
HAL Id: lirmm-02956191
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02956191v1

Submitted on 5 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Hardware-Aware Heuristic for the Qubit Mapping
Problem in the NISQ Era

Siyuan Niu, Adrien Suau, Gabriel Staffelbach, Aida Todri-Sanial

To cite this version:
Siyuan Niu, Adrien Suau, Gabriel Staffelbach, Aida Todri-Sanial. A Hardware-Aware Heuristic for
the Qubit Mapping Problem in the NISQ Era. IEEE Transactions on Quantum Engineering, 2020, 1,
pp.1-14/3101614. �10.1109/TQE.2020.3026544�. �lirmm-02956191�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02956191v1
https://hal.archives-ouvertes.fr

A Hardware-Aware Heuristic for theQubit Mapping Problem in
the NISQ Era

Siyuan NIU
LIRMM, Univ Montpellier

Montpellier, France
siyuan.niu@lirmm.fr

Adrien Suau
LIRMM, Univ Montpellier

Montpellier, France
CERFACS

Toulouse, France
adrien.suau@cerfacs.fr

Gabriel Staffelbach
CERFACS

Toulouse, France
gabriel.staffelbach@cerfacs.fr

Aida Todri-Sanial
LIRMM, CNRS

Montpellier, France
aida.todri@lirmm.fr

ABSTRACT
Due to several physical limitations in the realisation of quantum
hardware, today’s quantum computers are qualified as Noisy Intermediate-
Scale Quantum (NISQ) hardware. NISQ hardware is characterized
by a small number of qubits (50 to a few hundred) and noisy opera-
tions. Moreover, current realisations of superconducting quantum
chips do not have the ideal all-to-all connectivity between qubits
but rather at most a nearest-neighbour connectivity. All these hard-
ware restrictions add supplementary low-level requirements. They
need to be addressed before submitting the quantum circuit to an
actual chip. Satisfying these requirements is a tedious task for the
programmer. Instead, the task of adapting the quantum circuit to a
given hardware is left to the compiler. In this paper, we propose a
Hardware-Aware mapping transition algorithm (HA) that takes the
calibration data into account with the aim to improve the overall
fidelity of the circuit. Evaluation results on IBM quantum hardware
show that our HA approach can outperform the state of the art
both in terms of the number of additional gates and circuit fidelity.

1 INTRODUCTION
In recent years, quantum computing has become a very active
field of research. It promises to solve classically intractable com-
putational problems such as integer factorisation [36], quantum
chemistry [9], linear algebra [7, 18, 21, 22, 35, 43], or optimisa-
tion [15, 24, 25]. Along with algorithms, quantum hardware has
attracted the attention of several companies such as IBM, Google, In-
tel, or Rigetti that have demonstrated quantum chips with 53, 72, 49,
and 28 qubits respectively. IBM and Rigetti have also given access
to a cloud quantum computing service on which anyone can submit
quantum circuits to real quantum hardware. The aforementioned
quantum hardware can already be qualified as NISQ hardware [33].
Still, none of them is fault-tolerant as quantum error correction
codes (QECC) are in infancy. Nevertheless, it is believed that even
a noisy quantum chip with limited qubit-to-qubit connectivity can
be used to solve some classically intractable problems, one of the
most promising candidates being quantum chemistry [9].

From the algorithm perspective, a new paradigm for quantum
algorithms has emerged to take into account the limitations of NISQ

hardware – variational algorithms. Examples of variational algo-
rithms include the Variational Quantum Eigensolver (VQE) [32],
the Variational Quantum Linear Solver (VQLS) [7, 22], or the Quan-
tum Approximate Optimisation Algorithm (QAOA) [15]. However,
there is a difference between the quantum program written by the
programmer and what can be executed on the current quantum
hardware. Quantum programs are written as if they were running
on ideal quantum hardware without any noise or physical con-
straints. But real quantum chips are not ideal – for example for
superconducting devices which are targeted in this paper, current
two-qubit gates can at best only be applied between two neigh-
bouring qubits. If we want to perform quantum computations, our
quantum circuits must obey such connectivity constraints, which
means that a modification of the quantum program is necessary
to adapt it to the real quantum device. This problem of adapting
a quantum program to given hardware connectivity is called the
qubit mapping problem and is the focus of this paper.

The qubit mapping problem can be reformulated as two sub-
problems. First, to find an initial mapping, i.e. a mapping between
the "logical qubits" (as a qubit in a quantum circuit) to the "physical
qubits" (as a qubit in a quantum chip). Secondly, to determine a
mapping transition algorithm to identify the quantum gates to
insert in a quantum circuit such that it complies with the targeted
quantum hardware topology. Finding the optimal solution for the
qubit mapping problem is likely to be an NP-complete problem as
noted in [38].

Two types of methods have been used to solve the qubit mapping
problem. The first method is to reformulate it as a mathematically
equivalent problem that can then be solved using a specialised
solver. Suchmathematical formalism can be Integer Linear Program-
ming (ILP) [4, 5, 13, 27], Satisfiability Modulo Theory (SMT) [30, 31],
or even Constraint Programming (CP) [6, 40]. However, these math-
ematical approaches suffer from long runtime and are difficult to
scale up. The second method is to use heuristics to modify the quan-
tum circuit, starting from the first quantum gate and transforming
the circuit sequentially by making each gate one after the other
hardware-compliant.

Most of the previous works [2, 26, 34, 37, 42] using the second
method only adapt for nearest-neighbour connectivity and cannot

Siyuan NIU, Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial

be directly applicable to actual quantum architectures with nonuni-
form connections. Recently, publications[10, 19, 23, 29, 38, 44–46]
that are not restricted to a specific architecture have been released.
The algorithm presented in [46] uses a heuristic to find the best
permutation at each step of the mapping procedure. Instead of
representing a quantum circuit as a fixed sequence of layers, [20]
introduces the Directed Acyclic Graph (DAG) that takes into ac-
count the dependency and commutativity of quantum gates. A
major improvement has been shown by [29] which uses a "forward-
backward-forward" mapping algorithm. Moreover, the "look-ahead"
strategy has been introduced in the heuristic cost function for fur-
ther optimisation in some existing works, notably [23, 29, 44–46].
For qubit movement, most of these methods only use SWAP gate.
A notable exception is [23] that considered both Bridge and SWAP
gate. Moreover, most of these works aim to minimise the number
of inserted gates and do not consider the noise impact on different
qubits.

In [3, 5, 16, 30, 39], calibration data is exploited and the applied ap-
proach is to insert additional gates between strongly linked qubits,
i.e. qubits linked with a low two-qubit gate error rate. However,
these works do not consider a holistic view of the problem such as
exploring initial mapping or the heuristic function is not efficient
enough to select the best candidate of the inserted gate.

In this work, we follow the second type of methods that consist
in developing a heuristic to choose the best SWAP to insert based
on calibration data. We propose a Hardware-Aware (HA) heuristic
mapping transition algorithm to address the drawbacks mentioned
above. Our main contributions can be listed as follows. First, we
present a mapping transition algorithm that takes into account the
hardware topology and the calibration data to improve the overall
output state fidelity and reduce the total execution time. Second, to
reduce the number of additional gates required to map the quantum
circuit to the quantum chip, our algorithm can select between a
SWAP or Bridge gate. Finally, we run our HA algorithm on real
quantum hardware and compare with various mapping methods
from the literature.

2 STATE OF THE ART
Here, we introduce state of the art on quantum hardware devices
and their constraints, focusing mainly on IBM quantum devices.
Then, we explain the qubit mapping problem. Finally, a small mo-
tivational example is shown to illustrate the gist of our algorithm.
The notations used in this paper are summarised in Table 1 (we
reference some notations from [29]).

2.1 Current state-of-the-art on quantum
hardware

NISQ hardware is characterized in [33] as quantum hardware hav-
ing from 50 to a few hundred noisy qubits on which one can only
perform noisy operations. At the time of writing, several compa-
nies have already demonstrated quantum chips that can, according
to the definition, be qualified as NISQ chips. For example, IBM
announced the latest 53-qubit quantum chip and gave access to
the community to execute quantum circuits. Other companies like
Google (72 qubits) or Intel (49 qubits) announced quantum chips
that could be qualified as NISQ but did not provide any information

Table 1: Notations used in this paper

Notation Definition
q logical qubits for quantum circuit
Q physical qubits for quantum device
g quantum gate
g.qn n-th logical qubit the quantum gate g

is applied on
G hardware coupling graph
D distance matrix
S swap matrix
GE hardware graph with swap error rates

as weights
E swap error matrix
GT hardware graph with swap execution

time as weights
T swap execution time matrix
H heuristic cost function
π mapping from q to Q
F first layer
E extended layer
W weight parameter

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Figure 1: ibmq_almaden topology. Qubits are represented as
circles and indexed from 0 to 19. A connection between two
qubits is represented by an edge between the two qubits.

about their characteristics. One of the significant challenges of these
quantum chips that limits them from solving real-world problems
is their level of noise – even if these chips have enough qubits theo-
retically to show a quantum speedup, the fidelity of their quantum
operations is still too low to obtain any advantage over the classical
computer on real-world problems. In this paper, we mainly focus on
IBM architectures. Other hardware such as Google’s Sycamore [14]
or Rigetti’s Aspen-7 is not specially targeted. Still, the proposed
algorithm and methods are general enough to be applicable to any
quantum chip that use the quantum-gate model of computation
and so should be applicable to these hardware.

