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Abstract. Arithmetic in the divisor class group of a hyperelliptic curve
is a fundamental component of algebraic geometry packages implemented
in computer algebra systems such as Magma and Sage. In this paper, we
present an adaptation of Shanks’ NUCOMP algorithm for split model
hyperelliptic curves of arbitrary genus that uses balanced divisors and
includes a number of enhancements to optimize its efficiency in that set-
ting. Our version of NUCOMP offers better performance than Cantor’s
algorithm in the balanced divisor setting. Compared with Magma’s built-
in arithmetic, our Magma implementation shows significant speed-ups for
curves of all but the smallest genera, with the improvement increasing
as the genus grows.

1 Introduction

The divisor class group of a hyperelliptic curve defined over a finite field is a
finite abelian group at the center of a number of important open questions in
algebraic geometry and number theory. Sutherland [14] surveys some of these,
including the computation of the associated L-functions and zeta functions used
in his investigation of Sato-Tate distributions [13]. Many of these problems lend
themselves to numerical investigation, and as emphasized by Sutherland, fast
arithmetic in the divisor class group is crucial for their efficiency. Indeed, im-
plementations of these fundamental operations are at the core of the algebraic
geometry packages of widely-used computer algebra systems such as Magma and
Sage.

All hyperelliptic curves are represented as models that are categorized as
either ramified (imaginary), split (real), or inert according to their number of
points at infinity defined over the base field. Ramified curves have one point at
infinity, whereas split curves have two. Inert (also called unusual) curves have
no infinite points defined over the base field and are usually avoided in practice
as they have cumbersome divisor class group arithmetic and can be transformed
to a split model over at most a quadratic extension of the base field.

Divisor class group arithmetic differs on ramified and split models. The split
scenario is more complicated. As a result, optimizing divisor arithmetic on split
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hyperelliptic curves has received less attention from the research community.
However, split models have many interesting properties; most importantly, there
exists a large array of hyperelliptic curves that cannot be represented with a
ramified model and require a split model representation. Thus, exhaustive com-
putations such as those in [13] conduct the bulk of their work on split models
by necessity.

Arithmetic in the divisor class group of a hyperelliptic curve can be described
algebraically using an algorithm due to Cantor [1], and expressed in terms of
polynomial arithmetic. Various improvements and extensions to Cantor’s algo-
rithm have been proposed for ramified model curves, including an adaptation of
Shank’s NUCOMP algorithm [11] for composing binary quadratic forms [6]. The
main idea behind NUCOMP is that instead of composing two divisors directly
and then reducing to find an equivalent reduced divisor, a type of reduction
is applied part way through the composition, so that when the composition
is finished the result is almost always reduced. The effect is that the sizes of
the intermediate operands are reduced, resulting in better performance in most
cases. Improvements to NUCOMP have been proposed, most recently the work
of [5], where best practices for computing Cantor’s algorithm and NUCOMP are
empirically investigated.

NUCOMP has also been proposed for arithmetic in the so-called infrastruc-
ture of a split model curve [8]. However, as shown by Galbraith et. al. [4,9],
arithmetic on split model hyperelliptic curves is most efficiently realized via a
divisor arithmetic framework referred to as balanced. Although the balanced
and the infrastructure frameworks are similar, NUCOMP had yet to be applied
explicitly to the former.

In this paper, we present an adaptation of NUCOMP for divisor class group
arithmetic on split model hyperelliptic curves in the balanced divisor framework.
We incorporate optimizations from previous works in the ramified model setting
and introduce new balanced setting-specific improvements that further enhance
practical performance. Specifically, our version of NUCOMP includes various
improvements over its infrastructure counterpart [8]:

– it describes for the first time exactly how to use NUCOMP in the frame-
work of balanced divisors, including explicit computations of the required
balancing coefficients;

– it introduces a novel normalization of divisors in order to eliminate the extra
adjustment step required in [8] for typical inputs when the genus of the
hyperelliptic curve is odd, so that in all cases typical inputs require no extra
reduction nor adjustment steps;

– it uses certain aspects of NUCOMP to compute one adjustment step almost
for free in some cases.

We present empirical results that demonstrate the efficiency gains realized from
our new version of NUCOMP as compared with the previous best balanced
divisor class group arithmetic based on Cantor’s algorithm and the arithmetic
implemented in Magma, showing that NUCOMP is the method of choice for all
but the smallest genera. With our improvements, NUCOMP is more efficient



than Cantor’s algorithm for genus as low as 5, compared to 7 using the version
in [8], both of which are within the possible range of applications related to
numerical investigations of number-theoretic conjectures. Our implementation
is faster than Magma’s built-in arithmetic for g ≥ 7, and the gap increases with
the genus; we assume that a more even comparison using, for example, optimized
C implementations would further narrow this gap in performance.

The rest of the paper is organized as follows. In Section 2 we provide back-
ground information on split model hyperelliptic curves. Balanced divisor arith-
metic using Cantor’s algorithm is presented in Section 3. In Section 4 we present
our version of NUCOMP for the balanced divisor setting, as well as details of our
improvements. In Section 5 we present empirical results comparing our version
of NUCOMP to Cantor’s algorithm and Magma’s built-in arithmetic. Finally,
we give some conclusions and directions for future work in Section 6.

2 Background

In this section we recall the essential relevant notions related to divisor classes of
hyperelliptic curves and their arithmetic. For more details and background, the
reader is referred to [10, § 12.4] for Section 2.1 and [3, Chapter 7] for Section 2.2.

