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Parameterized complexity of finding a spanning tree with

minimum reload cost diameter∗

Julien Baste† Didem Gözüpek‡ Christophe Paul§ Ignasi Sau§

Mordechai Shalom¶‖ Dimitrios M. Thilikos§∗∗

Abstract

We study the minimum diameter spanning tree problem under the reload cost model
(Diameter-Tree for short) introduced by Wirth and Steffan (2001). In this problem,
given an undirected edge-colored graph G, reload costs on a path arise at a node
where the path uses consecutive edges of different colors. The objective is to find a
spanning tree of G of minimum diameter with respect to the reload costs. We initiate
a systematic study of the parameterized complexity of the Diameter-Tree problem
by considering the following parameters: the cost of a solution, and the treewidth
and the maximum degree ∆ of the input graph. We prove that Diameter-Tree is
para-NP-hard for any combination of two of these three parameters, and that it is
FPT parameterized by the three of them. We also prove that the problem can be
solved in polynomial time on cactus graphs. This result is somehow surprising since
we prove Diameter-Tree to be NP-hard on graphs of treewidth two, which is best
possible as the problem can be trivially solved on forests. When the reload costs
satisfy the triangle inequality, Wirth and Steffan (2001) proved that the problem
can be solved in polynomial time on graphs with ∆ � 3, and Galbiati (2008) proved
that it is NP-hard if ∆ � 4. Our results show, in particular, that without the
requirement of the triangle inequality, the problem is NP-hard if ∆ � 3, which
is also best possible. Finally, in the case where the reload costs are polynomially
bounded by the size of the input graph, we prove that Diameter-Tree is in XP
and W[1]-hard parameterized by the treewidth plus ∆.
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1 Introduction

Numerous network optimization problems can be modeled by edge-colored graphs. Wirth
and Steffan introduced in [33] the concept of reload cost, which refers to the cost that
arises in an edge-colored graph while traversing a vertex via two consecutive edges of
different colors. The value of the reload cost depends on the colors of the traversed edges.
Although the reload cost concept has many important applications in telecommunication
networks, transportation networks, and energy distribution networks, it has surprisingly
received attention only recently.

In heterogeneous communication networks, routing requires switching among different
technologies such as cables, fibers, and satellite links. Due to data conversion between
incompatible subnetworks, this switching causes high costs, largely outweighing the
cost of routing the packets within each subnetwork. The recently popular concept of
vertical handover [11], which allows a mobile user to have undisrupted connection during
transitioning between different technologies such as 3G (third generation) and wireless
local area network (WLAN), constitutes another application area of the reload cost
concept. Even within the same technology, switching between different service providers
incurs switching costs. Another paradigm that has received significant attention in the
wireless networks research community is cognitive radio networks (CRN), a.k.a. dynamic
spectrum access networks. Unlike traditional wireless technologies, CRNs operate across
a wide frequency range in the spectrum and frequently require frequency switching;
therefore, the frequency switching cost is indispensable and of paramount importance.
Many works in the CRNs literature focused on this frequency switching cost from an
application point of view (for instance, see [1, 3–5, 14, 21, 31]) by analyzing its various
aspects such as delay and energy consumption. Operating in a wide range of frequencies is
indeed a property of not only CRNs but also other 5G technologies. Hence, applications of
the reload cost concept in communication networks continuously increase. In particular,
the energy consumption aspect of this switching cost is especially important in the
recently active research area of green networks, which aim to tackle the increasing energy
consumption of information and communication technologies [6, 8].

The concept of reload cost also finds applications in other networks such as transporta-
tion networks and energy distribution networks. For instance, a cargo transportation
network uses different means of transportation. The loading and unloading of cargo at
junction points is costly and this cost may even outweigh the cost of carrying the cargo
from one point to another [15]. In energy distribution networks, reload costs can model
the energy losses that occur at the interfaces while transferring energy from one type of
carrier to another [15].

Recent work in the literature focused on numerous problems related to the reload
cost concept: the minimum reload cost cycle cover problem [17], the problems of finding
a path, trail or walk with minimum total reload cost between two given vertices [20],
the problem of finding a spanning tree that minimizes the sum of reload costs of all
paths between all pairs of vertices [18], various path, tour, and flow problems related to
reload costs [2], the minimum changeover cost arborescence problem [16,22,23,25], and
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problems related to finding a proper edge coloring of the graph so that the total reload
cost is minimized [24].

