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Abstract

The input of the Maximum Colored Cut problem consists of a graph
G = (V,E) with an edge-coloring c : E → {1, 2, 3, . . . , p} and a positive
integer k, and the question is whether G has a nontrivial edge cut using at
least k colors. The Colorful Cut problem has the same input but asks for
a nontrivial edge cut using all p colors. Unlike what happens for the classi-
cal Maximum Cut problem, we prove that both problems are NP-complete
even on complete, planar, or bounded treewidth graphs. Furthermore, we
prove that Colorful Cut is NP-complete even when each color class in-
duces a clique of size at most three, but is trivially solvable when each color
induces an edge. On the positive side, we prove that Maximum Colored
Cut is fixed-parameter tractable when parameterized by either k or p, by
constructing a cubic kernel in both cases.
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1. Introduction

Given an edge-colored graph G and an edge-set property Π, in maximum
(minimum) colored/labeled Π problems we are asked to find a subset of edges
satisfying property Π with respect to G that uses the maximum (minimum)
number of colors/labels. These problems have a lot of applications and have
been widely studied in recent years, for instance when Π is the property of
being a spanning tree[4], a path between two designated vertices [5], a perfect
matching [14], a Hamiltonian cycle [11], or an edge dominating set [11].

In this work, we focus on colored problems where Π is the property of
being an edge cut of the input graph G. More precisely, let G = (V,E) be
a simple graph with an edge coloring c : E → {1, 2, . . . , p}, not necessarily
proper. Given a proper subset S ⊂ V , we define the edge cut ∂S as the subset
of E where the edges have one endpoint in S and the other in V \ S. We
represent by c(∂S) the set of colors that appear in ∂S, i.e., c(∂S) = {c(e) |
e ∈ ∂S}. The problem of finding a subset S ⊂ V such that |c(∂S)| ≤ |c(∂T )|
for every T ⊂ V is called Minimum Colored Cut, and its decision version
is stated as follows.

Minimum Colored Cut
Instance: A graph G = (V,E) with an edge coloring c : E →
{1, 2, . . . , p} and an integer k > 0.
Question: Is there a proper subset S ⊂ V such that |c(∂S)| ≤ k?

Associated with Minimum Colored Cut, we have the Minimum Col-
ored (s, t)-Cut problem, in which we are asked to find an edge cut that
separates a given pair s, t of vertices using as few colors as possible.

Minimum Colored (s, t)-Cut
Instance: A graph G = (V,E) with an edge coloring c : E →
{1, 2, . . . , p}, a pair s, t of vertices of G, and an integer k > 0.
Question: Is there a proper subset S ⊂ V such that s ∈ S, t /∈ S and
|c(∂S)| ≤ k?

Analogously, the problem of finding a subset S ⊂ V such that |c(∂S)| ≥
|c(∂T )| for every T ⊂ V is called Maximum Colored Cut, and its decision
version is stated as follows.
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Maximum Colored Cut
Instance: A graph G = (V,E) with an edge coloring c : E →
{1, 2, . . . , p} and an integer k > 0.
Question: Is there a proper subset S ⊂ V such that |c(∂S)| ≥ k?

Note that the classical (simple) Maximum Cut problem [12] is the par-
ticular case of Maximum Colored Cut when c : E → N is an injective
function. Therefore, for the Maximum Colored Cut problem we are in-
terested in analyzing its complexity on graph classes C for which Maximum
Cut is solvable in polynomial time.

In addition, we are also interested in the complexity of determining if
the input graph has a subset S ⊂ V such that |c(∂S)| = p, i.e., if there is
an edge cut ∂S using all the colors; we call this problem Colorful Cut.

Complexity issues related to Minimum Colored (s, t)-Cut and Min-
imum Colored Cut have been widely investigated in recent years (cf. [1,
6, 7, 11, 17, 18, 19, 20, 21]). The goal of this work is to present a complexity
analysis of Maximum Colored Cut, which, to the best of our knowledge,
was missing in the literature. As Colorful Cut is a particular case of
Maximum Colored Cut, our hardness results deal with Colorful Cut,
while the tractable cases will be presented for Maximum Colored Cut.

