 2 , in which case Claim 1 implies that ∂G i is t-connected.
As explained above, we apply dynamic programming calculating partial information for each G i . This information should be rich enough to capture the influence on G i from outside of G i of all possible cascades of a minimum dynamic monopoly D of (G, τ ). Since the only vertices of G i with neighbors outside of G i are in B i , this leads us to considering a localized version of a cascade that specifies (i) all possible intersections of D with B i , (ii) all possible orders, in which the elements of B i appear in a cascade, and (iii) all possible amounts of help that each vertex in B i receives from outside of G i when it enters the hull of D. Consequently, for every i

∈ [k], a local cascade for G i is defined as a triple (X i , ≺ i , ρ i ), where (i) X i is a subset of B i , (ii) ≺ i is a linear order on B i such that u ≺ i v for every u ∈ X i and every v ∈ B i \ X i , and (iii) ρ i : B i \ X → {0, 1, . . . , n}. Since |B i | ≤ t -1, there are O 2 t-1 (t -1)!(n + 1) t-1 local cascades for G i .
For each local cascade for G i , we are interested in the minimum number of vertices from V i \B i that need to be added to X i in order to obtain the intersection with V i of some dynamic monopoly that is compatible with the local cascade. More precisely, for a local cascade Proof of Claim 3. Let D be a dynamic monopoly of (G, τ ) of order dyn(G, τ ). Our first goal is to show that (iv) holds for i = k, X k = D ∩ B k , and Y k = D \ X k . Suppose, for contradiction, that |D ∩ ∂V j | > t for some j ∈ [k]. Clearly, ∂G j can not be a clique of size less than t in this case. Therefore, by Claim 2, ∂G j is t-connected, and, by Theorem 1.1, there is a dynamic monopoly D j of (∂G j , τ ) of size at most t. Now, (D \ ∂V j ) ∪ D j is a dynamic monopoly of (G, τ ) of order less than D, which is a contradiction. Hence, (iv) holds.

(X i , ≺ i , ρ i ) for G i , let dyn i (X i , ≺ i , ρ i ) be the minimum order of a subset Y i of V i \ B i such that the following conditions hold: (iv) |(X i ∪ Y i ) ∩ ∂V j | ≤ t for every j ∈ [i]. (v) There is a linear extension u 1 ≺ . . . ≺ u n(G i ) of ≺ i to V (G i ) such that u ≺ v for every u ∈ X i ∪ Y i and every v ∈ V i \ (X i ∪ Y i ), and, for every j in [n(G i )], (a) either u j ∈ X i ∪ Y i , (b) or u j ∈ Y i ∪ B i and N G (u j ) ∩ {u 1 , . . . , u j-1 } ≥ τ (u j ), (c) or u j ∈ B i \ X i and N G (u j ) ∩ {u 1 , . . . , u j-1 } ≥ τ (u j ) -ρ(u j ). If no such set Y i exists, then dyn i (X i , ≺ i , ρ i ) = ∞. Note that (a)
Let u 1 ≺ • • • ≺ u n be a cascade for D. Since this cascade is a linear extension of the trivial linear order on the one-element set B k , we obtain (v) with ρ k (u) = 0 for every u ∈ B k \ X k .

This implies

|X k | + dyn k (X k , ∅, 0) ≤ |X k | + |Y k | = dyn(G, τ ).
Conversely, let X k ⊆ B k be such that min 1 + dyn k (B k , ∅, 0), 0 + dyn k (∅, ∅, 0) equals

|X k | + dyn k (X k , ∅, 0). If Y k is as in the definition of dyn k (X k , ∅, 0), then (v) and ρ k = 0 imply that X k ∪ Y k is a dynamic monopoly of (G, τ ), which implies dyn(G, τ ) ≤ |X k | + |Y k | = |X k | + dyn k (X k , ∅, 0).
Our next two claims imply that the values dyn i (X i , ≺ i , ρ i ) can be determined recursively in polynomial time.

Claim 4. For every local cascade (X 1 , ≺ 1 , ρ 1 ) for G 1 , the value dyn 1 (X 1 , ≺ 1 , ρ 1 ) can be computed in polynomial time.