The work in [33], which introduced the concept of reload cost, focused on the following
problem, called Minimum Reload Cost Diameter Spanning Tree (Diameter-
Tree for short), and which is the one we study in this paper: given an undirected graph
G � pV,Eq with a (non necessarily proper) edge-coloring χ : EpGq Ñ X and a reload
cost function c : X2 Ñ N0, find a spanning tree of G with minimum diameter with
respect to the reload costs (see Section 2 for the formal definitions).

This problem has important applications in communication networks, since forming
a spanning tree is crucial for broadcasting control traffic such as route update messages.
For instance, in a multi-hop cognitive radio network where a frequency is assigned to
each wireless link depending on availability of spectrum bands, delay-aware broadcasting
of control traffic necessitates the forming of a spanning tree by taking the delay arising
from frequency switching at every node into account. Cognitive nodes send various
control information messages to each other over this spanning tree. A spanning tree
with minimum reload cost diameter in this setting corresponds to a spanning tree in
which the maximum frequency switching delay between any two nodes on the tree is
minimized. Since control information is crucial and needs to be sent to all other nodes
in a timely manner, ensuring that the maximum delay is minimum is vital in a cognitive
radio network.

Wirth and Steffan [33] proved that Diameter-Tree is inapproximable within a
factor better than 3 (in particular, it is NP-hard), even on graphs with maximum degree
5. They also provided a polynomial-time exact algorithm for the special case where the
maximum degree is 3 and the reload costs satisfy the triangle inequality. Galbiati [15]
showed stronger hardness results for this problem, by proving that even on graphs with
maximum degree 4, the problem cannot be approximated within a factor better than 2
if the reload costs do not satisfy the triangle inequality, and cannot be approximated
within any factor better than 5{3 if the reload costs satisfy the triangle inequality. The
complexity of Diameter-Tree (in the general case) on graphs with maximum degree 3
was left open.

Our results. In this article we initiate a systematic study of the complexity of the
Diameter-Tree problem, with special emphasis on its parameterized complexity for
several choices of the parameters. Namely, we consider any combination of the parameters
k (the cost of a solution), tw (the treewidth of the input graph), and ∆ (the maximum
degree of the input graph). We would like to note that these parameters have practical
importance in communication networks. Indeed, besides the natural parameter k, whose
relevance is clear, many networks that model real-life situations appear to have small
treewidth [27, 30]. On the other hand, the degree of a node in a network is related to its
number of transceivers, which are costly devices in many different types of networks such
as optical networks [29]. For this reason, in practice the maximum degree of a network
usually takes small values.

Before elaborating on our results, a summary of them can be found in Table 1.
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Problem Parameterized complexity with parameter Polynomial
k � tw k �∆ tw �∆ k � tw �∆ cases

NPh for NPh for NPh for FPT in P on
Diameter-Tree k � 9, tw � 2 k � 0,∆ � 3 tw � 3,∆ � 3 (Thm 5) cacti

(Thm 1) (Thm 2) (Thm 3) (Thm ??)

Diameter-Tree XP (Thm 5)
with poly costs X X W[1]-hard X X

(Thm 6)

Table 1: Summary of our results, where k, tw,∆ denote the cost of the solution, the
treewidth, and the maximum degree of the input graph, respectively. NPh stands for
NP-hard. The symbol ‘X’ denotes that the result above still holds for polynomial costs.

We first prove, by a reduction from 3-Sat, that Diameter-Tree is NP-hard on
outerplanar graphs (which have treewidth at most 2) with only one vertex of degree
greater than 3, even with three different costs that satisfy the triangle inequality, and
k � 9. Note that, in the case where the costs satisfy the triangle inequality, having only
one vertex of degree greater than 3 is best possible, as if all vertices have degree at most
3, the problem can be solved in polynomial time [33]. Note also that the bound on the
treewidth is best possible as well, since the problem is trivially solvable on graphs of
treewidth 1, i.e., on forests.

Toward investigating the border of tractability of the problem with respect to
treewidth, we exhibit a polynomial-time algorithm on a relevant subclass of the graphs of
treewidth at most 2: cactus graphs. This algorithm is quite involved and, in a nutshell,
processes in a bottom-up manner the block tree of the given cactus graph, and uses at
each step of the processing an algorithm that solves 2-Sat as a subroutine.

Back to hardness results, we also prove, by a reduction from a restricted version of
3-Sat, that Diameter-Tree is NP-hard on graphs with ∆ ¤ 3, even with only two
different costs, k � 0, and a bounded number of colors. In particular, this settles the
complexity of the problem on graphs with ∆ ¤ 3 in the general case where the triangle
inequality is not necessarily satisfied, which had been left open in previous work [15, 33].
Note that ∆ ¤ 3 is best possible, as Diameter-Tree can be easily solved on graphs
with ∆ ¤ 2.