Fig. 1 shows the topology, also called coupling graph, of IBM
Quantum’s ibmq_almaden, a 20-qubit system. Each vertex repre-
sents a qubit and the edge represents the coupling interconnect
between two qubits. Table 2 shows the calibration data that are
extracted from [1]. It includes CNOT error rates, single qubit error

A Hardware-Aware Heuristic for theQubit Mapping Problem in the NISQ Era

Table 2: ibmq_almaden characteristics

Qubit number 20
Single qubit error rate 2.655e−4 to 9.569e−4

CNOT error rate 8.136e−3 to 3.403e−2

id gate length 35.56 ns
u1 gate length 0 ns
u2 gate length 35.56 ns
u3 gate length 71.11 ns
CNOT gate length 248.88 ns to 860.44 ns
T1 34.66 µs to 139.46 µs
T2 12.16 µs to 200.25 µs

Note that the exact hardware characteristics are not constant and change at each
re-calibration of the chip.

rates, energy relaxation and decoherence characteristic times T1
and T2, and execution time (gate length). The calibration data show
that the error of two-qubit gates is one order of magnitude higher
than their one-qubit counterparts. This is also the case for gate
execution times – two-qubit gates are approximately an order of
magnitude slower than one-qubit gates. For simplicity and because
of the relatively low error rates and execution times of one-qubit
gates when compared to two-qubit gates, we focus on two-qubit
gates in this paper.

Moreover, it is important to note that all the interconnects be-
tween qubits are not equal with respect to CNOT gate error rate
or execution time. Taking ibmq_almaden as an example, the best
CNOT gate has an error rate of 4.18 times lower than the worst CNOT
and the maximum execution time is 3.46 times longer than the
minimum one. Therefore, we cannot treat each qubit equally, and
we need to consider the interconnect topology between qubits as
well as their error rate. CNOT gates can be applied in either direction
by conjugating with H gates. As we do not consider one-qubit gates
in this study, we do not have to consider the connectivity direction.

2.2 Qubit mapping problem
Following the abstraction first introduced in classical computing
decades ago, most of the quantum circuits are described in a generic
manner that does not take into account all the physical hardware
constraints. Many of the currently existing frameworks for quan-
tum algorithm development encourage this way of development
by giving access to a broad set of "primitive" gates. For example,
the Qiskit library allows the developer to choose from more than
30 primitive gates, whereas the IBM quantum chips only provide
four physical hardware gates (five if we take the identity gate into
account). However, any gate can also be implemented with Open-
Pulse [8] which is a low level hardware control for users to generate
their gates to mitigate errors. Such an abstraction relieves the bur-
den from the developer to adapt the code to a specific hardware
and transfer it to the compiler, whose role is to transform an ab-
stracted code into the most efficient hardware code possible. To do
so, a compiler for quantum programs should perform several steps
summarised in the following paragraphs.

The first step is to decompose the abstracted quantum gates
into hardware gates. The hardware gates available strongly depend

on the quantum hardware we are compiling for, but are generally
comprised of a two-qubit "entangler" gate (controlled-X gate for
IBM hardware, fSim gate for Google hardware) and several one-
qubit gates (u1, u2, u3, and id gates for IBM hardware). At the end
of this step, the quantum circuit has been modified to only con-
tain quantum gates that are directly implemented in the quantum
hardware.

But translating all abstract gates to hardware gates is generally
not enough to make the quantum circuit executable on the specific
hardware – the hardware topology is rarely respected at the end
of this first step and the circuit requires a second step with further
modifications. Such modification of the quantum circuit to make
it compliant with the hardware topology is often done by insert-
ing SWAP gates before non-executable two-qubit gates. Note that
on current hardware, only two-qubit gates are restricted by the
hardware topology.

Finally, once the quantum circuit is executable on the specified
quantum hardware, a final third step is performed to optimise the
quantum circuit. Depending on the figure of interest, the optimisa-
tion can aim at reducing the execution time, gate count, increasing
the final state fidelity or even reducing the number of qubits needed.

The qubit mapping problem is defined as the second compilation
step that modifies the quantum circuit to contain only two-qubit
gates that fit into the hardware topology. But in practice qubit
mapping algorithms also try to consider the third step that consists
in optimising the generated quantum circuit according to a chosen
figure of merit.

2.3 Motivational example
Fig. 2a shows a small quantum circuit, which is composed of three
CNOT gates and one X gate. It is mapped to a 5-qubit IBM quantum
device called ibmq_valencia, shown in Fig. 2b. For simplicity, the
initial mapping is allocated linearly as {q0 → Q0,q1 → Q1,q2 →
Q2,q3 → Q3,q4 → Q4}. Gates д1 and д2 comply with the hardware
topology (i.e. coupling constraints) and can be executed directly.
However, д3 is applied to two non-connected qubits. Therefore, a
movement (i.e. a SWAP gate, shown in Fig. 3) of logical qubits is
needed before being able to execute д3 on the hardware connection
between q2 and q3. Referring to the coupling graph in Fig. 2b, three
SWAP gates are possible: {q1,q2}, {q1,q3} and {q3,q4}. Among these
possible SWAPs, two of them change the current mapping between
logical and physical qubits in such a way that the CNOT gate between
q2 and q3 becomes executable – swapping of {q1,q2} and {q1,q3}.
Translating the logical qubits to their physical counterparts, the
SWAPs {Q1,Q2} and {Q1,Q3} are our candidates. At this step, most
of the state-of-the-art algorithms consider the two possible SWAPs
to be equal and will randomly select one. However, if the calibration
data is considered, the SWAP between {Q1,Q2} is less noisy than
the other (error rate of the two interconnects is shown in Fig. 2b).
A SWAP operation consists of three CNOTs and we want to insert a
SWAP gate with the least noise. Thus, the SWAP gate between {q1,q2}
is inserted and the final mapping is {q0 → Q0,q1 → Q2,q2 →
Q1,q3 → Q3,q4 → Q4}. The updated circuit is shown in Fig. 2c.

Siyuan NIU, Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial

g1

g2

g3
X

q0(Q0)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

(a) Original circuit

Q0 Q1 Q2

Q3

Q4

7e−3

1e−
2

(b) ibmq_valencia

X

q0(Q0)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

Q0

Q2

Q1

Q3

Q4

(c) Updated circuit

Figure 2: A motivational example for the qubit mapping problem.

3 PROPOSED SOLUTION
We are inspired by the SABRE algorithm presented in [29], which is
a SWAP-based heuristic algorithm to reduce the number of additional
CNOT gates. We propose a Hardware-Aware SWAP and Bridge based
heuristic search algorithm. Compared to SABRE algorithm, which
aims at reducing the number of additional gates, we improve the
circuit fidelity as well as reduce the number of additional gates by
introducing a new distance matrix that takes into account both
of the hardware connectivity and the calibration data. Moreover,
SABRE only uses SWAP gate when a qubit movement is needed,
whereas our algorithm decides between a SWAP and Bridge for qubit
movement to further reduce the number of additional gates. Finally,
we also develop an initial mapping algorithm called Hardware-
aware Simulated Annealing (HSA) in order to evaluate the mapping
transition algorithm of different flavours.

The compiler takes as input a quantum program written in the
OpenQASM language [11] and the calibration data of a specific
IBM quantum device. During the compilation process, it consid-
ers the hardware constraints such as hardware topology and gate
availability. Then, the qubit mapping algorithm is applied. It con-
tains two principal parts – initial mapping and mapping transi-
tion algorithm. In the mapping transition step, some optimisa-
tions are done to generate a circuit with a better performance in
terms of final state fidelity. The source code is publicly available at
https://github.com/peachnuts/HA.

We start by explaining our HA algorithm in subsection 3.1. In sub-
section 3.2, we describe the hardware-aware simulated annealing
(HSA) method for initial mapping. Finally, subsection 3.3 presents
the metrics used to evaluate our algorithm.

3.1 Hardware-aware SWAP and Bridge based
heuristic search

The first step of the algorithm is to process the input quantum
circuit in order to reformulate it in a more convenient data format.
Starting from the input quantum circuit, we can obtain a Directed
Acyclic Graph (DAG) circuit which represents the operation depen-
dencies in the quantum circuit without considering the hardware
constraints. The DAG is constructed such that quantum gates are
represented by the graph nodes and the directed edge (i, j) between
nodes i and j represents a dependency from gate i to j, i.e. gate i
should be executed before j.

Once the DAG is constructed, graph nodes (i.e. quantum gates)
can be ordered according to the gate dependencies âĂŞ for example

=

Figure 3: SWAP gate

if gate j depends on gate i , then gate i will be ordered before gate
j. One possible ordering that fulfil this property of dependency is
the well known topological ordering. Note that depending on the
quantum circuit, this ordering might not be unique.

Quantum gates can then be divided into three groups: the exe-
cuted gates, the executable gates, and to be executed future gates.
Executed gates are quantum gates that have already been mapped
by the algorithm. Executable gates constitute the first layer, denoted
F . A gate is considered executable when all the gates it depended
on are in the executed gates group. Finally, to be executed future
gates are the rest of the gates (not yet executed nor executable).
These gates are included in the extended layer, E. An illustration of
layers E and F is shown in Fig. 6.

3.1.1 Heuristic cost function. A heuristic cost function H is intro-
duced to estimate the cost of each possible (i.e. executable) swap
pairs at a given step of the iterative algorithm. Its objective is to
quantify the quality of the possible swap pairs according to the
distance considered and to select the best swap pair.

When inserting a SWAP gate, the circuit is divided into two layers:
the first layer F and the extended layer E. Note that inserting a SWAP
gate will not only influence the gates in the first layer F but also the
gates in the extended layer E. The approach of considering the swap
pair’s impact on the extended layer is referred as the look-ahead
ability. It can contribute to a better selection and depends on the
size of the extended layer.