Proof of Claim 4. Let v 1 ≺ 1 . . . ≺ 1 v p be the linear order 

≺ 1 on B 1 . Since V 1 = ∂V 1 , every subset Y 1 of V 1 \ B 1 satisfying condition (iv)
(b ′ ) B 1 ∪ Y 1 is a dynamic monopoly of (G 1 , τ ), and (c ′ ) for every i in [p] with v i ∈ B 1 \ X 1 , the hull of the set v j : j ∈ [i -1] ∪ X 1 ∪ Y 1 in G 1 -v j : j ∈ [p] \ [i -1] , τ contains at least τ (v i ) -ρ(v i ) many neighbors of v i .
In fact, if there is a linear extension u 1 ≺ . . . ≺ u n(G i ) of ≺ 1 satisfying (v), then (a) and (b) imply (b ′ ), and (c) implies (c ′ ). Conversely, if (b ′ ) and (c ′ ) hold, then concatenating cascades for the p hulls considered in (c ′ ) for i from 1 up to p, and removing all but the first appearance of each vertex in the resulting sequence, yields a linear order satisfying (v). Since (b ′ ) and (c ′ ) can be checked efficiently for the polynomially many candidates for Y 1 , the claim follows.

Claim 5. For every i ∈ [k] \ {1} and every local cascade

(X i , ≺ i , ρ i ) for G i , given the values dyn i-1 (X i-1 , ≺ i-1 , ρ i-1 ) for all local cascades (X i-1 , ≺ i-1 , ρ i-1 ) for G i-1 , the value dyn i (X i , ≺ i , ρ i ) can be computed in polynomial time.
Proof of Claim 5. By definition, we have 2. Our approach to determine dyn i (X i , ≺ i , ρ i ) relies on considering all candidates for the two intersections -later referred to as X ′′ i-1 and ∂Y i -of a set Y i as in the definition of dyn i (X i , ≺ i , ρ i ) with the two sets B ′′ i-1 and ∂V i \ (B i ∪ B i-1 ). By (iv), these two intersections may contain a total of at most t -|X i | vertices. In order to exploit the given values dyn i-1 we decouple ∂G i from G i -B i , which leads us to consider all candidates for an extension

B i ∩ V i-1 ⊆ B i-1 . Therefore, the two sets B ′ i-1 = B i ∩ V i-1 and B ′′ i-1 = B i-1 \ B ′ i-1 partition the set B i-1 . Let X ′ i-1 = X i ∩ B i-1 . Note that B ′ i-1 = B i ∩ B i-1 , X ′ i-1 ⊆ B ′ i-1 , and 
B ′′ i-1 = B i-1 \ B i , cf. Figure
(X i-1 , ≺ i-1 , ρ i-1 ), Bi-1 G i G i-1 Bi X ′ i-1 X ′′ i-1 Xi \ X ′ i-1 ∂Yi B ′′ i-1 Bi \ Bi-1 B ′ i-1 ∂Vi \ Bi
≺ (i-1,i) of ≺ i to B i-1 ∪ B i specifying a possible order in which the vertices in B i-1 ∪ B i appear in a cascade. Fixing the triple X ′′ i-1 , ∂Y i , ≺ (i-1,i) , we specify that Y i ∪ X i intersects B i-1 in the set X i-1 := X ′ i-1 ∪ X ′′ i-1
, and that ≺ (i-1,i) contains a linear order ≺ i-1 on B i-1 , which means that we can emulate the formation of the hull within G i just by working within ∂G i . We fix ∂Y i in order to determine the right choice for ρ i-1 .

Formally, let Y be the set of all triples

X ′′ i-1 , ∂Y i , ≺ (i-1,i) ,
where

• X ′′ i-1 is a subset of B ′′ i-1 , • ∂Y i is a subset of ∂V i \ (B i ∪ B i-1 ), • X ′′ i-1 ∪ ∂Y i ≤ t -|X i |, and 
• ≺ (i-1,i) is a linear extension of ≺ i to B i-1 ∪B i such that u ≺ (i-1,i) v for every u ∈ X i ∪X ′′ i-1 and every v ∈ B i-1 ∪ B i \ X i ∪ X ′′ i-1 .
Note that Y contains O 2 t-1 n t (2t -2)! elements.