As our last NP-hardness reduction, we prove, by a reduction from Partition, that
the Diameter-Tree problem is NP-hard on planar graphs with tw ¤ 3 and ∆ ¤ 3.

The above hardness results imply that the Diameter-Tree problem is para-NP-hard
for any combination of two of the three parameters k, tw, and ∆. On the positive side,
we show that Diameter-Tree is FPT parameterized by the three of them, by using a
(highly nontrivial) dynamic programming algorithm on a tree decomposition of the input
graph.

Since our para-NP-hardness reduction with parameter tw � ∆ is from Partition,
which is a typical example of a weakly NP-complete problem [19], a natural question is
whether Diameter-Tree, with parameter tw �∆, is para-NP-hard, XP, W[1]-hard, or
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FPT when the reload costs are polynomially bounded by the size of the input graph. We
manage to answer this question completely: we show that in this case the problem is in
XP (hence not para-NP-hard) and W[1]-hard parameterized by tw�∆. The W[1]-hardness
reduction is from the Unary Bin Packing problem parameterized by the number of
bins, proved to be Wr1s-hard by Jansen et al. [26].

Altogether, our results provide an accurate picture of the (parameterized) complexity
of the Diameter-Tree problem.

Organization of the paper. We start in Section 2 with some brief preliminaries about
graphs, the Diameter-Tree problem, parameterized complexity, and tree decompo-
sitions. In Section 3 we provide the para-NP-hardness results. In Section 4 we present
the polynomial-time algorithm on cactus graphs, and in Section 5 we present the FPT
algorithm on general graphs parameterized by k � tw �∆. In Section 6 we focus on the
case where the reload costs are polynomially bounded. Finally, we conclude the article
in Section 7.

2 Preliminaries

Graphs and sets. We use standard graph-theoretic notation, and we refer the reader
to [12] for any undefined term. Given a graph G and a set S � V pGq, we define adjGpSq
to be the set of edges of G that intersect S, i.e., those edges that have at least one
endpoint in S. We also define NGrSs � S Y tx | Dy P S : tx, yu P EpGqu. Given a
graph G and a vertex v P V pGq with exactly two neighbors u and w, dissolving v is the
operation that consists in removing v, tu, vu, and tv, wu and adding the edge tu,wu.
For a graph G and an edge e P EpGq, we denote G � e � pV pGq, EpGqzteuq. Given
two integers i and j with i ¤ j, we use ri, js to denote the set of integers k such that
i ¤ k ¤ j. We use the shorthand notation ris for r1, is.

Reload costs and definition of the problem. For reload costs, we follow the notation
and terminology defined by [33]. We consider edge-colored graphs G � pV,Eq, where the
colors are taken from a finite set X and the coloring function is χ : EpGq Ñ X. The reload
costs are given by a nonnegative function c : X2 Ñ N0, which we assume to be symmetric.
The cost of traversing two incident edges e1, e2 is cpe1, e2q :� cpχpe1q, χpe2qq. The reload
cost cpP q of a path P of length ` with edges e1, e2, . . . , e` is cpP q :�

°`
i�2 cpei�1, eiq.

Note that the reload cost of a path consisting of one edge is zero. Throughout this
work, the terms distance, diameter and eccentricity will be used only with respect to
this reload cost measure. The (reload cost) distance between two vertices u, v in a
graph G is distcGpu, vq � mintcpP q | P is a path between u and v in Gu. The (reload
cost) eccentricity of a vertex u in a graph G is εcGpuq � maxtdistcGpu, vq | v P V pGqu.
The (reload cost) diameter of a graph G is diamcpGq :� maxtεcGpuq | u P V pGqu. For
notational convenience we assume that the edge-coloring function χ and the reload
cost function c are clear from the context and omit the superscript c in the last three
definitions.
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The problem we study in this paper is defined as follows:

Minimum Reload Cost Diameter Spanning Tree (Diameter-Tree)
Input: A graph G � pV,Eq with an edge-coloring χ and a reload cost function c.
Output: A spanning tree T of G minimizing diampT q.

If for every three distinct edges e1, e2, e3 of G incident to the same node, it holds
that cpe1, e3q ¤ cpe1, e2q � cpe2, e3q, we say that the reload cost function c satisfies the
triangle inequality. This assumption is sometimes used in practical applications [33].

Throughout the paper, we denote by n, ∆, and tw the number of vertices, the
maximum degree, and the treewidth of the input graph, respectively. When we consider
the (parameterized) decision version of the Diameter-Tree problem, we denote by k
the desired cost of a solution.

