F. Badan and L. Sekanina, Optimizing convolutional neural networks for embedded systems by means of neuroevolution, TPNC 2019, vol.11934, pp.109-121, 2019.

E. Breck, N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich, Data validation for machine learning, Conference on Systems and Machine Learning (SysML), 2019.

E. Caveness, P. S. Gc, Z. Peng, N. Polyzotis, S. Roy et al., Tensorflow data validation: Data analysis and validation in continuous ml pipelines, Proceedings of the 2020 ACM SIGMOD, pp.2793-2796, 2020.

R. S. Freitas, C. H. Barbosa, G. M. Guerra, A. L. Coutinho, and F. A. Rochinha, An encoder-decoder deep surrogate for reverse time migration in seismic imaging under uncertainty, 2020.

G. Gharibi, V. Walunj, S. Rella, and Y. Lee, Modelkb: towards automated management of the modeling lifecycle in deep learning, In Int. Work. on Realizing Art. Intel. Synergies in Soft. Eng, pp.28-34, 2019.

H. Miao, A. Li, L. S. Davis, and A. Deshpande, Towards unified data and lifecycle management for deep learning, 2017 IEEE 33rd ICDE, pp.571-582, 2017.

L. Moreau and P. Groth, Provenance: an introduction to prov, Synthesis Lectures on the Semantic Web: Theory and Technology, vol.3, issue.4, pp.1-129, 2013.

D. B. Pina, L. Neves, A. Paes, D. De-oliveira, and M. Mattoso, Análise de hiperparâmetros em aplicações de aprendizado profundo por meio de dados de proveniência, XXXIV SBBD, pp.223-228, 2019.

M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations, 2017.

S. Schelter, J. Böse, J. Kirschnick, T. Klein, and S. Seufert, Automatically tracking metadata and provenance of machine learning experiments, ML Systems workshop, 2017.

V. Silva, D. De-oliveira, P. Valduriez, and M. Mattoso, Dfanalyzer: runtime dataflow analysis of scientific applications using provenance, vol.11, pp.2082-2085, 2018.
URL : https://hal.archives-ouvertes.fr/lirmm-01867887

V. Silva, J. Leite, J. J. Camata, D. De-oliveira, A. L. Coutinho et al., Raw data queries during data-intensive parallel workflow execution, FGCS, vol.75, pp.402-422, 2017.
URL : https://hal.archives-ouvertes.fr/lirmm-01445219

J. Tsay, T. Mummert, N. Bobroff, A. Braz, P. Westerink et al., Runway: machine learning model experiment management tool, SysML, 2018.

M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. A. Hong et al., Accelerating the machine learning lifecycle with mlflow, IEEE Data Eng. Bull, vol.41, pp.39-45, 2018.

Y. Zhu and N. Zabaras, Bayesian deep convolutional encoder-decoder networks for surrogate modeling and uncertainty quantification, Journal of Computational Physics, vol.366, pp.415-447, 2018.