The remainder of the article is organized as follows. In Section 2 we pro-
vide several NP-completeness results for restricted versions of Colorful
Cut, and in Section 3 we present cubic kernels for Maximum Colored
Cut parameterized either by p or by k. We use standard graph-theoretic
notation; see [9] for any undefined notation. For the basic definitions of pa-
rameterized complexity, such as fixed-parameter tractability, W[2]-hardness,
para-NP-hardness, or (polynomial) kernelization, we refer the reader to [8].

2. NP-completeness results for Colorful Cut

Hadlock [13] proved that (simple) Maximum Cut is polynomial-time
solvable on planar graphs. In this section we prove, among other results,
the NP-completeness of Colorful Cut on a particular subclass of planar
graphs. We start with general planar graphs, and then we discuss how the
construction can be modified to get stronger hardness results.

Theorem 1. Colorful Cut is NP-complete on planar graphs.

Proof. Let I = (U,C) be an instance of 3-sat. We construct in polynomial
time a planar instance G = (V,E) with an edge coloring c such that I =
(U,C) is satisfiable if and only if (G, c) has an edge cut using all colors of c.
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With each clause cj = (x ∨ y ∨ z) ∈ C we associate a K3 where each
edge is labeled by a literal of cj together with its occurrence in C, obtaining
a graph G′ with m connected components, each of them associated with a
clause of C. Starting with G′, we construct a multigraph G equipped with
a coloring c, for short Gc, where each literal in a clause of C is associated
with a colored (multi)edge as follows:

• For each pair {xji , xik}, where the integers j and k represent occur-
rences of the literals xi and xi in the clauses of C, respectively, create
a color denoted by Sj,ki .

• The edge labeled with xji in G′ is replaced with parallel edges colored

with Sj,ki in Gc for all k. Analogously, the edge labeled by xi
k in G′ is

replaced with parallel edges in Gc colored with Sj,ki for all j.

Without loss of generality, we may assume that all variables have both
positive and negative literals in I (if not, the clauses containing such vari-
ables are trivially satisfiable and can be removed). From a truth assignment
AI of I, we can construct a colorful cut of Gc as follows. For each clause cj
of C, arbitrarily pick one edge {v, w} corresponding to a true literal of C.
Then, put v and w in the same part of the partition, leaving the remaining
vertex of the clause in the other part. This procedure gives a cut using all
colors. Indeed, for each true literal xji , there is at least one false literal xi

k

that places the color Sj,ki in the cut.
Conversely, suppose that Gc has a colorful cut. Without loss of gen-

erality, we may assume that each K3 has a cut edge. Indeed, as the cut
has all the colors of the edge coloring, if there is some K3 in a part of the
partition, we can choose any vertex of this clique and place this vertex in
the other part, without prejudice, because all the colors are still in the cut.
Beginning with this cut, we construct a truth assignment AI that satisfies
I, putting xi = 1 if at least one of the edges associated with some xji is
inside a part of the partition, and xi = 0 otherwise. Note that this assign-
ment is well-defined: there is no pair of literals {xji , xik} such that the edges
corresponding to both literals are inside a part of the partition, otherwise
the color Sj,ki is missing and the cut does not contain all colors. Besides
that, each K3 has the edges corresponding to some literal inside a part of
the partition, which defines a truth assignment for I.

Finally, we can transform Gc into a simple graph replacing each edge
{v, w} colored with Sj,ki by a path {v, x, y, w} such that c({x, y}) = Sj,ki
and the remaining edges of this path receive new different colors. It is not
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difficult to see that the multigraph Gc has a colorful cut if and only if the
associated graph has a colorful cut. �

Several NP-hard problems, such as Maximum Cut, are polynomial-time
solvable on bounded treewidth graphs [3]. An important class of graphs that
belongs to the intersection of planar graphs and bounded treewidth graphs
is that of K4-minor-free graphs. It is well-known that a graph G is K4-
minor free if and only if each 2-connected component of G is a series-parallel
graph [2]. We can modify the graph obtained in the construction presented
in the proof of Theorem 1 in order to obtain the following corollary.

Corollary 2. Colorful Cut remains NP-complete even when the input
graph G satisfies simultaneously that it is K4-minor-free, connected, has
maximum degree three, and each color class contains at most two edges.