Parameterized complexity. We refer the reader to [9, 13] for basic background on
parameterized complexity, and we recall here only some basic definitions. A parameterized
problem is a language L � Σ��N. The number k is termed the parameter of the instance
I � px, kq P Σ� � N.

An algorithm for a parameterized problem L is an algorithm that decides whether an
input instance I � px, kq is in L. Such an algorithm is an FPT (resp. XP) algorithm if its
running time is bounded by fpkq � |I|c (resp. fpkq � |I|gpkq) for some computable functions
f, g and some constant c. The class FPT (resp. XP) is the class of all parameterized
problems for which an FPT (resp. XP) algorithm exists. Clearly, FPT � XP. A
parameterized problem that is in FPT is termed fixed-parameter tractable. The Vertex
Cover problem, parameterized by the size of the solution, is in FPT. The Clique
problem, parameterized by the size of the solution, is in XP.

A parameterized problem is para-NP-hard if it is NP-hard when the value of its
parameter is bounded by some constant. The Vertex Coloring problem parameterized
by the number of colors is para-NP-hard. Note that, unless P � NP, a para-NP-hard
problem cannot be in XP, hence it cannot be FPT either.

Within parameterized problems, the class W[1] may be seen as the parameterized
equivalent to the class NP of classical optimization problems. Without entering into
details (see [9,13] for the formal definitions), if a parameterized problem is W[1]-hard then
this problem is unlikely to be in FPT. The Clique problem parameterized by the size of
the solution is the canonical example of a W[1]-hard problem. To transfer W[1]-hardness
from one problem to another, one uses a parameterized reduction, which given an input
I � px, kq of the source problem, computes an equivalent instance I 1 � px1, k1q of the
target problem in time fpkq � |I|c, where f is a computable function, c is a constant, and
k1 is bounded by a function depending only on k.

Tree decompositions. A tree decomposition of a graph G is a pair D � pY,X q, where
Y is a tree and X � tXt | t P V pY qu is a collection of subsets of V pGq such that:

•
�
tPV pY qXt � V pGq,
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• for every edge tu, vu P E, there is a t P V pY q such that tu, vu � Xt, and

• for each tx, y, zu � V pY q such that z lies on the unique path between x and y in
Y , Xx XXy � Xz.

We call the vertices of Y nodes of D and the sets in X bags of D. The width of the tree
decomposition D � pY,X q is maxtPV pY q |Xt| � 1. The treewidth of G, denoted by twpGq,
is the smallest integer w such that there exists a tree decomposition of G of width w.

Nice tree decompositions. Let D � pY,X q be a tree decomposition of G, r be a
vertex of Y designated as its root, and G � tGt | t P V pY qu be a collection of subgraphs
of G, indexed by the vertices of Y . A triple pD, r,Gq is nice if:

• every node of D has at most two children in Y ,

• for every leaf t of Y except r, Xt � H and Gt � pH,Hq (t is termed a leaf node in
this case),

• Xr � H and Gr � G,

• if t P V pY q has two children t1 and t2, then Xt � Xt1 � Xt2 , and EpGt1qXEpGt2q �
H (t is termed a join node in this case),

• if t P V pT q has exactly one child t1 one of the following holds:

– Xt � Xt1Ytvinsertu for some vinsert R Xt1 and Gt � pV pGt1qYtvinsertu, EpGt1qq
(t is termed a vertex-introduce node and vinsert is the insertion vertex of Xt),

– Xt � Xt1 and Gt � pGt1 , EpGt1q Y teinsertuq where einsert is an edge of G with
endpoints in Xt. In (t is termed an edge-introduce node and einsert is the
insertion edge of Xt),

– Xt � Xt1ztvforgetu for some vforget P Xt1 and Gt � Gt1 (t is termed a forget
node and vforget is the forget vertex of Xt).

The notion of a nice triple defined above is essentially the same as the one of nice tree
decomposition in [10] (which is in turn an enhancement of the original one, introduced
in [28]). As already argued in [10,28], it is possible to transform in polynomial time a
given tree decomposition to a nice triple pD, r,Gq such that D has the same width as the
given tree decomposition.

Transfer triples and their fusion. For a graph G and a subset R of its vertices,
denote by RG the set of all edges and vertices of G except the edges incident to R, i.e.,
RG � V pGq Y EpGqzadjGpRq. A triple pF,R, αq where F is a forest, R � V pF q, and
α : R�RF Ñ r0, ks Y tKu is a transfer triple if αpv, aq � K if and only if v and a are in
the same connected component of F . See Figure 1 for an illustration. Intuitively, the
function α will indicate the “cost of transferring” from v to a in F for each pair pv, aq.