We devise several metrics that can be used to estimate the cost
of a swap pair in HA. We consider three different distance matrices
– swap matrix S , swap error matrix E and swap execution time
matrix T . Because S , E, and T contain entries with incompatible
units and different scales, we update T to make it dimensionless
and each matrix is normalised. Moreover, we introduce weights
(α1, α2, and α3 for S , E, and T , respectively) to allow to choose the
importance of each parameter in terms of number of SWAPs, gate
error and execution time.

Matrix S is constructed such that the entry (i, j) stores the dis-
tance on the real hardware between qubit i to a neighbour of qubit

https://github.com/peachnuts/HA

A Hardware-Aware Heuristic for theQubit Mapping Problem in the NISQ Era

j , which is also equal to the minimum number of SWAP gates needed
to move qubit i to qubit j. The matrix is efficiently constructed by
using the Floyd-Warshall algorithm [17].

Matrix E stores in its entry (i, j) the minimum error rate attain-
able to move the qubit i to a neighbour of qubit j. The error rate
of each possible SWAP is computed based on the calibration data
of CNOT gates. The decomposition of a SWAP gate in terms of CNOT
gates is shown in Fig. 3.

The success rate of a CNOT between the physical qubits Qi and
Q j , denoted by S(Qi ,Q j), is computed from the error rates given
in the calibration data. Equation (1) computes the error rate of a
SWAP gate between two connected physical qubits Qi and Q j while
taking into account that the swap operation is symmetric. The final
E matrix is constructed by using the Floyd-Warshall algorithm on
the graph GE with the computed errors as edge weights.

GE (Qi ,Q j) = 1 − S(Qi ,Q j) × S(Q j ,Qi)

×max(S(Qi ,Q j), S(Q j ,Qi)) (1)

Matrix T is computed, similarly as S and E, with the Floyd-
Warshall algorithm applied on graph GT but by using the SWAP
execution time. This execution time is computed with (2) where
t(Qi ,Q j) is the execution time of the CNOT gate with Qi as control
and Q j as target, extracted from the calibration data.

GT (Qi ,Q j) = t(Qi ,Q j) + t(Q j ,Qi)

+min(t(Qi ,Q j), t(Q j ,Qi)) (2)

The summation of the three matrices forms a new matrix called
distance matrixD (shown in (3)). The distance matrix represents the
"distance" between each pair of qubits in the quantum chip. Here,
the "distance" means the combination of swap distance, overall
error rate and execution time of the shortest path.

D = α1 × S + α2 × E + α3 ×T (3)

Inserting a SWAP gate will have an impact on the current mapping
πc , changing it to πtemp. We compute the cost of this SWAP on the
first layer F with the cost function Hbasic shown in (4). A small
score means the SWAP has a little impact on the first layer gates
with respect to the overall distance considered. The swap pair with
the minimum score is selected as the best candidate.

Hbasic =
∑
д∈F

D[πtemp(д.q1)][πtemp(д.q2)] (4)

We also consider the impact of the swap pair on the extended
layer E. The impact of a SWAP on the first layer is prioritised over
its impact on the extended layer. As a result, a weight parameter
W is added to the extended layer cost to scale its impact. Moreover,
the impacts on the first layer and extended layer are normalised by
dividing them with their respective number of gates. The complete
heuristic function including the extended layer E with look-ahead
ability is shown in (5). Even though (4) and (5) are similar to equa-
tions in [29], it is important to note that the distance matrix D is
different.

=

Figure 4: Bridge gate

H =
1
|F |

∑
д∈F

D[πtemp(д.q1)][πtemp(д.q2)]

+W ×
1
|E |

∑
д∈E

D[πtemp(д.q1)][πtemp(д.q2)] (5)

3.1.2 SWAP gate and Bridge gate. Another important metric of
the HA algorithm is the heuristic cost function that estimates the
usefulness of a SWAP. In some situations, even the best SWAP may
have a negative impact on the overall circuit. In that case, inspired
by [23], our heuristic function decides to insert a Bridge gate in-
stead of a SWAP gate if the topology allows it. The decomposition of
the Bridge gate with four CNOTs is shown in Fig. 4. The Bridge gate
allows executing a CNOT between two qubits that share a common
neighbour. Both SWAP and Bridge gate need three supplementary
CNOTs. Note that the Bridge gate can only be used to replace a
CNOT if the distance between the control and target qubits (i.e. the
minimum number of links between the two qubits) is exactly two.

Fig. 5a shows an example of quantum circuit that is mapped to
ibmq_valencia with the topology described in Fig. 2b. The quantum
gates д1 and д2 comply with the topology of the chip, but д3 does
not. By evaluating the heuristic cost function H , the SWAP between
q0 and q1 is selected. But as shown in Fig. 5b, the chosen SWAP
has a negative impact on the extended layer – gate д5 is no longer
executable and another SWAP gate is required to execute it.

Such situations can be solved by using a Bridge gate instead
of a SWAP gate as shown in Fig. 5c. Since the distance between the
control qubit q0 and the target qubit q3 of gate д3 is two, we can
insert a Bridge gate instead. Using a Bridge gate allows to execute
the CNOT gate д5 without changing the current mapping. Moreover,
by using a Bridge gate, we only add three CNOTs to map the entire
circuit, instead of six (two times more) if only SWAP gates were used.

Once the cost H of each swap pair is computed, the heuristic
will try to choose the best option between inserting a SWAP or
Bridge gate. To do so, it considers two mappings: πc , the mapping
used before selecting the best swap pair and also the mapping
obtained after inserting a Bridge gate, and πtemp, the new mapping
that would be obtained after inserting the best SWAP gate. The
overall effect of the SWAP gate on the extended layer E is computed
according to (6). If the effect of the best SWAP gate is negative, this
means that the considered swap pair has an overall negative impact
on the extended layer E. In this case, we consider that it is better to
keep the current mapping so, if the hardware topology permits it,
a Bridge gate is inserted instead of a SWAP gate.

Siyuan NIU, Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial

g1

g2

g3

g4

g5

q0(Q0)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

(a) Original circuit

q0(Q0)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

Q0

Q1

Q2

Q3

Q4

(b) SWAP gate transformation

Bridge gate

q0(Q0)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

Q0

Q1

Q2

Q3

Q4

(c) Bridge gate transformation

Figure 5: An example of a quantum circuit showing the difference between SWAP and Bridge transformation.

Effect =
∑
д∈E

D[πc (д.q1)][πc (д.q2)]

− D[πtemp(д.q1)][πtemp(д.q2)] (6)

3.1.3 HA Algorithm. The mapping transition algorithm will go
through each quantum gate sequentially and mark the directly
executable gates as executed. If no more gates can be marked as
executed, this means that either the quantum circuit is fully mapped
or all the gates in the first layer do not comply with the hardware
topology. In the first case, the mapping algorithm can be stopped
and the mapped quantum circuit returned. In the second case, the
algorithm calls a heuristic function to choose the best SWAP or
Bridge gate to insert in order to make some of the gates in the first
layer executable. The algorithm then iterates, until the quantum
circuit is fully mapped.

Algorithm 1 shows the pseudo-code of the HA heuristic method.
Note that the most recent calibration data should be retrieved (i.e.
through the IBM Quantum Experience) before each usage of the
HA algorithm to ensure that the algorithm has access to the most
accurate and up-to-date information possible.

The heuristic method to insert a SWAP or Bridge when no gate
in the first layer F is executable can be described as follows. First, a
list of all the candidate SWAP gates, swap_candidate_list, is con-
structed based on the quantum gates in the first layer F and the
hardware coupling graph G. Then, for each SWAP candidate a tem-
porary mapping πtemp is computed with the Map_Update function.
The final cost of the candidate SWAP is computed following (5). The
SWAP with the minimum score is selected and called swapmin .

The last step is to choose between a SWAP gate or a Bridge gate.
A SWAP gate can always be used, whereas a Bridge gate can only
be inserted if a gate in the first layer F becomes executable from
the mapping obtained after applying the swapmin gate. If a Bridge
gate is not insertable, then the algorithm has no choice but to insert
a SWAP gate. Else, the algorithm decides the gate (SWAP or Bridge)
to insert based on the effect of the SWAP gate on the extended layer
computed with (6). If adding a SWAP gate has a negative impact on
the extended layer, then a Bridge gate (which does not change the
current mapping) is inserted. Otherwise, if adding a SWAP gate has
a positive effect on the extended layer, then the algorithm inserts a
SWAP gate.