2.1 Split Model Hyperelliptic Curves

As described in [10, Definition 12.4.1], a hyperelliptic curve C of genus g defined
over a finite field k is given by a hyperelliptic equation

y2 + h(x)y = f(x), with h, f ∈ k[x],

that is absolutely irreducible and non-singular. A split model for a hyperelliptic
curve C of genus g over k is given by a hyperelliptic equation satisfying deg(f) =
2g + 2 and deg(h) ≤ g + 1. In addition, the leading coefficient of f is a square
except over fields of characteristic 2 where it is of the form s2+s for some s ∈ k∗.

Let C(k) be the set of k-rational points of C. The hyperelliptic involution of
C is the map ι : C(k) → C(k) that sends a finite point P = (x, y) on C to the
point P = ι(P ) = (x,−y − h(x)) on C. A point P on C is ramified if ι(P ) = P ,
and unramified otherwise.

The model used to represent a hyperelliptic curve determines the number
and type of points at infinity. A split model representation has two unramified
k-rational points at infinity denoted ∞+ and ∞−, where ι(∞+) = ∞−. Rami-
fied models have a single ramified k-rational point at infinity, and inert models
have none. It is sometimes possible to change the model of a curve C without
modifying the field of definition k by translating other points to infinity. If C has
a ramified k-rational point, one can obtain a ramified model for C by translating
this point to infinity, by [10, Theorem 12.4.12]. If C does not have a ramified k-
rational point, but has an unramified k-rational point, then similarly, that point
can be translated to infinity, providing two points at infinity ∞+, ∞− and thus



C can be represented with a split model. If no k-rational points exist, including
at infinity, then the hyperelliptic curve C can only be represented by an in-
ert model; no alternative ramified or split models are possible over k. However,
hyperelliptic curves that have neither a ramified nor an unramified k-rational
point are rare and only exist over fields whose cardinality is small relative to the
genus. If k is a finite field of cardinality q, the Weil bound #C(k) ≥ q+1−2g

√
q

guarantees that a genus g hyperelliptic curve C over k has a k-rational point
whenever q > 4g2, and an unramified k-rational point when q > 4g2 + 2g + g.

Split models therefore are more general than ramified, as ramified models are
only obtainable when the curve has a ramified point. Inert models of curves can
easily be avoided in practice by translating to a split or ramified model when q
is sufficiently large to guarantee a k-rational point, or by considering the curve
as a split model over a quadratic extension of k otherwise. Thus, in this work
we only consider improvements for hyperelliptic curves given by a split model,
with performance comparisons to ramified models given in Section 5.

2.2 Divisor Class Groups of Split Model Hyperelliptic Curves

A divisor on a hyperelliptic curve C defined over k is a formal sum D =
∑
nPP

of points P ∈ C(k) with only finitely many nP 6= 0. The support of D, denoted
supp(D), is the set of points P ∈ C(k) occurring in D with nP 6= 0. The degree of
D is deg(D) =

∑
np. A divisor D is said to be defined over k if σD =

∑
nPσP =

D for all σ ∈ Gal(k/k). The set of all degree zero divisors on C defined over
k, denoted Div0

k(C), is an Abelian group under component-wise addition. A
divisor is principal if it is of the form div(α) =

∑
P ordP (α)P for some function

α ∈ k(C)∗ where k(C) = k(x, y) is the function field of C. Principal divisors
have degree zero and the set of all principal divisors Prin0

k(C) = {div(α) | α ∈
k(C)∗} is a subgroup of Div0

k(C). The divisor class group of C defined over
k is the quotient group Pic0k(C) = Div0

k(C)/Prin0
k(C). The principal divisor

corresponding to ∞+ −∞− (resp. ∞− −∞+) is denoted D∞+ (resp. D∞−).
A divisorD =

∑
P nPP is affine if nP∞ = 0 for all k-rational points at infinity

P∞ on C. The divisor D is effective if nP ≥ 0 for all points P . An effective divisor
can be written as

∑
Pi, where the Pi need not be distinct. An affine effective

divisor D =
∑
Pi is semi-reduced if for any Pi ∈ supp(D), ι(Pi) 6∈ supp(D),

unless Pi = ι(Pi). A semi-reduced divisor D is reduced if deg(D) ≤ g.
A semi-reduced divisor D has a compact Mumford representation D = (u, v)

such that u, v ∈ k[x], deg(v) < deg(u), u is monic, and u|(v2+vh−f). Explicitly,
u is defined as the polynomial whose roots are the x-coordinates of every affine
point in the support of D =

∑
nPP accounting for multiplicity, i.e. u =

∏
i(x−

xi)
nPi for all Pi = (xi, yi) ∈ supp(D). The polynomial v is the interpolating

polynomial that passes through the points Pi. The Mumford representation of
D is said to be reduced if deg(u) ≤ g. The degree of a semi-reduced divisor
D = (u, v) in Mumford representation is given by deg(D) = deg(u).

Every rational divisor class in Pic0k(C) can be represented by a degree zero
divisor [D] that has a semi-reduced affine portion, but this representation is
not necessarily unique. As described in [4], let D∞ be an effective divisor of



degree g supported on k-rational points at infinity. Over split model curves,
let D∞ = dg/2e∞+ + bg/2c∞−. Then, every divisor class [D] over genus g
hyperelliptic curves described with a split model can be uniquely written as
[D0 − D∞] where D0 = Da + Di is a k-rational divisor of degree g with the
affine portion Da reduced, and Di is a specially-chosen divisor supported on
the infinite points, for example as described in the next section. Note that as is
standard practice, we refer to the degree of such a divisor class representative
as the degree of the affine part Da, although this is a slight abuse of notation as
the divisor D technically has degree zero.