Proof. Let H be an instance of Colorful Cut constructed as described
in the proof of Theorem 1. First observe that each connected component
of H (clause gadget) can be obtained from a K2 by either duplicating an
edge or subdividing an edge. Therefore, each connected component of H is
series-parallel.

In order to make the graph H connected and of bounded degree, just
create a binary tree T with m leaves and add edges by connecting a vertex
with maximum degree of each gadget clause of H to a distinct leaf of T .
Assigning a new distinct color for each edge previously created, it holds
that H is K4-minor-free and each color class of H contains at most two
edges (as in proof of Theorem 1). Finally, each vertex v of degree greater
than three (i.e., four or five) can be replaced by a P3 where each pendant
vertex will be neighbor of vertices (at most two) that were adjacent to v in
H and came from the same edge in G′ (the edges of these P3’s also get new
colors), and the middle vertex of the P3 will be adjacent to the vertex of T
that was neighbor of v, if any.

As the set of edges that we add in the graph induces a tree having a new
color by each edge, it is easy to see that the modified graph has a colorful
cut if and only if the original graph has a colorful cut. �

Clearly, every bipartite graph has a colorful cut. Thus, it is natural
to ask about the complexity of the problem on graphs with a small odd
cycle transversal. By picking a vertex of each gadget of (G, c) constructed
as described in the proof of Theorem 1, and identifying them into a single
vertex, we get the following corollary.
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Corollary 3. Colorful Cut remains NP-complete even when the input
graph G has odd cycle transversal number one.

Note that Maximum Cut is trivial on complete graphs, and that it is
polynomial-time solvable on cographs [3]. By adding a new vertex and edges
colored with a new color, we can construct a hard instance in order to show
the NP-completeness of Colorful Cut on complete graphs.

Theorem 4. Colorful Cut is NP-complete on complete graphs.

Proof. Given an instance (G, c) of Colorful Cut, we create another
instance (G′, c′) such that G′ is a clique as follows. Start from (G, c), add
all the missing edges to G, add a new vertex v adjacent to all the vertices
of G, and give to the edges in E(G′) \ E(G) the same color, different from
the colors appearing in E(G). Clearly, this new color appears in all the
maximum colored cuts of G′, and therefore (G′, c′) has a colorful cut if and
only if (G, c) has one. �

Note that if each color class of a graph G induces a K2, then G has a
colorful cut if and only if G is bipartite, which can be decided in polynomial
time. The next result shows that this is best possible, in the sense that
Colorful Cut is NP-complete when each color class induces either a K2

or a K3.

Theorem 5. Colorful Cut is NP-complete when each color class induces
a clique of size at most three.

Proof. We present a reduction from Not All Equal 3-sat (nae 3-sat),
which is NP-complete [15]. Let I = (U,C) be an instance of nae 3-sat such
that U = {u1, u2, . . . , un} and C = {c1, c2, . . . , cm}.

The construction of an instance (G, c) is given by the following procedure:

• For each clause cj = (x, y, z) ∈ C, construct a clique {(x)j , (y)j , (z)j}
with all the edges colored with color j.

• For each variable ui ∈ U , add two new vertices ai and bi to V , such
that ai is only adjacent to all positive occurrences of ui, and bi is only
adjacent to all negative occurrences of the same variable.

• For each variable ui ∈ U , add an edge joining the vertices (in the
clause cliques) corresponding to the first positive occurrence and the
first negative occurrence of ui.

• Excluding the edges of the clause cliques, all other edges are colored
with new different integers strictly greater than m.
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Figure 1 illustrates the instance (G, c) of Colorful Cut associated
with an instance I = (U,C) of Not All Equal 3-sat.

Figure 1: Graph associated with the formula (u1∨u2∨u3)∧ (u1∨u2∨u3)∧ (u1∨u2∨u3).

At this point, it is not difficult to see that I = (U,C) is a satisfiable
instance of nae 3-sat if and only if (G, c) has a colorful cut. Indeed, suppose
first that I = (U,C) is a satisfiable instance of nae 3-sat, and let η be a
truth assignment of U that satisfies I. A colorful cut ∂S in Gc is obtained
as follows: if ui = 1, then put all its positive occurrences together with bi
in S, and put all its negative occurrences together with ai in V \ S. By
construction, all the colors greater than m are in the cut ∂S. Furthermore,
each of the colors j ≤ m is in the cut because in each clause there is always
a true and a false occurrence.