Let pF1, R, α1q and pF2, R, α2q be two transfer triples where F1 and F2 are edge-
disjoint and their union F is a forest. Let also β : adjF1

pRq � adjF2
pRq Ñ r0, ks Y tKu.
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a

b

c

Figure 1: A transfer triple pF,R, αq where F is the depicted forest, R corresponds to the
circled vertices, RF is the set of all vertices and edges except the dashed edges, and α is
such that αpa, bq P r0, ks and αpa, cq � K.

We require a function α1`βα2 : R�RF Ñ r0, ks Y tKu that builds the transferring costs
of moving in F by taking into account the corresponding transferring costs in F1 and F2.
The values of α1`βα2 are defined as follows:

Let pv, aq P R � RF . Let P be the path in F between v and a and let V pP q �
tv0, . . . , vru, ordered in the way these vertices appear in P and assuming that v0 � v.
To simplify notation, we assume that tv0, v1u is an edge of F1 (otherwise, exchange the
roles of F1 and F2). Given i P rr � 1s, we define e�i (resp. e�i ) as the edge incident to vi
that appears before (resp. after) vi when traversing P from v to a. We define the set of
indices

I � ti | e�i and e�i belong to different sets of tEpF1q, EpF2quu.

Let I � ti1, . . . , iqu, where numbers are ordered in increasing order and we also set i0 � 0.
Then we set

α1 `β α2pv, aq �
¸

hPr0,t q�1
2

us

α1pv2ih , v2ih�1q �
¸

hPr0,t q�2
2

us

α2pv2ih�1, v2ih�2q

�
¸
hPrqs

βpe�ih , e
�
ih
q � αpq mod 2q�1pviq , aq.

Roughly speaking, α1`β α2pv, aq is the cost of the path P from v to a in F calculated
as the sum of the cost of each connected component, provided by α1 and α2, of P X F1

and P X F2 together with the sum of the costs, provided by β, of each transition from
F1 to F2 and F2 to F1 used by P .

Satisfiability. An instance of 3-Sat is a boolean formula ϕ with n variables x1, . . . , xn
and m clauses where each clause contains at most three literals, and a literal is an
occurence of a variable or its negation. The goal is to decide whether there is a truth
assignment of the variables that satisfies all the clauses. A clause is satisfied if and only
if one of its literals is set to true by the assignment. We can assume without loss of
generality that every variable occurs at least once positively and at least once negatively.
Indeed, otherwise one can set the truth assignment of this variable appropriately and
remove from the formula all the clauses in which this variable occurs.
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The restriction of 3-Sat to formulas where each variable occurs in at most three
clauses was proved to be NP-complete by Tovey [32]. It is worth mentioning that one
needs to allow for clauses of size two or three, as if all clauses have size exactly three,
then it turns out that all instances are satisfiable [32].

When working with this restriction, we may also assume:

z Every variable occurs exactly three times in the formula ϕ.

Indeed, let x be a variable occurring exactly two times in ϕ, once positively and
once negatively. We obtain a new formula ϕ1 from ϕ by adding a new variable y and
two clauses x_ y and y _ y. Clearly ϕ and ϕ1 are equivalent, and both x and y occur
exactly three times in ϕ1. Applying these operations exhaustively results in an equivalent
formula in which every variable occurs exactly three times.

3 Para-NP-hardness results

We start with the para-NP-hardness result for the parameter k � tw.

Theorem 1. The Diameter-Tree problem is NP-hard on outerplanar graphs with only
one vertex of degree larger than 3, even with three different costs that satisfy the triangle
inequality, and k � 9. Since outerplanar graphs have treewidth at most 2, in particular,
Diameter-Tree is para-NP-hard when parameterized by k � tw.

Proof. We present a reduction from 3-Sat. Given a formula ϕ with n variables and m
clauses, we create an instance pG,χ, cq of Diameter-Tree as follows. We may assume
that no clause of ϕ contains a variable and its negation. Consult Figure 2 for the following
construction. The graph G contains a distinguished vertex r and, and a clause gadget
for every clause. The clause gadget Cj corresponding to the clause cj � p`1 _ `2 _ `3q,

consists of three vertices vj`1 , v
j
`2
, vj`3 and five edges tr, vj`1u, tr, v

j
`2
u, tr, vj`3u, tv

j
`1
, vj`2u,

and tvj`2 , v
j
`3
u. This completes the construction of G. Note that G does not depend on

the formula ϕ except for the number of clause gadgets, and that it is an outerplanar
graph with only one vertex of degree greater than 3, as required.