3 Balanced Divisor Arithmetic using Cantor’s Algorithm

Over split model curves, divisor classes in Pic0k(C) do not have a unique, re-
duced Mumford representation. Mumford representation only utilizes informa-
tion about the affine portion Da of D0 = Da+Di for D = D0−D∞; uniqueness
is lost because the same affine portion of D0 could be combined with different
multiples of ∞+ and ∞− in Di to represent different divisor classes. Galbraith
et. al. [4] defined a reduced balanced divisor representation for split model curves
which appends to the polynomials u, v a balancing coefficient n, the number of
copies of ∞+ in D0, hence [D] = [u, v, n]. In order for this representation to be
unique and reduced, n is kept small, in the range [0, g − deg(u)] and deg u ≤ g.
A divisor class [D] = [u, v, n] therefore corresponds to

[u, v, n] = [u, v] + n∞+ + (g − deg(u)− n)∞− −D∞.

In this notation, for example,

[1, 0, dg/2e] = [1, 0] + dg/2e∞+ + bg/2c∞− −D∞

is the unique representative of the neutral divisor class in Pic0k(C).
Addition of divisor classes represented as reduced balanced divisors, as de-

scribed in [4], is done via a two-step process. First, the affine parts of the divisors
are added and reduced using Cantor’s algorithm, while computing the new bal-
ancing coefficient n of the result. At this point it is possible that the resulting
divisor class is neither reduced nor balanced, so a series of adjustment steps is
applied, up-adjustments if n needs to be increased and down-adjustments if it
needs to decrease, until the n value satisfies 0 ≤ n ≤ g − deg u and is thus
balanced. The main advantage of using balanced divisor representatives is that
in the generic case, where both divisors have degree g and n = 0, the number of
adjustment steps required is zero for even genus and one for odd genus.3

The two algorithms that we present in the following sections for addition and
reduction (Algorithm 1) and for adjustment (Algorithm 2) follow this strategy
with a variety of practical improvements. We adopt an alternative normalization

3 The required adjustment step over odd genus reduces the degree of the intermediate
divisor, similar to a reduction step.



of the v polynomial from the Mumford representation, as well as well-known
algorithmic improvements to Cantor’s algorithm described, for example, in [5], as
described next. In all algorithms presented, let lc(a) denote the leading coefficient
of polynomial a and monic(a) = a/lc(a), i.e. the polynomial a made monic.

3.1 Extended Mumford Representation and Tenner’s Algorithm

One standard optimization for arithmetic with ideals of quadratic number fields
is to represent the ideal as a binary quadratic form, a representation that includes
a third redundant coefficient that is useful computationally. In the context of
divisor arithmetic, this means adding the polynomial w = (f−v(v+h))/u to the
Mumford representation, so that balanced divisor classes in our implementation
have four coordinates, [u, v, w, n].

This polynomial must be computed in every application of Cantor’s algorithm
as well as in reduction steps and adjustment steps. Having it available as part
of the divisor representation results in some savings in the divisor addition part,
and allows for the use of Tenner’s algorithm for reduction and adjustment steps, a
standard optimization for computing continued fraction expansions of quadratic
irrationalities (see, for example, [7, §3.4]).

3.2 Divisor Representation using Reduced Bases

The standard Mumford representation of a divisor [u, v] has v reduced modulo
u, but any other polynomial congruent to v modulo u can also be used. In split
model curves, an alternate representation called the reduced basis turns out to
be computationally superior in practice. Reduced bases are defined in terms
of the unique polynomial V +, the principal (polynomial) part of the root y of
y(y + h(x)) − f(x) = 0 for which deg(f − V +(V + + h)) ≤ g, or the other root
V − = −V + − h. Note that such V + and V − only exist for split models.

We say that a representation of the affine divisor [u, v] given by [u, ṽ] is in
reduced basis or positive reduced basis if ṽ = V + − [(V + − v) (mod u)] and
in negative reduced basis if ṽ = V − − [(V − − v)) (mod u)]. To convert a di-
visor [u, v, w, n] into negative reduced basis [u, v′, w′, n], first compute (q, r) =
DivRem(V − − v, u), where we define DivRem(a, b) as q, r, the quotient and re-
mainder, respectively, obtained when dividing a by b, i.e. a = qb+r. For unique-
ness, we take the remainder r satisfying deg(r) < deg(b). Then v̂ = V − − r,
w′ = w− q(v+h+ v̂), and let v′ = v̂. To convert back to positive reduced basis,
first Compute q 6= 0, r such that v′ = qu+ r, then w = w′ − q(v′ + h+ r), and
let v = r.

In both types of reduced basis, cancellations cause the degree of f − ṽ(ṽ+h)
to be two less than that obtained using v mod u instead of ṽ, resulting in more
efficient divisor addition. Although divisor class composition and reduction are
not affected by this representation, a negative reduced basis is computed in an
up adjustment, and positive in a down adjustment. By working with divisors
that are already in a reduced basis, we avoid having to change basis when the
corresponding type of adjustments are required.