Conversely, suppose that (G, c) contains a colorful cut ∂S. All the clause
cliques have vertices in different parts of the partition, because the colors j
with 1 ≤ j ≤ m only appear in those clique edges. Thus we can produce
a truth assignment η by setting to true to those literals corresponding to
the clique vertices {xj , yj , zj} that belong to S, and by setting to false oth-
erwise. This is a consistent truth assignment because the edge joining the
first positive and negative occurrences of the variable ui (if any) must be a
cut edge, that is, its exclusive color must be in the cut, which means that
those occurrences must be in different parts of the partition, thus having
opposite truth assignments. As all positive occurrences of ui are adjacent
to the vertex ai and those edges have pairwise different colors presented in
the cut, it forces all positive occurrences of ui to be in the same part of the
partition, receiving the same truth assignment. Analogously, we can prove
that all negative occurrences of ui must be in the same part of the partition,
getting the same truth assignment.
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Figure 2 illustrates the colorful cut of (G, c) from the nae 3-sat instance
I = (U,C) with U = {u1, u2, u3} and C = {(u1∨u2∨u3), (u1∨u2∨u3), (u1∨
u2 ∨ u3)}, satisfying the truth assignment u1 = u2 = u3 = 1. �

Figure 2: Colorful cut of Gc = (V,E, f) from Figure 1 corresponding to the truth assign-
ment u1 = u2 = u3 = 1.

3. Polynomial kernelization of Maximum Colored Cut

From the results presented in Section 2, it follows that Maximum Col-
ored Cut is para-NP-hard (see [8]) parameterized by any of these pa-
rameters: treewidth, neighborhood diversity, genus, degeneracy, odd cycle
transversal number, p− k, and several combinations of such parameters. In
contrast to these results, next we show the fixed-parameter tractability of
Maximum Colored Cut when parameterized by either k or p, by means
of the existence of a polynomial kernel.

Theorem 6. Maximum Colored Cut admits a cubic kernel parameter-
ized by the number of colors.

Proof. First recall that a cut of a graph G is a bipartite subgraph of G.
The following claim is an easy fact.

Claim 1. Let H = (V1, V2, E) be a bipartite graph having β edges and no
isolated vertices. The maximum number of edges having endpoints in the
same part that can be added to H is 2

(
β
2

)
, corresponding to the case where

E induces a matching.
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Now, suppose that λ is the maximum number of colors in a cut of G =
(V,E) and let S ⊂ V be a set such that |c(∂S)| = λ. Forming a bipartite
graph H by selecting exactly one edge of each color class in [S, V \ S], by
Claim 1 it follows that any color class that is not in H has at most 2

(
λ
2

)
edges, otherwise λ would not be maximum. Let Ei ⊆ E be the set of edges
colored with color i. As λ ≤ p, if |Ei| > 2

(
p
2

)
, then color i appears in any

maximum colored cut. Such a property gives us the following reduction
rule: If for some color i, |Ei| > 2

(
p
2

)
, decrease by one the number of colors

and replace G by G[E \Ei]. The exhaustive application of this rule yields a
kernel of size O(p3). �

Before our last result, we need the following lemma.

Lemma 7. Any simple graph G = (V,E) with an edge coloring c : E →
{1, 2, . . . , p} has an edge cut ∂S such that |c(∂S)| ≥ p

2 .

Proof. Let G′ be an uncolored graph obtained from G by keeping one
arbitrary edge from each color. Then the lemma follows by applying to G′

the fact that any graph with at least m edges contains a bipartite subgraph
with at least m

2 edges [10]. �

Corollary 8. Maximum Colored Cut admits a cubic kernel parameter-
ized by the cost of the solution.

Proof. If k ≥ p/2, by Lemma 7 we conclude that we are dealing with
a Yes-instance. Otherwise, k < p/2, and applying exhaustively the rule
described in the proof of Claim 1 yields a kernel of size O(k3). �
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