We now explain how to choose ρ i-1 given an element of Y.

Let X ′′ i-1 , ∂Y i , ≺ (i-1,i) be an element of Y. Let v 1 ≺ (i-1,i) . . . ≺ (i-1,i) v p be the linear order ≺ (i-1,i) on B i-1 ∪ B i . For every j in [p] with v j ∈ (B i ∪ B i-1 ) \ (X i ∪ X ′′ i-1
), let h j be the number of neighbors of v j in the hull of the set

v ℓ : ℓ ∈ [j -1] ∪ X i ∪ X ′′ i-1 ∪ ∂Y i in ∂G i -v ℓ : ℓ ∈ [p] \ [j -1] , τ . If B i ∪ B i-1 ∪ ∂Y i is not a dynamic monopoly of (∂G i , τ ) or if h j < τ (v j ) -ρ i (v j ) for some j in [p] with v j ∈ B i \ (X i ∪ B i-1 ), then let f X ′′ i-1 , ∂Y i , ≺ (i-1,i) = ∞.
Note that these two cases correspond to violations of the conditions (b ′ ) and (c ′ ) in the proof of Claim 4, that is, in these cases there is no set Y i as in the definition of dyn i (X i , ≺ i , ρ i ), and, consequently,

dyn i (X i , ≺ i , ρ i ) = ∞.
Now, we may assume that B i ∪ B i-1 ∪ ∂Y i is a dynamic monopoly of (∂G i , τ ) and that h j ≥ τ (v j )ρ i (v j ) for every j in [p] with v j ∈ B i \ (X i ∪ B i-1 ). In this case, let f X

′′ i-1 , ∂Y i , ≺ (i-1,i) equal |∂Y i | + |X ′′ i-1 | + dyn i-1 X ′ i-1 ∪ X ′′ i-1 , ≺ i-1 , ρ i-1 ,
where

• ≺ i-1 is the restriction of ≺ (i-1,i) to B i-1 , • ρ i-1 (v j ) = ρ i (v j ) + h j for every j in [p] with v j ∈ B ′ i-1 \ X ′ i-1
, and

• ρ i-1 (v j ) = h j for every j in [p] with v j ∈ B ′′ i-1 \ X ′′ i-1 .
Note that also in this case f X ′′ i-1 , ∂Y i , ≺ (i-1,i) can be ∞. Note furthermore that, for every

v j ∈ B ′ i-1 \ X ′ i-1
, the value of ρ i-1 (v j ) has a contributing term ρ i (v j ) quantifying the help from outside of V i as well as a contributing term h j quantifying the help from outside of V i-1 but from inside of V i . For every v j ∈ B ′′ i-1 \ X ′′ i-1 , there is no help from outside of V i , that is, the first term disappears. In view of the above explanation, it now follows easily that the best choice within Y yields dyn i (X i , ≺ i , ρ i ), that is,

dyn i (X i , ≺ i , ρ i ) = min f X ′′ i-1 , ∂Y i , ≺ (i-1,i) : X ′′ i-1 , ∂Y i , ≺ (i-1,i) ∈ Y . (1) 
In fact, if Y i is as in the definition of dyn i (X i , ≺ i , ρ i ), and ≺ is as in (v) for that set, then

dyn i (X i , ≺ i , ρ i ) = |Y i | = |∂Y i | + |X ′′ i-1 | + |Y i-1 | ≥ |∂Y i | + |X ′′ i-1 | + dyn i-1 X ′ i-1 ∪ X ′′ i-1 , ≺ i-1 , ρ i-1 = f X ′′ i-1 , ∂Y i , ≺ (i-1,i) ,
where

∂Y i = Y i ∩ (∂V i \ B i ), X ′′ i-1 = Y ∩ B ′′ i-1 , Y i-1 = Y i ∩ (V i-1 \ B i-1 ), X ′ i-1 = X i ∩ B ′ i-1
, and ≺ i-1 is the restriction of ≺ to B i-1 , where the inequality follows because the set Y i-1 satisfies the conditions in the definition of dyn i-1