In our implementation, we use the negative reduced basis to represent our
balanced divisors. For even genus curves, no adjustments are required for typical-
case inputs, so either type of reduced basis will do. However, for odd genus one
up adjustment is always required for typical inputs. Having divisors always rep-
resented via a negative reduced basis ensures that base changes are not required
before computing this adjustment step.

3.3 Balanced Add

Balanced Add, described in Algorithm 1, for adding divisor classes over split
model curves, closely follows an optimized version of Cantor’s algorithm (Algo-
rithm 1 of [5]), with the addition of keeping v in negative reduced basis, keeping
track of the balancing coefficient n, and applying adjustment steps at the end as
described in [4]. The algorithm is optimized for the frequently-occurring situation
where gcd(u1, u2) = 1, based on a description due to Shanks of Gausss compo-
sition formulas for binary quadratic forms. A more efficient doubling algorithm
can be obtained by specializing to the case that D2 = D1 and simplifying.

Balanced Add, and indeed all the divisor class addition algorithms presented
in here, require applications of the extended Euclidean algorithm for polynomi-
als. Throughout, we use the notation (d, s, t) = XGCD(a, b) to denote the output
of this algorithm, specifically d = gcd(a, b) = as+ bt with s, t normalized so that
deg(s) < deg(b)− deg(d) and deg(t) < deg(a)− deg(d).

In the balanced setting, addition and reduction are similar to that over rami-
fied curves, the only difference being the threshold for applying a reduction step
is deg(u) > g + 1 instead of deg(u) > g; adjustment steps are applied when
deg(u) = g + 1. Reduction steps decrease the degree of the affine portion of the
divisor class by at least two, so at most bg/2c steps are required to reduce the
output of the composition portion to a linearly equivalent divisor whose affine
part has degree at most g + 1.

3.4 Balanced Adjust

Balanced Adjust, described in Algorithm 2, is called after partially reducing a
divisor D = [u, v, w, n], for a final reduction from degree g+1 if necessary, and for
balancing if n is outside the required range 0 ≤ n ≤ g−deg(u). Balanced Adjust
can be viewed as a composition of the affine portion with D∞+ , when n is above
the threshold (down adjustments) or D∞− when n is below (up adjustments).
This can be thought of as transferring a symbolic copy of the point ∞+ (for
down) or ∞− = −∞+ (for up) into the affine portion, keeping the divisor class
the same. The number of adjustment steps required is at most dg/2e.

4 Balanced NUCOMP

Cantor’s algorithm [1] is closely related to Gauss’ composition and reduction of
binary quadratic forms. In 1988, Shanks [11] described an alternative to Gauss’



Algorithm 1 Balanced Add

Input: [u1, v1, w1, n1], [u2, v2, w2, n2], f, h, V −.
Output: [u, v, w, n] = [u1, v1, w1, n1] + [u2, v2, w2, n2].

1: t1 = v1 + h.
2: Compute (S, a1, b1) = XGCD(u1, u2).
3: K = a1(v2 − v1) (mod u2).
4: if S 6= 1 then
5: Compute (S′, a2, b2) = XGCD(S, v2 + t1).
6: K = a2K + b2w1.
7: if S′ 6= 1 then
8: u1 = u1/S

′, u2 = u2/S
′, w1 = w1S

′.

9: K = K (mod u2).
10: S = S′.
11: T = u1K, u = u1u2, v = v1 + T .
12: w = (w1 −K(t1 + v))/u2.
13: n = n1 + n2 + deg(S)− dg/2e.
14: if deg(u) ≤ g then
15: if deg(v) ≥ deg(u) then
16: (q, r) = DivRem(V − − v, u).
17: tv = V − − r, w = w − q(v + h + tv), v = tv.

18: else
19: while deg(u) > g + 1 do
20: if deg(v) = g + 1 and lc(v) = lc(−V − − h) then
21: n = n + deg(u)− g − 1.
22: else if deg(v) = g + 1 and lc(v) = lc(V −) then
23: n = n + g + 1− deg(w).
24: else n + (deg(u)− deg(w))/2.

25: uo = u, u = w.
26: (q, r) = DivRem(V − + v + h, u).
27: vt := V − − r, w = uo − q(vt − v), v = vt.

28: w = lc(u)w, u = monic(u).

29: return Balanced Adjust([u, v, w, n], f, h, V −).



Algorithm 2 Balanced Adjust

Input: [ua, va, wa, na], f, h, V +, where deg(ua) ≤ g + 1.
Output: [u, v, w, n] = [ua, va, wa, na], where deg(u) ≤ g and 0 ≤ n ≤ deg(u)− g.
1: u = ua, v = va, w = wa, n = na,
2: if n < 0 then
3: while n < 0 do
4: uo = u, u = w.
5: (q, r) = DivRem(V − + v + h, u).
6: vt := V − − r, w = uo − q(vt − v), v = vt.
7: n = n + g + 1− deg(u).

8: w = lc(u)w, u = monic(u).
9: else if n > g − deg(u) then

10: t = −V − − h.
11: (q, r) = DivRem(t− v, u).
12: vt = t− r, w = w − q(v + h + vt), v = vt.
13: while n > g − deg(u) + 1 do
14: n = n + deg(u)− g − 1, uo = u, u = w.
15: (q, r) = DivRem(t + v + h, u).
16: vt := t− r, w = uo − q(vt − v), v = vt.