3.1.4 Runtime analysis. The HA algorithm outperforms SABRE
algorithm thanks to several modifications while not changing its
asymptotic complexity. The mapping procedure is separated into

Algorithm 1: Heuristic algorithm for selecting additional gate
candidate
input :Circuit DAG, Coupling graph G, Current mapping πc ,

Distance matrix D, Swap matrix S , First layer F ,
Extended layer E, Weight parameterW

output :New mapping πn , Inserted gate дadd
1 begin
2 Set score to empty list;
3 Set effect to empty list;
4 swap_candidate_list← FindSwapPairs(F , G);
5 for swap ∈ swap_candidate_list do
6 πtemp←Map_Update (swap);
7 Hbasic← 0;
8 for gate ∈ F do
9 Hbasic← Hbasic + D(gate, πtemp) ;

10 end
11 Hextended← 0;
12 for gate ∈ E do
13 Hextended← Hextended + D(gate, πtemp) ;
14 effect_cost← effect_cost + D(gate, πc) − D(gate,

πtemp);
15 end
16 H ← 1

|F |Hbasic +
W
|E |Hextended ;

17 score.append(H);
18 effect.append(effect_cost);
19 end
20 Find the swap with minimum score: swapmin;
21 Find the gate in F that become executable by applying

swapmin: дs ;
22 if effect

[
swapmin

]
< 0 and S(дs ,πc) = 2 then

23 πn ← πc ;
24 дadd← дB ;
25 else
26 πn ← Map_Update (swapmin);
27 дadd← swapmin;
28 end
29 return πn , дadd;
30 end

A Hardware-Aware Heuristic for theQubit Mapping Problem in the NISQ Era

g1

g2

g3

g4

g5

q0(Q0)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

F

E

(a) Beginning of the HA mapping algorithm. д1
and д2 do not overlap and are the first gates in
the circuit so they are in F . The other gates are
pushed in E .

g1

g2

g3

g4

g5

q0(Q0)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

F E

(b) д1 and д2 are compliant with the hardware
topology. They are executed and removed from
F . The gate д3 is pushed into F but is not com-
pliant and a SWAP/Bridge should be inserted. д4
overlaps with д3 and cannot be inserted in F .

g1

g2

g3

g4

g5

q0(Q0)

q1(Q1)

q2(Q2)

q3(Q3)

q4(Q4)

F

E

(c) After Bridge insertion, д3 is executed and re-
moved from F . д4 no longer overlap with a gate
in F and is added to the first layer. д5 overlaps
with д4 and so should stay in E .

Figure 6: Evolution of the layers F and E on a simple circuit with a detailed explanation at each step.

two steps: an initialisation step that is independent of the mapped
quantum circuit and a mapping step.

The initialisation step computes the distance matrix that is used
afterwards in the mapping step. In our algorithm, the distance
matrix is computed according to (4). Each of S , E andT constituting
the distance matrix D requires to use the Floyd-Warshall algorithm
once on the hardware graph. This means that we need to perform
three calls to an algorithm ofO(n3) complexity, n being the number
of qubits of the targeted quantum chip. Moreover, the weights
used by the Floyd-Warshall algorithm for the matrices E and T
should be retrieved online with Qiskit API. This retrieval is an
operation that theoretically takes O(n2) time in the worst case as
we need to retrieve CNOT error rates and execution time for each
link. Note that the current quantum chips only have O(n) links
and so the asymptotic complexity of this step is O(n). Overall, the
initialisation step is dominated by the cost of applying the Floyd-
Warshall algorithm, that takes O(n3) time.

After the initialisation step, the actual mapping procedure is
applied. Let n be the number of qubits, д the number of CNOT gates
in the mapped quantum circuit and d the diameter of the chip, i.e.
the minimum SWAP distance between the two farthest qubits on
the quantum chip. In the worst case, all the CNOT gates should be
mapped because none of them comply with the hardware topology.
Moreover, all the CNOT gates might need up to d SWAPs in order
to become executable. Finally, for each SWAP insertion we need
to execute the heuristic cost function. This function will need to
explore at most n2 links (in the case of an all-to-all connected chip,
this number improves to O(n) on practical quantum chips with a
nearest-neighbour connectivity), where exploring one link might
take a time of O(д) if all the CNOT gates are included in either F
or E. In summary, the mapping step takes O(д2dn2) time in the
worst case, which can be improved to O(дn2.5) under reasonable
assumptions (nearest-neighbour chip connectivity, i.e. d ∈ O(

√
n),

and an extended layer E with at most O(n) CNOT gates).
It is important to note that the initialisation step only needs to

be repeated when the calibration data change but that requires to
recover data from the Internet which can be a slow operation (in
the order of several seconds).

3.2 Initial mapping
Heuristic-based mapping transition algorithms rely crucially on
a good initial mapping to achieve the best results. A well-known
algorithm when trying to approximate the global minimum of a
scalar function with a discrete search space is simulated annealing.
Simulated annealing is a meta-heuristic designed to explore the
search space by randomly selecting neighbours of the current state,
evaluating them with the provided cost function and evolving in
such a way that the algorithm will not be trapped into local mini-
mums. The simulated annealing algorithm is depicted in Algorithm
2.

A modified version of simulated annealing has already been
applied in [44] where a repetition parameter R is used to explore
several neighbours at each temperature step. The authors consider
a simple get_neighbour function that modifies randomly the cur-
rent mapping π to a neighbouring mapping πneighbour. However,
get_neighbour function is limited as it is not aware of the underly-
ing hardware. This means that from the set of mappings generated
by this function and evaluated by the simulated annealing proce-
dure, several mappings can be excluded even before evaluating the
mapping cost.

We aim to improve the initial mapping generated with the simu-
lated annealing procedure by designing a Hardware-aware Simu-
latedAnnealing (HSA) algorithmusing a hardware-aware get_neighbour
method to explore the neighbouring mappings. To explore differ-
ent mappings, we separate the get_neighbour procedure in three
algorithms governed by a top execution policy. This top layer pol-
icy decides which one of the three algorithms the get_neighbour
method should execute to obtain a new mapping. The policy we
used randomly chooses which algorithm to use from the value of a
random number.

The first algorithm, called shuffle, does not change the physical
qubits involved in the current mapping but changes how they are
mapped to logical qubits. The most straightforward algorithm that
can be used for this task is a random shuffle – we list the physical
qubits involved in the mapping, randomly shuffle them, and obtain
a new arbitrary mapping with the same physical qubits.

The second algorithm, expand, does not change the mapping
between physical qubits and logical ones but replaces one of the
physical qubits involved in the mapping by another physical qubit

Siyuan NIU, Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial

Algorithm 2: Simulated annealing
input : Initial mapping π0, Cost function C, Neighbour

computation function get_neighbour, Initial
temperature Tinit, Final temperature Tf , Temperature
evolution constant ∆

output :Best initial mapping found πopt
1 begin
2 π ← π0;
3 πopt← π0;
4 T ← Tinit;
5 cost← C(π);
6 costopt← cost;
7 while T ⩾ Tf do
8 πneighbour← get_neighbour(π);
9 costneighbour← C(πneighbour);

10 if costneighbour < costopt then
11 costopt← costneighbour;
12 πopt← πneighbour;
13 end
14 if costneighbour < cost then
15 cost← costneighbour;
16 π ← πneighbour;
17 else
18 if rand() < exp

(
cost- costneighbour

T

)
then

19 cost← costneighbour;
20 π ← πneighbour;
21 end
22 end
23 T ← T × ∆;
24 end
25 return πopt;
26 end

that is not part of the mapping. Instead of a hardware-unaware
expand, we use an expand algorithm that tries to avoid separating
the physical qubits in the current mapping into two disconnected
groups. Moreover, the algorithm encourages re-arrangement of
qubits based on the figure of merit chosen (i.e. final state fidelity,
circuit depth, execution time). In this algorithm, we consider that
strongly connected qubits have high fidelity. The hardware-aware
implementation aims to identify the qubits with the least and most
connections. Moreover, based on our tests with qubit measurement
operations, we find there is a huge source of errors. To account for
theses errors, we add weights to qubit to determine the best and
worst qubits in terms of their measured fidelity.

The third algorithm used in the get_neighbour algorithm is
called reset. Its purpose is to give the possibility to the simulated
annealing algorithm to escape local-minimums. This algorithm is
needed because the first two algorithms shuffle and expand will
likely explore only the close neighbourhood of the current mapping
and may not be able to escape a local minimum. To avoid being
stuck, the reset algorithm tries to find a potentially good new

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Figure 7: ibmq_tokyo topology.

initial mapping from a randomly chosen qubit, without considering
the previously explored mappings. The algorithm starts with a
random qubit and expands the mapping by iteratively weighting
all the qubits and adding the best qubit to the new mapping.

3.3 Metrics
To evaluate our solution and compare it to other algorithms, we
use some metrics that are described in the following paragraphs.

The first metric is the success rate of the mapped quantum circuit
on a given hardware. We define the success rate of a quantum
circuit as the fidelity of the quantum state obtained at the end of
the execution of this quantum circuit on the hardware. We estimate
this success rate by executing the quantum circuit a large number
of times (8192), counting the number of executions that gave the
expected answer and dividing this number by the total number
of executions. The expected answer is obtained by executing the
quantum circuit on a simulator.

The second metric chosen is the additional number of CNOT gates.
This metric is tightly linked with the total number of SWAP gates
inserted.

The third metric is the total execution time of the circuit. As
the execution time of each CNOT gate can be extracted from [1], we
can estimate the overall execution time for a given circuit. This
metric is important for several reasons. First, it shows the ability of
the mapping algorithm to schedule gates in parallel when possible
and how good is the algorithm at doing this. Secondly, it allows
us to have an idea of the importance of decoherence noise in the
computed fidelity. For each qubit, the execution time is computed
by adding the total execution time of gate operations acting on it.
The longest qubit execution time is selected to represent the total
execution time of the quantum circuit.

4 EVALUATION AND COMPARISON OF THE
PROPOSED HA ALGORITHM

4.1 Methodology
All the benchmarks used are collected from the previous works [28,
29, 46]. They include several functions taken from RevLib [41] as
well as quantum algorithms from a variety of domains including
optimization, simulation, quantum arithmetic, etc. They are well
known in the community and given as quantum circuits written in
the OpenQASM language [11].