X ′ i-1 ∪ X ′′ i-1 , ≺ i-1 , ρ i-1 . Conversely, if X ′′ i-1 , ∂Y i , ≺ (i-1,i) is in Y, and the set Y i-1 is as in the definition of dyn i-1 X ′ i-1 ∪ X ′′ i-1 , ≺ i-1 , ρ i-1 , then the set Y i = Y i-1 ∪ X ′′ i-1 ∪ ∂Y i satisfies the condi- tions in the definition of dyn i (X i , ≺ i , ρ i ), and, hence, dyn i (X i , ≺ i , ρ i ) ≤ |Y i | = |∂Y i | + |X ′′ i-1 | + |Y i-1 | = |∂Y i | + |X ′′ i-1 | + dyn i-1 X ′ i-1 ∪ X ′′ i-1 , ≺ i-1 , ρ i-1 = f X ′′ i-1 , ∂Y i , ≺ (i-1,i) ,
which shows [START_REF] Barbosa | On minimal and minimum hull sets[END_REF].

Since Y has polynomially many elements, and each f X ′′ i-1 , ∂Y i , ≺ (i-1,i) can be determined in polynomial time, the claim follows.

Since k ≤ n, and there are only polynomially many local cascades for each G i , the Claims 3, 4, and 5 complete the proof.

The algorithm described in the proof of Theorem 1.2 can easily be modified in such a way that it also determines a minimum dynamic monopoly of (G, τ ) within the same time bound. While many ideas used in this proof extend to chordal graphs, the number of choices for the linear orders ≺ seems to be a problem for the extension of Theorem 1.2 to chordal graphs.

We proceed to the proof of our second result.

Proof of Theorem 1.3. Since the hull of a set in (G, τ ) can be determined in polynomial time, the considered problem is in NP. In order to show hardness, we describe a reduction from the NP-complete problem Vertex Cover restricted to cubic graphs. Therefore, let G be a cubic graph of order n. Let G ′ arise from the complete graph K with vertex set V (G) by adding, for every edge uv of G, a clique K(uv) of order n as well as all 2n possible edges between K(uv) and {u, v}. Let

τ : V (G ′ ) → N 0 : u →    3n + 3 , if u ∈ V (G), and 1 
, otherwise.

In order to complete the proof, it suffices to show that the vertex cover number of G equals dyn(G ′ , τ ).

First, suppose that X is a vertex cover of G. Let H be the hull of X in (G ′ , τ ). Since every vertex in V (G ′ ) \ V (G) has a neighbor in X and threshold value 1, the set H contains V (G ′ ) \ V (G). Therefore, for every vertex u of G ′ in V (G) \ X, the set H contains all three neighbors of u in V (G) as well as all 3n neighbors of u in V (G ′ ) \ V (G), which implies that X is a dynamic monopoly of (G ′ , τ ).

Next, suppose that D is a dynamic monopoly of (G ′ , τ ). Since replacing a vertex in D \ V (G) by some neighbor in V (G) yields a dynamic monopoly, we may assume that D ⊆ V (G). Suppose, for a contradiction, that u r , u s ∈ D for some edge u r u s in G, where u 1 ≺ . . . ≺ u n ′ is a cascade for D, and r < s. It follows that {u j : j ∈ [r -1]} contains no vertex of K(u r u s ), which implies the contradiction |N G ′ (u r ) ∩ {u j : j ∈ [r -1]}| ≤ 2 + 2n. Hence, D is a vertex cover of G, which completes the proof.

  and (b) are as in the definition of a cascade, and that (c) incorporates the assumption that u j has ρ(u j ) neighbors outside of G i when it enters the hull. By definition, we have G = G k , and |B k | = 1, which implies that there are exactly two local cascades (X k , ≺ k , ρ k ) for G k with ρ k (u) = 0 for every u ∈ B k \ X k ; these are the local cascades (B k , ∅, 0) and (∅, ∅, 0). Claim 3. dyn(G, τ ) = min 1 + dyn k (B k , ∅, 0), 0 + dyn k (∅, ∅, 0) .
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  the graph ∂G i is either a clique of order less than t or a t-connected graph. Proof of Claim 2. Let i ∈ [k]. By definition, there are indices i 1 and i 2 with i 1 < i 2 such that

  has at most t -|X 1 | elements, which implies that there are only O(n t ) candidates for Y 1 . For each such set Y 1 , condition (v) holds if and only if