17: if n > g − deg(u) then
18: n = n + deg(u)− g − 1, uo = u, u = w.
19: (q, r) = DivRem(V − + v + h, u).
20: vt := V − − r, w = uo − q(vt − v), v = vt.
21: else
22: t = V − − V +, (q, r) = DivRem(t, u).
23: vt = v + t− r, w = w − q(v + vt), v = vt.

24: w = lc(u)w, u = monic(u).

25: return [u, v, w, n].



method called NUCOMP. Instead of composing and then reducing, which results
in a non-reduced intermediate quadratic form with comparatively large coeffi-
cients, the idea of NUCOMP is to start the composition process and to apply
an intermediate reduction of the operands using a simple continued fraction ex-
pansion before completing the composition. The result is that the intermediate
operands are smaller, and at the end the resulting quadratic form is in most
cases reduced without having to apply any additional reduction steps. Jacobson
and van der Poorten [6] showed how to apply the ideas of NUCOMP to divi-
sor class group arithmetic, obtaining analogous reductions in the degrees of the
intermediate polynomial operands.

Applied to our setting, the main idea is that the element (v+ y)/u ∈ k(C) is
approximated by the rational function u2/K with u2,K from Algorithm 1. Can-
tor’s Algorithm first computes the non-reduced divisor, and subsequently applies
a reduction algorithm that can be expressed in terms of expanding the continued
fraction of the quadratic irrationality (v+y)/u. The first several partial quotients
of the simple continued fraction expansion of the rational approximation u2/K
are the same as that of (v+ y)/u, and these can be computed without having to
first compute the non-reduced divisor (u, v). Given those partial quotients, the
final reduced divisor can be computed via expressions involving them and other
low-degree operands, again without having to first compute the non-reduced
divisor (u, v). For more details on the theory behind NUCOMP, see [8].

The most recent work on NUCOMP [5] provides further optimizations and
empirical results demonstrating that it outperforms Cantor’s algorithm for hy-
perelliptic curves of genus as small as 7, and that the relative performance im-
proves as the genus increases. An enhanced version of NUCOMP for adding and
reducing divisors without balancing, that works for curves defined over arbitrary
fields and incorporates all the optimizations described in the previous section, is
presented in Algorithm 3

Although this version of NUCOMP is intended for divisor class group ad-
dition on ramified model hyperelliptic curves, it also works for adding reduced
affine divisors and producing a reduced output over split model curves. In [8], the
authors also describe how to use this to perform arithmetic in the infrastructure
of a split model hyperelliptic curve, but not in the divisor class group. It was
shown that for split model curves the output of NUCOMP is always reduced for
even genus curves, but that for odd genus at least one extra reduction step is
required.

In the following (Algorithm 4), we present an adaptation of NUCOMP, de-
noted Balanced NUCOMP, for performing divisor class group arithmetic on a
split model hyperelliptic curve using balanced divisor arithmetic. A more effi-
cient doubling algorithm optimized for the case that the input divisors are equal,
denoted Balanced NUDUPL, is used for our testing in Section 5 and presented
as Algorithm 5 for the readers convenience. Our additions and improvements to
Algorithm 3 include the following:



Algorithm 3 NUCOMP

Input: [u1, v1, w1], [u2, v2, w2], f , h.
Output: [u, v, w] with [u, v, w] = [u1, v1, w1] + [u2, v2, w2].

1: if deg(u1) < deg(u2) then
2: [ut, vt, wt] = [u2, v2, w2], [u2, v2, w2] = [u1, v1, w1].
3: [u1, v1, w1] = [ut, vt, wt].

4: t1 = v1 + h, t2 = v2 − v1.
5: Compute (S, a1, b1) = XGCD(u1, u2).
6: K = a1t2 (mod u2).
7: if S 6= 1 then
8: Compute (S′, a2, b2) = XGCD(S, v2 + t1).
9: if S′ 6= 1 then

10: u1 = u1/S
′, u2 = u2/S

′. (exact divisions)
11: w1 = w1S

′.

12: K = K (mod u2).
13: S = S′.
14: if deg(u2) + deg(u1) ≤ g then
15: u = u2u1, v = v1 + u1K.
16: w = (w1 −K(t1 + v))/u2. (exact division)
17: if deg(v) ≥ deg(u) then
18: (q, r) = DivRem(v, u).
19: w = w + q(v + h + r), v = r.

20: else
21: Set r = K, r′ = u2, c′ = 0, c = −1, l = −1.
22: while deg(r) > (deg(u2)− deg(u1) + g)/2 do
23: (q, rn) = DivRem(r′, r).
24: Set r′ = r, r = rn, cn = c′ − qc, c′ = c, c = cn, l = −l.
25: t3 = u1r.
26: M1 = (t3 + t2c)/u2. (exact division)
27: M2 = (r(v2 + t1) + w1c)/u2. (exact division)
28: u′ = l(rM1 − cM2).
29: z = (t3 + c′u′)/c. (exact division)
30: v = (z − t1) (mod u′).
31: u = monic(u′).
32: w = (f − v(v + h))/u.

33: return [u, v, w].



4.1 using divisors normalized with the negative reduced basis so that in both even
and odd genus, divisor additions generically require no further reduction nor
adjustment steps after NUCOMP;

4.2 adapting NUCOMP to the balanced setting by tracking and updating the
balancing coefficient n appropriately, including determining how to update
the balancing coefficient n after the simple continued fraction steps;

4.3 using simple continued fraction steps of NUCOMP to eliminate an adjust-
ment step for certain non-generic cases where the degree of the output divisor
is small.