A Hardware-Aware Heuristic for theQubit Mapping Problem in the NISQ Era

B
V
5

m
od
5m

ils
65

al
u-
v0

27
3
17

13
al
u-
v1

28
de
co
d2
4-
v2

43
m
od
5d
2
64

4g
t1
3
92

is
in
g

0

20

40

60

N
u
m
b
er

of
a
d
d
it
io
n
al

ga
te
s

HA+SABRE HA+HSA SABRE N-A Qiskit

(a) Number of additional gates

B
V
5

m
od
5m

ils
65

al
u-
v0

27
3
17

13
al
u-
v1

28
de
co
d2
4-
v2

43
m
od
5d
2
64

4g
t1
3
92

is
in
g

0

0.1

0.2

0.3

0.4

0.5

0.6

F
id
el
it
y

HA+SABRE HA+HSA SABRE N-A Qiskit

(b) Fidelity

Figure 8: Comparison of number of additional gates and fidelity on ibmq_valencia. HA has been used with α1 = 0.5, α2 = 0.5
and α3 = 0.

B
V
5

m
od
5m

ils
65

al
u-
v0

27
3
17

13
al
u-
v1

28
de
co
d2
4-
v2

43
m
od
5d
2
64

4g
t1
3
92

is
in
g

0

20

40

60

80

100

N
u
m
b
er

of
ad

d
it
io
n
a
l
g
at
es

HA+SABRE HA+HSA SABRE N-A Qiskit

(a) Number of additional gates

B
V
5

m
od
5m

ils
65

al
u-
v0

27
3
17

13
al
u-
v1

28
de
co
d2
4-
v2

43
m
od
5d
2
64

4g
t1
3
92

is
in
g

0

0.1

0.2

0.3

0.4

0.5

F
id
el
it
y

HA+SABRE HA+HSA SABRE N-A Qiskit

(b) Fidelity

Figure 9: Comparison of number of additional gates and fidelity on ibmq_almaden. HA has been used with α1 = 0.5, α2 = 0.5
and α3 = 0.

Siyuan NIU, Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial

We chose two quantum chips, ibmq_almaden and ibmq_valencia,
available from IBM Quantum experience website and one quan-
tum chip ibmq_tokyo, which is not accessible currently but widely
used by state-of-art algorithms. ibmq_almaden is a 20-qubit quan-
tum chip. Its topology and characteristics are summarised in Fig. 1
and Table 2. ibmq_valencia is a 5-qubit chip depicted in Fig. 2b.
ibmq_tokyo is a 20-qubit virtual chip depicted in Fig. 7. We execute
benchmarks on ibmq_valencia and ibmq_almaden to check cases
when the mapped quantum circuit needs all the available qubits or
only a small number of them. Moreover, we use ibmq_almaden and
ibmq_tokyo to compare our algorithm with state-of-art algorithms
in terms of number of additional gates. Note that we do not have
to execute the mapped quantum circuit on real quantum hardware
to count the number of additional gates.

Our algorithm is implemented in Python and the Qiskit version
is 0.19.1. To empirically evaluate our algorithm, we use a personal
computer with 1 Intel i5-5300U CPU and 8 GB memory. The Oper-
ating System is Ubuntu 18.04.

Several published qubit mapping algorithms are available as
discussed in section 1. SABRE [29] seems to be the best algorithm
at the time of writing when comparing the number of inserted
gates to make the quantum circuit hardware-compliant. It provides
a good initial mapping method and a mapping transition algorithm.
Another algorithm DL [45] (Dynamic look-ahead) based on SABRE
shows an improvement in terms of number of additional gates.
Moreover, the mapping method presented in [30] uses the hardware
calibration data to try to find a good mapping. We compare to all
these algorithms. The source code of SABRE has been provided by
the authors of the algorithm, and the mapping method presented
in [30], called Noise-Adaptive (N-A) Compiler, has been integrated
into Qiskit as a transpiler pass. Finally, we also include the default
transpiler included in Qiskit as the baseline. We execute our HA
mapping transition algorithm with two different initial mapping
algorithm – SABRE initial mapping algorithm and our Hardware-
aware Simulated Annealing (HSA) algorithm.

Summarising, to test on real hardware, five different algorithms
are included in the benchmarks: 1) our HA mapping algorithm
with SABRE initial mapping, 2) our HA mapping algorithm with
HSA initial mapping, 3) SABRE mapping algorithm with SABRE
initial mapping, 4) N-A Compiler and 5) Qiskit transpiler. For a
fair comparison, we set the optimisation_level parameter of the
Qiskit transpiler to zero and make sure that the circuits obtained
from the five methods are all executed with the same calibration
data. The optimisation_level is set to zero to invoke only the
mapping transformation and not the optimisation transformation.
Moreover, when using the N-A Compiler, the routing method is set
to "lookahead" to make sure that it has the look-ahead ability. To
compare the number of additional gates without accessing to real
hardware, three algorithms are included: 1) SABRE, 2) DL, 3) HA.

To evaluate our algorithm with the different initial mapping
methods, we allow each of them to call the mapping algorithm at
most 100 times. The number of calls to the mapping algorithm is a
natural parameter of the simulated annealing-based method, but
the SABRE initial mapping method only needs two calls. To let the
SABRE algorithm take advantage of a larger number of calls, we
repeat the algorithm on several random initial mappings until no

more calls are allowed and choose the best mapping found. The
whole process is repeated 10 times to obtain 10 initial mappings.

We divide benchmarks by size according to their number of
gates. We only execute small size benchmarks on real quantum
hardware, because the other benchmarks with a large number of
gate operations introduce too much noise to obtain any meaningful
results. Moreover, the initial mapping generation process described
above is applied on small and medium sized benchmarks. Large
benchmarks suffer from long run time, so we generate 10 initial
random mappings and use them with different algorithms. When
using ibmq_tokyo virtual chip, we select the best results out of five
attempts which is a similar approach applied in SABRE and DL.

When testing the HSA algorithm we used a random policy to
choose which one of the three subroutines to execute. The shuffle
procedure is executed with a probability of 0.9, the expand algo-
rithm is chosen with a probability 0.08 and the reset procedure is
executed when the two previous algorithms are not used (i.e. 0.02
probability).

First, we compare the number of additional gates and fidelity.
The weight parameter α1 of swap matrix S is set to 0.5, the weight
parameter α2 of CNOT error matrix E is set to 0.5 and the weight
parameter α3 of CNOT execution time T is set to 0. Second, we
compare the number of additional gates and total execution time.
Weight parameterα1 of swapmatrix S is set to 0.5, weight parameter
α2 of CNOT error matrix E is set to 0 and weight parameter α3
of CNOT execution time T is set to 0.5. Third, we compare the
number of additional gates for circuits that are not executable on
the real quantum device. Weight parameter α1 of swap matrix S is
set to 1, and the other two parameters are set to 0. For these three
comparisons, the weight parameterW in the cost function is set to
0.5 and size of extended layer is set to 20.

4.2 Experimental results
We compare both the average number of additional gates (see Fig. 8a
and Fig. 9a) and average output state fidelity (see Fig. 8b and Fig. 9b)
among the 10 initial mappings for the five methods. The complete
experimental results are listed in Table 5 and Table 6.

The Qiskit default qubit mapping algorithm is nearly always
the worst one in terms of additional gates, which translates in
most of the cases to the worst output state fidelity. Although N-
A Compiler takes into account the calibration data and has the
look-ahead ability, results show that it does not outperform the
SABRE mapping algorithm with SABRE initial mapping (labelled as
SABRE in the plots). Our HAmapping algorithmwith SABRE initial
mapping (labelled as HA+SABRE in the plots) seems to be the best
combination as in average it achieves the best output state fidelity.
Moreover, our HA algorithm with SABRE initial mapping gives the
minimum number of additional gates. HA mapping algorithm with
HSA initial mapping (labelled as HA+HSA in the plots) is also good,
but its results are less consistent than HA+SABRE due to its random
nature. Although, in many test cases, it outperforms SABRE.

We also tried to map and execute the qft_10 circuit. We found
that its output fidelity is less than 0.01 for all the methods tested in
the benchmark. Because the base fidelity is too low to perform a
meaningful comparison, we only compare the number of additional

A Hardware-Aware Heuristic for theQubit Mapping Problem in the NISQ Era

gates as summarised in Table 3 and Table 4 for quantum circuits
with a medium-to-large number of gates.

Fig. 10 shows the result of comparing the execution times, num-
ber of additional gates and fidelities of our HA algorithm with
SABRE algorithm on ibmq_valencia. The execution time is reduced
by 19% on average. Even though the weight parameter α2 of CNOT
error matrix E is set to 0, the fidelity is improved by 8%. The number
of additional gates is reduced by 38%.

Table 3 lists the result of the number of additional gates on
ibmq_almaden. Using the selection of SWAP and Bridge gate, our
HA algorithm can outperform SABRE on circuits with different
sizes. For medium circuits, HA gives similar results as SABRE and
an improvement from SABRE for only one circuit among the eight
circuits tested. For large circuits, HA outperforms SABRE and con-
sistently reduces the number of additional gates by 28% on average.
Table 4 shows the number of additional gates on ibmq_tokyo when
comparing our HA algorithm with SABRE and DL. DL outperforms
SABRE and our HA algorithm can further reduce the number of
additional gates by 14% on average. SABRE and DL only provide
their runtime on ibmq_tokyo, the difference between runtime of
the three algorithms is shown in Table 4. Note that, DL is written in
C++ and tested on a normal personal computer. SABRE is written
in Python and tested on a server with 2 Intel Xeon E5-2680 CPUs
(48 logical cores) and 378GB memory. Since there is an intrinsic
speed difference between C++ and Python as well as the different
devices used, the runtime data in this table are for reference rather
than for comparison.