We proceed with the description of the coloring χ and the cost function c. For
simplicity, we associate a distinct color with each edge of G, and thus, with slight abuse
of notation, it is enough to describe the cost function c for every pair of incident edges
of G, as we consider symmetric cost functions. We set

cpe1, e2q �

$'&
'%

10 if e1 � tr, vj1`i1
u, e2 � tr, vj2`i2

u and `i1 � `i2 ,

5 if e1 � tr, vj1`i1
u, e2 � tr, vj2`i2

u and `i1 �� `i2 , and

1 otherwise.

Note that this cost function satisfies the triangle inequality since the reload costs between
edges incident to r are 5 and 10, and the reload costs between edges incident to other
vertices are 1.
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Cj

vj`1

vj`2

vj`3

r

Figure 2: Example of the graph G built in the reduction of Theorem 1.

We claim that ϕ is satisfiable if and only if G contains a spanning tree with diameter
at most 9. Since r is a cut vertex and every clause gadget is a connected component of
G� r, in every spanning tree, the vertices of Cj together with r induce a tree with four
vertices. Moreover, the reload cost of a path from r to any leaf of this tree is at most 2.
Therefore, the diameter of any spanning tree is at most 4 plus the maximum reload cost
incurred at r by a path of T .

Assume first that ϕ is satisfiable, and let ψ be a satisfying assignment of ϕ. We now
construct a spanning tree T of G with diampT q ¤ 9. For every clause cj , the tree T j

is the tree spanning Cj and containing exactly one edge incident to r where the other
endpoint of this edge is a literal of cj that is set to true by ψ. T is the union of all
the trees Tj constructed in this way. The reload cost incurred at r by any path of T
traversing it is at most 5, since we never choose a literal and its negation. Therefore,
diampT q ¤ 9.

Conversely, let T be a spanning tree of G with diampT q ¤ 9. Then, the reload cost
incurred at r by any path traversing it is at most 5 since otherwise diampT q ¥ 10. For
every j P rms, let Tj be the subtree of T induced by Cj and let tr, vj`ij

u be one of the

edges incident to r in Tj . We note that for any pair of clauses cj1 , cj2 we have `ij1 � `ij2 ,
since otherwise a path using these two edges would incur a cost of 10 at r. The variable
in the literal `ij is set by ψ so that `ij is true. All the other variables are set to an
arbitrary value by ψ. Note that ψ is well-defined, since we never encounter a literal and
its negation during the assignment process. It follows that ψ is a satisfying assignment
of ϕ.

We proceed with the para-NP-hardness result for the parameter k �∆.

Theorem 2. The Diameter-Tree problem is NP-hard on graphs with ∆ ¤ 3, even
with two different costs, k � 0, and a bounded number of colors. In particular, it is
para-NP-hard parameterized by k �∆.

Proof. We present a reduction from the restriction of 3-Sat to formulae that satisfy
property z. We recall that property z states that each variable occurs exactly three
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times in the given formula ϕ of 3-Sat and each variable occurs at least once positively
and at least once negatively in ϕ.

Given a formula ϕ with n variables and m clauses, we create an instance pG,χ, cq of
Diameter-Tree with ∆pGq ¤ 3 as follows. Let x1, . . . , xn be the variables of ϕ. For
every i P rns, G contains a variable gadget consisting of five vertices ui, vi, pi, ri, ni and
five edges tui, viu , tvi, piu , tpi, riu , tri, niu , tni, viu (see Figure 3(a)). For every i P rn�1s,
G contains the edge tui, ui�1u. G consists of a vertex cj for every j P rms. For each
variable xi, the vertex pi (resp. ni) is connected to one of the vertices cj corresponding
to a clause of ϕ in which xi appears positively (resp. negatively), and ri is connected
to the vertex corresponding to the remaining clause in which xi appears (positively or
negatively). This completes the construction of G. Note that ∆pGq ¤ 3 as required.