In the following subsections, we provide more details and justification for each
of these modifications.

4.1 Normalization With Negative Reduced Basis

Let [u1, v1, w1, n1] and [u2, v2, w2, n2] be the input for Balanced NUCOMP. For
split model curves, the simple continued fraction portion of NUCOMP can ab-
sorb at most one adjustment step while still ensuring that the output divisor
is reduced, by setting the bound for the simple continued fraction expansion in
line 22 appropriately. If the bound is set any lower than in Algorithm 4, then
the resulting u polynomial ends up having degree greater than g, meaning that
the divisor is not reduced.

We make the choice to normalize all our divisor class representatives using
the negative reduced basis for the following reasons:

1. For odd genus, the generic case for divisor class arithmetic requires an up ad-
justment. Ensuring that our divisors are normalized using negative reduced
basis allows us to perform this adjustment step via an extra step in the NU-
COMP simple continued fraction part, so that after NUCOMP the output
for the generic case is both reduced and balanced without any further steps.

2. For even genus, the generic case requires no adjustments, so either positive
reduced or negative reduced basis works equally well.

3. Non-generic cases of divisor class addition over even and odd genus require
either up adjustments, down adjustments or no adjustment. Over even genus,
out of all cases that require adjustments, exactly half are down and half are
up. Over odd genus, far more non-generic cases require an up adjustment
than down. This can be seen by analyzing the computation of the balancing
coefficient n in the composition portion of Algorithm 1. Line 12 states n =
n1 + n2 + deg(S)− dg/2e, where the ceiling function increases the cases for
which n < 0 for odd genus curves.

Note that it is possible to identify some non-generic cases that require a
down adjustment directly from the input divisors. One could then consider using
this information to change the basis to positive reduced at the beginning of
the algorithm, so that the adjustment saved via NUCOMP’s simple continued
fraction steps is a down adjustment. However, applying the change of basis
requires roughly the same amount of computation as one adjustment step in



Algorithm 4 Balanced NUCOMP

Input: [u1, v1, w1, n1], [u2, v2, w2, n2], f , h, V −.
Output: [u, v, w, n] with [u, v, w, n] = [u1, v1, w1, n1] + [u2, v2, w2, n2].

1: if deg(u1) < deg(u2) then
2: [ut, vt, wt, nt] = [u2, v2, w2, n2], [u2, v2, w2, n2] = [u1, v1, w1, n1].
3: [u1, v1, w1, n1] = [ut, vt, wt, nt].

4: t1 = v1 + h, t2 = v2 − v1.
5: Compute (S, a1, b1) = XGCD(u1, u2).
6: K = a1t2 (mod u2).
7: if S 6= 1 then
8: Compute (S′, a2, b2) = XGCD(S, v2 + t1).
9: K = a2K + b2w1.

10: if S′ 6= 1 then
11: u1 = u1/S

′, u2 = u2/S
′. (exact divisions)

12: w1 = w1S
′.

13: K = K (mod u2).
14: S = S′.
15: D = deg(u2) + deg(u1).
16: n = n1 + n2 + deg(S)− dg/2e.
17: if D ≤ g and ((n ≥ 0 and n ≤ g −D) or deg(w1)− deg(u2) > g)) then
18: T = u1K, u = u2u1, v = v1 + T .
19: w = (w1 −K(t1 + v))/u2. (exact division)
20: if deg(v) ≥ deg(u) then
21: (q, r) = DivRem(V − − v, u).
22: tv = V − − r, w = w − q(v + h + tv), v = tv.

23: else
24: Set r = K, r′ = u2, c′ = 0, c = −1, l = −1.
25: while deg(r) ≥ (deg(u2)− deg(u1) + g + 1)/2 do
26: (q, rn) = DivRem(r′, r).
27: Set r′ = r, r = rn, cn = c′ − qc, c = cn, c′ = c, l = −l.
28: t3 = u1r.
29: M1 = (t3 + ct2)/u2, M2 = (r(v2 + t1) + w1c)/u2. (exact divisions)
30: u = l(rM1 − cM2).
31: z = (t3 + c′u)/c. (exact division)
32: v = V − − [(t1 − z + V −) (mod u)].
33: u = monic(u).
34: w = (f − v(v + h))/u. (exact division)
35: if deg(z) < g + 1 then
36: n = n + deg(u2)− deg(r′) + g + 1− deg(u).
37: else
38: n = n + deg(u2) + deg(r).

39: return Balanced Adjust([u, v, w, n], f, h, V −).



Algorithm 5 Balanced NUDUPL

Input: [u1, v1, w1, n1], f , h, V −.
Output: [u, v, w, n] with [u, v, w, n] = 2[u1, v1, w1, n1].

1: t1 = v1 + h, t2 = t1 + v1.
2: Compute (S, a1, b1) = XGCD(u1, t2).
3: K = b1w1.
4: if S 6= 1 then
5: u1 = u1/S. (exact division)
6: w1 = w1S.

7: K = K (mod u1).
8: D = 2 deg(u1).
9: n = 2n1 + deg(S)− dg/2e.

10: if D ≤ g and ((n ≥ 0 and n ≤ g −D) or deg(w1)− deg(u1) > g)) then
11: T = u1K, u = u2

1, v = v1 + T .
12: w = (w1 −K(t2 + T ))/u1. (exact division)
13: if deg(v) ≥ deg(u) then
14: (q, r) = DivRem(V − − v, u).
15: tv = V − − r, w = w − q(v + h + tv), v = tv.