5 DISCUSSION
5.1 Design guideline
Given the current available NISQ hardware, it is important to adapt
quantum programs to execute on such hardware while taking into
account their physical constraints and limitations (noisy operations,
number of qubits and gates). Here, we list several guidelines that
can help a programmer to design quantum circuits that comply on
given quantum hardware.

• Check the topology and the calibration data of the device
targeted. Try to map the most used qubit of the mapped
circuit to the physical qubit that has the strongest coupling
connection.

• Try to apply a CNOT gate on qubits that are directly connected
and with a reliable (i.e. low error rate) interconnect, so that
no more additional gates are needed, and the overall circuit
fidelity is improved.

• If a CNOT gate cannot be applied on two-adjacent qubits, try
to apply on two qubits whose distance is two on the coupling
graph. In such situation, one can select between a SWAP and
Bridge gate to execute the CNOT gate. Also, the number of
additional gates will be reduced.

5.2 Future work
In this work, we present an efficient hardware-aware mapping
algorithm based on heuristic search. For future studies, we find

that the following potential research directions can be explored.
First, our HA algorithm only takes into consideration the calibra-
tion data, which includes the gate error and the execution time.
However, other physical constraints, such as crosstalk error may
be included to take into account crosstalk coupling between in-
terconnects. Secondly we would like to investigate the adaptation
of such a mapping algorithm to a multi-programming mechanism
as introduced in [12]. Executing multiple quantum circuits on the
same chip allows us to use more efficiently hardware resources
but may decrease the fidelity of the quantum operations due to
unwanted interactions. Finally, we find it relevant to investigate
mapping algorithms for specific use cases such as quantum circuits
constructed for quantum chemistry computations with VQE [32]
or to solve linear systems with the VQLS algorithm [7].

6 CONCLUSION
The quantum computers are now in the NISQ era. There’s a gap
between the design and execution of a quantum circuit in NISQ
hardware. In this paper, we present a hardware-aware heuristic
for qubit mapping problem that adapts the quantum circuit to the
quantum hardware. We design a mapping transition algorithm that
uses calibration data and selects from either a SWAP or Bridge gate
for qubit movement. Experimental results show that our algorithm
can outperform state-of-the-art algorithms in terms of the number
of additional gates, fidelity and execution time. Our algorithm is
evaluated on IBM quantum devices, but should be general enough
to be used on quantum devices from other vendors as well.

ACKNOWLEDGMENT
This work is funded by the QuantUM Initiative of the Region Oc-
citanie, University of Montpellier and IBM Montpellier as well as
by a research collaboration grant between TOTAL, LIRMM and
CERFACS. We would like to thank the authors of SABRE for the
meaningful discussions and exchanges.

SUPPLEMENTARY INFORMATION
Authors have made available the source code and it can be found
at the following link: https://github.com/peachnuts/HA.

REFERENCES
[1] IBMQ backends information. https://github.com/Qiskit/ibmq-device-

information, 2019. Accessed: 2019-09-18.
[2] Mohammad Alfailakawi, Imtiaz Ahmad, and Suha Hamdan. Lnn reversible circuit

realization using fast harmony search based heuristic. In Asia-Pacific Conference
on Computer Science and Electrical Engineering, 11 2014.

[3] Abdullah Ash-Saki, Mahabubul Alam, and Swaroop Ghosh. Qure: Qubit re-
allocation in noisy intermediate-scale quantum computers. In Proceedings of
the 56th Annual Design Automation Conference 2019, pages 1–6, 2019. doi: https:
//doi.org/10.1145/3316781.3317888.

[4] Debjyoti Bhattacharjee and Anupam Chattopadhyay. Depth-optimal quantum
circuit placement for arbitrary topologies, 2017. arXiv : https://arxiv.org/abs/
1703.08540.

[5] Debjyoti Bhattacharjee, Abdullah Ash Saki, Mahabubul Alam, Anupam Chat-
topadhyay, and Swaroop Ghosh. Muqut: Multi-constraint quantum circuit map-
ping on NISQ computers. In 38th IEEE/ACM International Conference on Computer-
Aided Design, ICCAD 2019, page 8942132. Institute of Electrical and Electronics
Engineers Inc., 2019. doi: https://doi.org/10.1109/ICCAD45719.2019.8942132.

[6] Kyle E. C. Booth, Minh Do, J. Christopher Beck, Eleanor Rieffel, Davide Venturelli,
and Jeremy Frank. Comparing and integrating constraint programming and
temporal planning for quantum circuit compilation. In International Conference
on Automated Planning and Scheduling, pages 366–374, 2018. arXiv: https://arxiv.
org/abs/1803.06775.

https://github.com/peachnuts/HA
https://github.com/Qiskit/ibmq-device-information
https://github.com/Qiskit/ibmq-device-information
https://doi.org/10.1145/3316781.3317888
https://doi.org/10.1145/3316781.3317888
https://arxiv.org/abs/1703.08540
https://arxiv.org/abs/1703.08540
https://doi.org/10.1109/ICCAD45719.2019.8942132
https://arxiv.org/abs/1803.06775
https://arxiv.org/abs/1803.06775

Siyuan NIU, Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial

m
od
5m

ils
65

al
u-
v0

27

3
17

13
de
co
d2
4-
v2

43

m
od
5d
2
64

4g
t1
3
92

10

15

20

25

30

35

E
x
ec
u
ti
o
n
ti
m
e
(µ
s)

SABRE HA

(a) Execution time
m
od
5m

ils
65

al
u-
v0

27

3
17

13
de
co
d2
4-
v2

43

m
od
5d
2
64

4g
t1
3
92

10

20

30

40

N
u
m
b
er

o
f
a
d
d
it
io
n
al

ga
te
s

SABRE HA

(b) Number of additional gates

m
od
5m

ils
65

al
u-
v0

27

3
17

13
de
co
d2
4-
v2

43

m
od
5d
2
64

4g
t1
3
92

0.1

0.2

0.3

0.4

0.5

0.6

F
id
el
it
y

SABRE HA

(c) Fidelity

Figure 10: Comparison of execution time, number of additional gates and fidelity on ibmq_valencia. HA has been used with
α1 = 0.5, α2 = 0 and α3 = 0.5.

Table 3: Number of additional gates on ibmq_almaden for large circuits. HA has been used with α1 = 1, α2 = 0 and α3 = 0.

Original Circuit SABRE HA Comparison
type name n gall g gmin g gmin t ∆g% ∆gmin%
medium qaoa 6 270 30 27 30 27 0.008 0 0
medium ising model 10 10 480 0 0 0 0 0.02 0 0
medium ising model 13 13 633 0 0 0 0 0.03 0 0
medium ising model 16 16 786 3 0 9 0 0.10 -200 0
medium qft 10 10 200 93 81 66 42 0.04 29 48.1
medium qft 13 13 403 192 177 195 171 0.07 -1.6 3.4
medium qft 16 16 512 425 372 450 375 0.24 -5.9 -0.8
large adr4 197 13 3439 2973 2856 2136 2004 2.13 28.2 29.8
large radd 250 13 3213 2742 2655 2040 1926 1.62 25.6 27.5
large z4 268 11 3073 2628 2559 1872 1815 1.44 28.8 29.1
large sym6 145 14 3888 3024 2982 2022 1965 2.18 33.1 34.1
large misex1 241 15 4813 3999 3831 2892 2630 3.04 27.7 31.3
large rd73 252 10 5321 4539 4428 3261 3090 3.73 28.2 30.2
large cycle10 2 110 12 6050 5127 5043 3795 3576 4.87 26 29.1
large square root 7 15 7630 6477 6324 4851 4707 7.00 25.1 25.6
large sqn 258 10 10223 8679 8580 6012 5736 13.92 30.7 33.1
large rd84 253 12 13658 11889 11673 8721 8574 24.54 26.6 26.5
large co14 215 15 17936 16710 16368 13071 12426 37.81 21.8 24.1
large sym9 193 10 34881 30558 30027 21900 21168 160.19 28.3 29.5
large 9symml 195 11 34881 30471 30129 21949 21168 151.84 28 29.7

n: number of qubits. gall : total number of gates. g: average number of additional gates. gmin : minimum number of additional gates. t: runtime in seconds. ∆g: comparison of average
number of additional gates between HA and SABRE. ∆gmin : comparison of minimum number of additional gates between HA and SABRE.

A Hardware-Aware Heuristic for theQubit Mapping Problem in the NISQ Era

Table 4: Number of additional gates on ibmq_tokyo for large circuits. HA has been used with α1 = 1, α2 = 0 and α3 = 0.

Original Circuit SABRE DL HA Comparison
type name n gall g t g t g t ∆g%
medium ising model 10 10 480 0 0.004 0 0 0 0.005 0
medium ising model 13 13 633 0 0.007 0 0 0 0.01 0
medium ising model 16 16 786 0 0.01 0 0 0 0.02 0
medium qft 10 10 200 54 0.103 39 0.015 36 0.015 7.7
medium qft 13 13 403 93 0.036 96 0.031 78 0.043 18.8
medium qft 16 16 512 186 0.084 192 0.062 174 0.09 9.4
large adr4 197 13 3439 1614 0.49 1224 0.218 882 1.41 27.9
large radd 250 13 3213 1275 0.48 1047 0.186 840 1.24 19.8
large z4 268 11 3073 1365 0.44 855 0.202 801 1.13 6.3
large sym6 145 14 3888 1272 0.56 1017 0.202 786 1.71 22.7
large misex1 241 15 4813 1251 0.89 1098 0.249 942 2.57 14.2
large rd73 252 10 5321 2133 0.94 2193 0.343 1635 3.19 25.4
large cycle10 2 110 12 6050 2622 1.35 1968 0.348 1719 4.02 12.7
large square root 7 15 7630 2598 1.5 1788 0.406 828 5.66 53.7
large sqn 258 10 10223 4344 3.52 3057 0.563 2712 11.7 11.3
large rd84 253 12 13658 6147 5.39 5697 0.892 3843 21.8 32.5
large co14 215 15 17936 8982 9.51 5061 1.062 6429 36 -27
large sym9 193 10 34881 16653 30.17 13746 2.091 11553 138.3 16

n: number of qubits. gall : total number of gates. g: minimum number of additional gates. t: runtime in seconds. ∆g: comparison of minimum number of additional gates between
HA and DL.