We now define the coloring χ and the cost function c. The color set X is r9s. For
i P rns, χptpi, riuq � 1 and χptri, niuq � 2, and all edges incident to ui or vi have color
3. For j P rms, we color the edges incident to cj using distinct colors from r4, 9s. Edges
corresponding to positive (resp. negative) occurrences get colors from r4, 6s (resp. r7, 9s)
(see Figure 3(b)). We set cp1, 2q � 1, cp1, iq � 1 for every i P r4, 6s, cp2, iq � 1 for every
i P r7, 9s, and cpi, jq � 1 for every pair of distinct colors i, j P r4, 9s. All other costs are
set to 0.

p1 r1 n1

v1

u1

p2 r2 n2

v2 v3 v4

u2 u3 u4

p3 r3 n3 p4 r4 n4

c1 c2 c3 c4 c5

(a) (b)

ui

vi

pi ri ni

3

33

33

1 2

4,5,6
4,5,6
7,8,9

7,8,9

Figure 3: (a) Graph G described in the reduction of Theorem 2 for the formula ϕ �
px1 _ x2 _ x3q ^ px1 _ x4q ^ px3 _ x4q ^ px1 _ x2 _ x3q ^ px2 _ x4q. The vertices pi, ri, ni
corresponding to positive (resp. negative) occurrences are depicted with circles (resp.
squares). An assignment satisfying ϕ is given by x1 � x2 � 1 and x3 � x4 � 0, and a
solution spanning tree T with diameter 0 is emphasized with thicker edges. (b) The
(possible) colors associated with each edge of G correspond to the (blue) numbers.

We now show that ϕ is satisfiable if and only if G contains a spanning tree with reload
cost diameter 0. Assume first that ϕ is satisfiable, and let ψ be a satisfying assignment
of ϕ. We construct a spanning tree T of G with diameter 0 as follows. For every i P rns,
the tree T contains all the edges incident to ui and vi. If variable xi is set to true (resp.
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false) by ψ, T contains the edge tri, niu (resp. tpi, riuq. For j P rms, the tree T contains
one of the edges incident cj that corresponds to a literal satisfying the j-th clause. It
can be easily checked that T is a spanning tree of G with diampT q ¤ 0 (see Figure 3(a)).

Conversely, let T be a spanning tree of G with diampT q � 0. Since the cost associated
with any pair of distinct colors from r4, 9s is 1, it follows that cj is a leaf of T , for
j P rms. Therefore, the variable gadgets need to be connected in T via the vertices ui,
implying that all the edges incident to ui belong to T for every i P rns. Furthermore, T
contains exactly three out of the four edges of the 4-cycle induced by tvi, pi, ri, niu. Since
cp1, 2q � 1 and diampT q � 0, the missing edge is either tpi, riu or tri, niu. We define an
assignment ψ of the variables x1, . . . , xn as follows. The variable xi is set to true by ψ if
and only if the edge tri, niu belongs to T . We claim that ψ satisfies ϕ. Indeed, let cj be a
vertex in G. Since cj is a leaf of T , it is connected exactly to one of the vertices pi, ri, ni
for some i P rns. Suppose that the edge e incident to cj in T corresponds to a positive
occurrence of xi, the other case being symmetric. Then, e is one of tcj , piu , tcj , riu. In
both cases, if the edge tpi, riu were in T , this edge together with tcj , piu or tcj , riu would
incur a cost of 1 in T , contradicting the hypothesis that diampT q � 0. Therefore, the
edge tpi, riu cannot be in T , implying that the edge tri, niu must be in T . According to
the definition of the assignment ψ, this implies that variable xi is set to true in ψ, and
therefore the c-th clause of ϕ is satisfied by the variable xi.

Note that in the above reduction the cost function c does not satisfy the triangle
inequality at vertices pi or ni for i P rns, and recall that this is unavoidable since otherwise
the problem would be polynomial [33]. It is worth mentioning that using the ideas in the
proof of [22, Theorem 4 of the full version] it can be proved that the Diameter-Tree
problem is also NP-hard on planar graphs with ∆ ¤ 4, k � 0, and a bounded number of
colors; we omit the details here.

Finally, we present the para-NP-hardness result for the parameter tw �∆.

Theorem 3. The Diameter-Tree problem is NP-hard on planar graphs with tw ¤ 3
and ∆ ¤ 3. In particular, it is para-NP-hard parameterized by tw �∆.

Proof. We present a reduction from the Partition problem, which is a typical example
of a weakly NP-complete problem [19]. An instance of Partition is a multiset S �
ta1, a2, . . . , anu of n positive integers, and the objective is to decide whether S can
be partitioned into two subsets S1 and S2 such that

°
xPS1

x �
°
xPS2

x � B
2 where

B �
°
xPS x.