16: else
17: Set r = K, r′ = u1, c′ = 0, c = −1, l = −1.
18: while deg(r) ≥ (g + 1)/2 do
19: (q, rn) = DivRem(r′, r).
20: Set r′ = r, r = rn, cn = c′ − qc, c = cn, c′ = c, l = −l.
21: M2 = (rt2 + w1c)/u1. (exact division)
22: u = l(r2 − cM2).
23: z = (u1r + c′u)/c. (exact division)
24: v = V − − [(V − − z + t1) (mod u)].
25: u = monic(u).
26: w = (f − v(v + h))/u. (exact division)
27: if deg(z) < g + 1 then
28: n = n + deg(u1)− deg(r′) + g + 1− deg(u).
29: else
30: n = n + deg(u1) + deg(r).

31: return Balanced Adjust([u, v, w, n], f, h, V −).



the right direction relative to the basis. We found that in practice any savings
obtained were negligible, as adjustments in the wrong direction rarely occur, so
we chose not to include this functionality in our algorithm.

4.2 Adapting NUCOMP to the Balanced Setting

Most of the logic for updating the balancing coefficient n is the same as in
Cantor’s algorithm as presented above (Algorithm 1). The main difference is
that NUCOMP does not require reduction steps, as the output is already reduced
due to the simple continued fraction reduction of coefficients in lines 24–26 of
Balanced NUCOMP. However, it is necessary to determine how these NUCOMP
reduction steps affect the resulting balancing coefficient n.

The computation of the simple continued fraction expansion in NUCOMP
implicitly keeps track of a principal divisor Dδ, such that for input divisors D1,
D2 and the reduced output divisor D3, D1 +D2 = D3 +Dδ, and knowledge of
Dδ gives us the information needed to update n. Some of this is described in
the version of NUCOMP from [8], but this version does not account for special
cases of the last reduction step (where the leading coefficient of input v is the
same as the leading coefficient of V + or V −) nor the use of negative reduced
basis. In our analysis we account for both, aligning with the special cases from
the reduction portion of Balanced Addition (Algorithm 1) and from Balanced
Adjust (Algorithm 2).

The last continued fraction step may either be a normal reduction step, a
special reduction step or an adjustment step. Special reductions steps can be
viewed as reductions that encounter cancellation with either ∞+ or ∞−. The
cancellation effectively mimics a composition with ∞+ or ∞−, thus requiring
the same accounting of the balancing coefficient n as an adjustment step. If the
last step is an adjustment step, Balanced NUCOMP attempts a reduction, but a
reduced basis effectively already applies composition at infinity, so the attempted
reduction completes the adjustment. In both cases, the choice of either positive
or negative reduced basis solely dictates the direction of the adjustment. We
refer to the last simple continued fraction step as special if either an adjustment
or special reduction step is computed; otherwise we refer to it as normal.

There are four possible cases for the computation of n dictated by the choice
of positive or negative reduced basis and either normal or special last steps. Note
that we do not include cases that arise with positive reduced basis in Algorithm 4,
due to our choice of working exclusively with negative reduced basis, but we do
describe the computation of n for this case below, too, as we implement and
compare both versions in the next Section.

First we describe how to test for special last steps, then how the n value is
computed depending on the type of basis used and whether the last step is special
or normal. The last step is special exactly when deg(z) < g + 1 as in line 34 of
the Balanced NUCOMP algorithm, where z is given in line 30. To see this, we
first recall that, as described in [8], each continued fraction step of NUCOMP
corresponds to a divisor equivalent to the sum of the input divisors D1 and D2.
Let [u′, v′] denote the Mumford representation of the divisor corresponding to



the second-last continued fraction step. The last continued fraction step is a
special step whenever deg(v′) = g + 1 and the leading coefficient of v′ is the
same as that of V − (or V + if positive reduced basis is being using), because in
that case cancellations in the leading coefficients of V − − v′ (or V + − v′) in the
computation of v cause the degree of u to be less than g, implying that the last
step is special.

Comparing the computation of v in line 31 of balanced NUCOMP with the
computation of v in the the reduction step of Balanced Addition (Algorithm 1),
and also in any case of Balanced Adjust (Algorithm 2), we see that v′ = v1 −
z. Thus, the conditions for the last continued fraction step being special are
satisfied when deg(z) < g + 1, because this implies that the degree and leading
coefficients of v′ and v1 are the same. Note that deg(v1) = g+ 1 and the leading
coefficient of v1 is the same as that of V + (or V −) because the input divisor
[u1, v1] is given in negative (or positive) reduced basis. As stated earlier, the
simple continued fraction steps of Algorithm 4 (lines 24–26) can only incorporate
up to one adjustment step in addition to all the required reduction steps. Thus,
a final call to Algorithm 2 is required in order to ensure that the output divisor
is both reduced and balanced.

4.3 Eliminating an Adjustment for Some Non-Generic Cases

The non-balanced version of NUCOMP presented at the beginning of this section
(Algorithm 3, lines 14–19) makes use of the observation that if D = deg(u1/S)+
deg(u2/S) ≤ g, then completing the composition using Cantor’s algorithm will
produce a divisor that is reduced without having to do any subsequent reduction
steps. In the balanced setting, the corresponding balancing coefficient is n =
n1 +n2 + deg(S)−dg/2e. If this divisor is not balanced, i.e. n < 0 or n > g−D,
then one may apply NUCOMP’s simple continued fraction-based reduction in
order to compute one adjustment step, saving one of the more expensive standard
adjustment steps. However, this is only beneficial if deg(w1) − deg(u2) ≤ g,
because otherwise the resulting output divisor will not be reduced due to the
fact that deg(u) depends on the degree of w1S/(u2/S) = w1/u2. Thus, we only
finish the composition with Cantor’s algorithm (lines 16–21 of Algorithm 4) if the
resulting divisor is reduced and balanced, or if it is reduced and not balanced but
performing a NUCOMP reduction step would result in an non-reduced divisor.