Table 5: Comparison of number of additional gates and fidelity on ibmq_valencia. HA has been used with α1 = 0.5, α2 = 0.5
and α3 = 0.

Original Circuit SABRE HA + SABRE HA + HSA Qiskit N-A Comparison
name n gall g gmin S Smax g gmin S Smax t g gmin S Smax g S g S ∆g% ∆gmin% ∆S% ∆Smax%
BV5 5 15 3 3 0.576 0.639 3 3 0.612 0.639 0 3 3 0.581 0.63 12 0.456 3 0.56 0 0 6.3 0
mod5mils 65 5 35 21 21 0.495 0.515 12 12 0.525 0.559 0.003 12 12 0.53 0.559 27 0.275 27 0.443 42.9 42.9 6.1 8.5
alu-v0 27 5 36 24 24 0.322 0.329 18 18 0.437 0.437 0.002 18 18 0.384 0.431 24 0.335 24 0.319 25 25 35.7 32.8
3 17 13 3 36 18 18 0.43 0.476 12 12 0.503 0.546 0.004 12 12 0.463 0.542 36 0.458 21 0.354 33.3 33.3 17 14.7
alu-v1 28 5 37 24 24 0.225 0.233 18 18 0.342 0.384 0.004 18 18 0.269 0.384 39 0.178 27 0.192 25 25 52 64.8
decod24-v2 43 4 52 36 36 0.262 0.396 18 18 0.307 0.37 0.004 18 18 0.303 0.372 36 0.07 36 0.213 50 50 17.2 -6.6
mod5d2 64 5 53 45 45 0.14 0.208 24 24 0.199 0.207 0.005 24 24 0.194 0.207 42 0.171 48 0.125 46.7 46.7 42.1 -0.4
4gt13 92 5 66 45 45 0.171 0.191 24 24 0.194 0.206 0.006 24 24 0.199 0.22 69 0.154 48 0.18 46.7 46.7 13.5 7.9
ising 5 90 24 24 0.133 0.145 24 24 0.134 0.141 0.007 24 24 0.137 0.143 60 0.113 33 0.1 0 0 0.8 -2.8

n: number of qubits. gall: total number of gates. g: average number of additional gates. gmin: minimum number of additional gates. S: mean of success rate. Smax: maximum
of success rate. ∆g: comparison of average number of additional gates between HA+SABRE and SABRE. ∆gmin: comparison of minimum number of additional gates between
HA+SABRE and SABRE. ∆S: comparison of mean of success rate between HA+SABRE and SABRE. ∆Smax : comparison of maximum of success rate between HA+SABRE and SABRE.
t: runtime of HA+SABRE in seconds.

[7] Carlos Bravo-Prieto, Ryan LaRose, M. Cerezo, Yigit Subasi, Lukasz Cincio, and
Patrick J. Coles. Variational quantum linear solver: A hybrid algorithm for linear
systems. 09 2019. arXiv: https://arxiv.org/abs/1909.05820v2.

[8] McKay David C, Thomas Alexander, Luciano Bello, Michael J Biercuk, Lev Bishop,
Jiayin Chen, Jerry M Chow, Antonio D Córcoles, Daniel Egger, Stefan Filipp, et al.
Qiskit backend specifications for OpenQASM and openpulse experiments. arXiv
preprint arXiv:1809.03452, 2018. arXiv: https://arxiv.org/abs/1809.03452.

[9] Yudong Cao, Jonathan Romero, Jonathan P Olson, Matthias Degroote, Peter D
Johnson, Mária Kieferová, Ian D Kivlichan, Tim Menke, Borja Peropadre, Nico-
las PD Sawaya, et al. Quantum chemistry in the age of quantum computing.
Chemical reviews, 119(19):10856–10915, 2019. doi: https://doi.org/10.1021/acs.
chemrev.8b00803.

[10] Alexander Cowtan, Silas Dilkes, Ross Duncan, Alexandre Krajenbrink, Will
Simmons, and Seyon Sivarajah. On the Qubit Routing Problem. In Wim
van Dam and Laura Mancinska, editors, 14th Conference on the Theory of

Quantum Computation, Communication and Cryptography (TQC 2019), volume
135 of Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1–5:32,
Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi: https://doi.org/10.4230/LIPIcs.TQC.2019.5.

[11] Andrew W Cross, Lev S Bishop, John A Smolin, and Jay M Gambetta. Open
quantum assembly language. arXiv preprint arXiv:1707.03429, 2017. arXiv: https:
//arxiv.org/abs/1707.03429.

[12] Poulami Das, Swamit S Tannu, Prashant J Nair, and Moinuddin Qureshi. A case
for multi-programming quantum computers. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture, pages 291–303, 2019.
doi: https://doi.org/10.1145/3352460.3358287.

[13] Alexandre A. A. de Almeida, Gerhard W. Dueck, and Alexandre C. R. da Silva.
Finding optimal qubit permutations for ibmâĂŹs quantum computer architec-
tures. In Proceedings of the 32nd Symposium on Integrated Circuits and Systems
Design, SBCCI âĂŹ19, New York, NY, USA, 2019. Association for Computing

https://arxiv.org/abs/1909.05820v2
https://arxiv.org/abs/1809.03452
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.4230/LIPIcs.TQC.2019.5
https://arxiv.org/abs/1707.03429
https://arxiv.org/abs/1707.03429
https://doi.org/10.1145/3352460.3358287

Siyuan NIU, Adrien Suau, Gabriel Staffelbach, and Aida Todri-Sanial

Table 6: Comparison of number of additional gates and fidelity on ibmq_almaden. HA has been used with α1 = 0.5, α2 = 0.5
and α3 = 0.

Original Circuit SABRE HA + SABRE HA + HSA Qiskit N-A Comparison
name n gall g gmin S Smax g gmin S Smax t g gmin S Smax g S g S ∆g% ∆gmin% ∆S% ∆Smax%
BV5 5 15 3 3 0.436 0.624 3 3 0.497 0.651 0.002 7 6 0.318 0.508 24 0.04 6 0.37 0 0 14 4.3
mod5mils 65 5 35 21 21 0.315 0.47 12 12 0.383 0.481 0.003 19 15 0.268 0.439 54 0.107 33 0.214 42.9 42.9 21.6 2.3
alu-v0 27 5 36 21 21 0.276 0.413 15 15 0.3 0.483 0.002 26 19 0.265 0.408 36 0.127 36 0.139 28.6 28.6 8.7 16.9
3 17 13 3 36 18 18 0.333 0.469 12 12 0.395 0.519 0.002 12 12 0.35 0.502 33 0.216 27 0.207 33.3 33.3 18.6 10.7
alu-v1 28 5 37 24 24 0.25 0.359 15 15 0.391 0.478 0.002 21 21 0.27 0.408 48 0.054 30 0.087 37.5 37.5 56.4 33.1
decod24-v2 43 4 52 36 36 0.199 0.334 18 18 0.284 0.401 0.006 20 18 0.235 0.387 54 0.076 39 0.145 50 50 42.7 20.1
mod5d2 64 5 53 45 45 0.132 0.198 24 24 0.16 0.266 0.003 33 33 0.15 0.263 54 0.073 48 0.056 46.7 46.7 21.2 34.3
4gt13 92 5 66 45 45 0.13 0.249 24 24 0.145 0.312 0.007 32 27 0.165 0.347 99 0.061 66 0.106 46.7 46.7 11.5 25.3
ising 5 90 24 24 0.115 0.177 24 24 0.133 0.191 0.01 36 30 0.121 0.235 51 0.07 33 0.054 0 0 15.7 7.9

n: number of qubits. gall: total number of gates. g: average number of additional gates. gmin: minimum number of additional gates. S: mean of success rate. Smax: maximum
of success rate. ∆g: comparison of average number of additional gates between HA+SABRE and SABRE. ∆gmin: comparison of minimum number of additional gates between
HA+SABRE and SABRE. ∆S: comparison of mean of success rate between HA+SABRE and SABRE. ∆Smax : comparison of maximum of success rate between HA+SABRE and SABRE.
t: runtime of HA+SABRE in seconds.

Machinery. doi: https://doi.org/10.1145/3338852.3339829.
[14] Frank Arute et. al. Quantum supremacy using a programmable superconducting

processor. Nature, 574:505–510, 10 2019. doi: https://doi.org/10.1038/s41586-019-
1666-5.

[15] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate
optimization algorithm. 11 2014. arXiv: https://arxiv.org/abs/1411.4028v1.

[16] Will Finigan, Michael Cubeddu, Thomas Lively, Johannes Flick, and Prineha
Narang. Qubit allocation for noisy intermediate-scale quantum computers. arXiv
preprint arXiv:1810.08291, 2018. arXiv: https://arxiv.org/abs/1810.08291.

[17] Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM,
5(6):345, 1962. doi: https://doi.org/10.1145/367766.368168.

[18] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular
value transformation and beyond: exponential improvements for quantummatrix
arithmetics. 06 2018. doi: https://doi.org/10.1145/3313276.3316366.

[19] Gian Giacomo Guerreschi. Scheduler of quantum circuits based on dynamical
pattern improvement and its application to hardware design. arXiv e-prints, page
arXiv:1912.00035, November 2019. arXiv: https://arxiv.org/abs/1912.00035.

[20] Gian Giacomo Guerreschi and Jongsoo Park. Two-step approach to scheduling
quantum circuits. Quantum Science and Technology, 3(4):045003, jul 2018. doi:
https://doi.org/10.1088/2058-9565/aacf0b.

[21] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm
for linear systems of equations. Physical Review Letters, 103, 10 2009. doi:
https://doi.org/10.1103/PhysRevLett.103.150502.

[22] Hsin-Yuan Huang, Kishor Bharti, and Patrick Rebentrost. Near-term quantum
algorithms for linear systems of equations. 09 2019. arXiv: https://arxiv.org/abs/
1909.07344v1.

[23] Toshinari Itoko, Rudy Raymond, Takashi Imamichi, and Atsushi Matsuo. Opti-
mization of quantum circuit mapping using gate transformation and commuta-
tion. Integration, 70:43–50, 2020. doi: https://doi.org/10.1016/j.vlsi.2019.10.004.

[24] Iordanis Kerenidis and Anupam Prakash. A quantum interior point method for
lps and sdps. 08 2018. arXiv: https://arxiv.org/abs/1808.09266.

[25] Iordanis Kerenidis and Anupam Prakash. Quantum gradient descent for linear
systems and least squares. Phys. Rev. A, 101:022316, Feb 2020. doi: https://doi.
org/10.1103/PhysRevA.101.022316.

[26] Abhoy Kole, Kamalika Datta, and Indranil Sengupta. A heuristic for linear nearest
neighbor realization of quantum circuits by swap gate insertion using n-gate
lookahead. IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
6(1):62–72, 2016. doi: https://doi.org/10.1109/JETCAS.2016.2528720.

[27] Lingling Lao, Hans van Someren, Imran Ashraf, and Carmen G. Almudever.
Mapping of quantum circuits onto NISQ superconducting processors. arXiv
e-prints, August 2019. arXiv : https://arxiv.org/abs/1908.04226v1.

[28] Ang Li and Sriram Krishnamoorthy. QASMBench: A low-level QASM benchmark
suite for NISQ evaluation and simulation. arXiv preprint arXiv:2005.13018, 2020.
arXiv: https://arxiv.org/abs/2005.13018.

[29] Gushu Li, Yufei Ding, and Yuan Xie. Tackling the qubit mapping problem for
NISQ-era quantum devices. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, pages 1001–1014, 2019. doi: https://doi.org/10.1145/3297858.3304023.

[30] Prakash Murali, Jonathan M. Baker, Ali Javadi-Abhari, Frederic T. Chong, and
Margaret Martonosi. Noise-adaptive compiler mappings for noisy intermediate-
scale quantum computers. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS âĂŹ19, page 1015âĂŞ1029, New York, NY, USA, 2019. Associa-
tion for Computing Machinery. doi: https://doi.org/10.1145/3297858.3304075.

[31] Prakash Murali, Norbert Matthias Linke, Margaret Martonosi, Ali Javadi Abhari,
Nhung Hong Nguyen, and Cinthia Huerta Alderete. Full-stack, real-system

quantum computer studies: Architectural comparisons and design insights, 2019.
doi: https://doi.org/10.1145/3307650.3322273.

[32] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou,
Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. A variational eigenvalue
solver on a quantum processor. 04 2013. doi: https://doi.org/10.1038/ncomms5213.

[33] John Preskill. Quantum computing in the NISQ era and beyond. 01 2018. doi:
https://doi.org/10.22331/q-2018-08-06-79.

[34] Mehdi Saeedi, Robert Wille, and Rolf Drechsler. Synthesis of quantum circuits for
linear nearest neighbor architectures. Quantum Information Processing, 10(3):355–
377, 2011. doi: https://doi.org/10.1007/s11128-010-0201-2.

[35] Changpeng Shao and Hua Xiang. Row and column iteration methods to solve
linear systems on a quantum computer. Phys. Rev. A, 101:022322, 02 2020. doi:
https://doi.org/10.1103/PhysRevA.101.022322.

[36] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM J. Sci. Statist. Comput. 26 (1997) 1484,
09 1995. doi: https://doi.org/10.1137/S0097539795293172.

[37] Ritu Ranjan Shrivastwa, Kamalika Datta, and Indranil Sengupta. Fast qubit
placement in 2d architecture using nearest neighbor realization. In 2015 ieee
international symposium on nanoelectronic and information systems, pages 95–100.
IEEE, 2015. doi: https://doi.org/10.1109/iNIS.2015.59.

[38] Marcos Yukio Siraichi, Vinícius Fernandes dos Santos, Sylvain Collange, and
Fernando Magno Quintao Pereira. Qubit allocation. In Proceedings of the 2018
International Symposium on Code Generation and Optimization, CGO 2018, page
113âĂŞ125, New York, NY, USA, 2018. Association for Computing Machinery.
doi: https://doi.org/10.1145/3168822.

[39] Swamit S Tannu and Moinuddin K Qureshi. Not all qubits are created equal:
a case for variability-aware policies for NISQ-era quantum computers. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 987–999, 2019. doi:
https://doi.org/10.1145/3297858.3304007.

[40] Davide Venturelli, Minh Do, Bryan O’Gorman, Jeremy Frank, Eleanor Rieffel,
Kyle EC Booth, Thanh Nguyen, Parvathi Narayan, and Sasha Nanda. Quantum
circuit compilation : An emerging application for automated reasoning. 2019.

[41] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib: An online
resource for reversible functions and reversible circuits. In Int’l Symp. on -Valued
Logic, pages 220–225, 2008. RevLib is available at http://www.revlib.org.

[42] Robert Wille, Oliver Keszocze, Marcel Walter, Patrick Rohrs, Anupam Chat-
topadhyay, and Rolf Drechsler. Look-ahead schemes for nearest neighbor opti-
mization of 1d and 2d quantum circuits. In 2016 21st Asia and South Pacific
Design Automation Conference (ASP-DAC), pages 292–297. IEEE, 2016. doi:
https://doi.org/10.1109/ASPDAC.2016.7428026.

[43] Xiaosi Xu, Jinzhao Sun, Suguru Endo, Ying Li, Simon C. Benjamin, and Xiao Yuan.
Variational algorithms for linear algebra. 09 2019. arXiv: https://arxiv.org/abs/
1909.03898.

[44] Xiangzhen Zhou, Sanjiang Li, and Yuan Feng. Quantum circuit transfor-
mation based on simulated annealing and heuristic search. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 2020. doi:
https://doi.org/10.1109/TCAD.2020.2969647.

[45] P. Zhu, Z. Guan, and X. Cheng. A dynamic look-ahead heuristic for the qubit
mapping problem of NISQ computers. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2020. doi: https://doi.org/10.1109/
TCAD.2020.2970594.

[46] Alwin Zulehner, Alexandru Paler, and Robert Wille. An efficient methodology
for mapping quantum circuits to the ibm qx architectures. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 38(7):1226–1236, 2018.
doi: https://doi.org/10.1109/TCAD.2018.2846658.

https://doi.org/10.1145/3338852.3339829
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://arxiv.org/abs/1411.4028v1
https://arxiv.org/abs/1810.08291
https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/3313276.3316366
https://arxiv.org/abs/1912.00035
https://doi.org/10.1088/2058-9565/aacf0b
https://doi.org/10.1103/PhysRevLett.103.150502
https://arxiv.org/abs/1909.07344v1
https://arxiv.org/abs/1909.07344v1
https://doi.org/10.1016/j.vlsi.2019.10.004
https://arxiv.org/abs/1808.09266
https://doi.org/10.1103/PhysRevA.101.022316
https://doi.org/10.1103/PhysRevA.101.022316
https://doi.org/10.1109/JETCAS.2016.2528720
https://arxiv.org/abs/1908.04226v1
https://arxiv.org/abs/2005.13018
https://doi.org/10.1145/3297858.3304023
https://doi.org/10.1145/3297858.3304075
https://doi.org/10.1145/3307650.3322273
https://doi.org/10.1038/ncomms5213
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1007/s11128-010-0201-2
https://doi.org/10.1103/PhysRevA.101.022322
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1109/iNIS.2015.59
https://doi.org/10.1145/3168822
https://doi.org/10.1145/3297858.3304007
http://www.revlib.org
https://doi.org/10.1109/ASPDAC.2016.7428026
https://arxiv.org/abs/1909.03898
https://arxiv.org/abs/1909.03898
https://doi.org/10.1109/TCAD.2020.2969647
https://doi.org/10.1109/TCAD.2020.2970594
https://doi.org/10.1109/TCAD.2020.2970594
https://doi.org/10.1109/TCAD.2018.2846658

	Abstract
	1 Introduction
	2 State of the art
	2.1 Current state-of-the-art on quantum hardware
	2.2 Qubit mapping problem
	2.3 Motivational example

	3 Proposed solution
	3.1 Hardware-aware SWAP and Bridge based heuristic search
	3.2 Initial mapping
	3.3 Metrics

	4 Evaluation and comparison of the proposed HA Algorithm
	4.1 Methodology
	4.2 Experimental results

	5 Discussion
	5.1 Design guideline
	5.2 Future work

	6 Conclusion
	References