5 Empirical Results

In this section we provide empirical data to illustrate the relative performance
of the composition algorithms presented above over both ramified curves and
split model curves using positive and negative reduced basis representations.
We implemented all the algorithms for addition and doubling in Magma as a
proof of concept4. Therefore, the absolute timings are not of great importance.

4 The experiments were performed on a workstation with an Intel Xeon 7550 processor
that has 64 cores, each of which is 64-bit and runs at 2.00 GHz.



The reader should rather focus on the relative cost between the various algo-
rithms and models. See https://github.com/salindne/divisorArithmetic/

tree/master/generic for raw data, auxiliary graphs and Magma scripts of im-
plementations used in this section.

As a preliminary benchmark, we compared addition using the versions of
Cantor’s algorithm described earlier and our version of NUCOMP over ramified
and split model curves by computing a Fibonacci-like sequence of divisors using
Di+1 = Di +Di−1, starting from two random divisors. We collected timings for
all genus ranging from 2 to 50 and prime fields of sizes 2, 4, 8, 16, 32, 64, 128,
256, 512 and 1024 bits. All timings were run over random hyperelliptic curves
with h = 0, using implementations of our algorithms that were specialized to
exclude any computations with h.

We also performed similar experiments for our doubling algorithms (Cantor’s
algorithm and NUDUPL, which is NUCOMP specialized to doubling a divisor)
over ramified and split model curves, by computing series of thousands of addi-
tions of a divisor class with itself. The data for doubling is omitted below, as the
relative performance between the various algorithms considered was the same as
for addition.

For ramified model curves, the Cantor-based algorithms we used are the
same as Algorithm 1 but with the steps dealing with the balancing coefficient
n removed and with divisors normalized via v mod u as opposed to a reduced
basis. We used Algorithm 3 for NUCOMP. For split model curves, the positive
reduced basis algorithms are based on Algorithms 1, 2 and 4, but with divisors
normalized via V +− [(V +−v) (mod u)] as opposed to a negative reduced basis.
We also include timings using Magma’s built-in arithmetic for ramified and split
model curves.

Apart from the absolute timings, we observed that the relative performances
of the various algorithms do not depend on the field size. In the next figures,
we illustrate our comparison for 32-bit fields only, as these results are also rep-
resentative of the other field sizes. From these plots, we can draw the following
conclusions:

– For split model curves, as illustrated in the first graph, negative reduced
and positive reduced basis perform about the same for even genus. As ex-
pected, negative reduced basis is slightly better for odd genus due to the fact
that generic cases require no adjustments steps in negative reduced basis as
opposed to one adjustment step in positive reduced basis.

– The second graph shows that, for split model curves, our implementation
of balanced NUCOMP rapidly becomes faster than Cantor as g grows. It
also shows that, when using balanced NUCOMP, the difference between
the best algorithms for split and ramified model curves is negligible for all
genus. Furthermore, all of our implementations are considerably faster than
Magma’s built in arithmetic as the genus grows. The graph does not include
timings for Magma for g > 32 so that the comparisons between the other
algorithms are easier to see. We note that our best split model algorithm is
about five times faster at genus 50.

https://github.com/salindne/divisorArithmetic/tree/master/generic
https://github.com/salindne/divisorArithmetic/tree/master/generic


– Not surprisingly, as shown in the last graph, for small genus (g < 5), Can-
tor’s algorithms are slightly faster than the NUCOMP algorithms. Magma’s
built-in arithmetic is also faster for g < 7. We suspect that this is due to
Magma’s implementation having access to faster internal primitives, while
our implementation has to use the generic polynomial ring setting. Even so,
our implementation of NUCOMP is the fastest option for g ≥ 7.
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6 Conclusions and Future Work

Our results indicate that Balanced NUCOMP provides an improvement for com-
puting balanced divisor class arithmetic in split model hyperelliptic curves with
a cross-over as low as genus 5. As expected, our choice of normalizing v in neg-
ative reduced basis and therefore incorporating up-adjustments into NUCOMP
performs equally well when compared to positive reduced over even genus, and
slightly better over odd. Furthermore, our algorithm performs almost as well and
sometimes better than ramified curve NUCOMP and closes the performance gap
between ramified model and split model divisor arithmetic.

Integrating our algorithms directly into Magma’s built in arithmetic might
reduce the relative performance, either lowering or elimination any cross over
points between our algorithms and Magma’s arithmetic. It would be of interest
to adapt NUCOMP for divisor arithmetic over non-hyperelliptic Ca,b curves as
this setting also plays a role in computational number theoretic applications [13].
Adapting NUCOMP for addition in the divisor class group of superelliptic curves
based on [12] may also yield favourable results. It would also be interesting to
see if explicit formulas for divisor class group arithmetic based on Balanced
NUCOMP applied to arithmetic in split model hyperelliptic curves of low genus,
can improve on current best [2,13].
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