Given an instance S � ta1, a2, . . . , anu of Partition, we create an instance pG,χ, cq
of Diameter-Tree as follows. The graph G contains a vertex r, called the root, and
for every integer ai where i P rns, we add to G six vertices ui, u

1
i,mi,m

1
i, di, d

1
i and seven

edges tui, u
1
iu, tmi,m

1
iu, tdi, d

1
iu, tui,miu, tu

1
i,m

1
iu, tmi, diu, and tm1

i, d
1
iu. We denote

by Hi the subgraph induced by these six vertices and seven edges. We add the edges
tr, u1u, tr, d1u and, for i P rn � 1s, we add the edges tu1i, ui�1u and td1i, di�1u. Let G1

be the graph constructed so far. We then define G to be the graph obtained from two
disjoint copies of G1 by adding an edge between both roots. Note that G is a planar
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graph with ∆pGq � 3 and twpGq � 3. (The claimed bound on the treewidth can be
easily seen by building a path decomposition of G with consecutive bags of the form
tu1i�1, d

1
i�1, ui, diu, tui, di,mi, u

1
iu, tdi,mi, u

1
i,m

1
iu, tdi, u

1
i,m

1
i, d

1
iu, . . ..)

r1 a1
a1

a1
a1

an
an

r2

u2u′2

d2d′2

m′
2 m2

an
an

a2
a2

0

0

0

0

00

0

0

B+1 B+1

B+1 B+1

0

0

00

0

0B+1B+1

H2

Pd

Pu

Figure 4: Graph G built in the reduction of Theorem 3, where the reload costs are
depicted (in blue) at the angle between the two corresponding edges. For better visibility,
not all costs and vertex labels are depicted. The typical shape of a solution spanning
tree is highlighted with thicker edges.

Let us now define the coloring χ and the cost function c. Again, for simplicity, we
associate a distinct color with each edge of G, and thus it is enough to describe the cost
function c for every pair of incident edges of G. We define the costs for one of the copies of
G1, and the same costs apply to the other copy. For every edge e being either tu1i, ui�1u or
td1i, di�1u, for 1 ¤ i ¤ n� 1, we set cpe, e1q � 0 for each of the four edges e1 incident with
e. For every edge e � tmi,m

1
iu, for 1 ¤ i ¤ n, we set cptui,miu, eq � cptdi,miu, eq � ai

and cpe, tm1
i, u

1
iuq � cpe, tm1

i, d
1
iuq � 0. All costs associated with the two edges containing

r in one of the copies G1 are set to 0. For e � tr1, r2u, where r1 and r2 are the roots
of the two copies of G1, we set cpe, e1q � 0 for each of the four edges e1 incident to e.
The cost associated with any other pair of edges of G is equal to B � 1; see Figure 4 for
an illustration, where (some of) the reload costs are depicted (in blue), and a typical
solution spanning tree of G is drawn with thicker edges.

We claim that the instance S of Partition is a Yes-instance if and only if G has a
spanning tree with diameter at most B.

Assume first that S is a Yes-instance of Partition, and let S1, S2 � S be a solution.
We define a spanning tree T of G with diameter B as follows. We describe the subtree
of T restricted to one of the copies of G1, say T 1. The spanning tree T of G is defined
by union of two symmetric copies of T 1, one in each copy of G1, together with the
edge tr1, r2u. Tree T 1 consists of the two edges tr, u1u, tr, d1u and two paths Pu, Pd

(corresponding to the upper and the lower path, respectively defined as follows; see
Figure 4). For i P rn � 1s, the path Pu (resp. Pd) contains the edge tu1i, ui�1u (resp.
td1i, di�1u), and if ai P S1 we add the three edges tui,miu, tmi,m

1
iu, tm

1
i, u

1
iu to Pu, and

the edge tdi, d
1
iu to Pd. Otherwise, if ai P S2, we add the edge tui, u

1
iu to Pu and the

three edges tdi,miu, tmi,m
1
iu, tm

1
i, d

1
iu to Pd. Since

°
xPS1

x �
°
xPS2

x � B
2 , it can be

easily checked that both paths Pu and Pd have diameter B
2 in each of the two copies of

G1, and therefore T is a spanning tree of G with diameter B.
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Conversely, let T be a spanning tree of G with diampT q ¤ B. Let G1, G2 be the two
copies of G1 in G, and let r1, r2 be their respective roots. Since the edge tr1, r2u is a
bridge of G, it necessarily belongs to T . By the construction of G, the choice of the
reload costs, and since diampT q ¤ B, it can be verified that, for j P t1, 2u, T XGj consists

of two paths P ju , P
j
d intersecting at the root ri where P ju (resp. P jd) contains all vertices

u1i and ui�1 (resp. d1i and di�1) of the corresponding copy of G1. This can be observed
by the fact that given i0 P rns the subpath ui0mi0m

1
i0
d1i0 cannot be in T . First note that,

as cptu1i0 ,m
1
i0
u, td1i0 ,m

1
i0
uq � cptu1i0 , ui0u, tui0 ,mi0uq � B � 1 ¡ B, neither tu1i0 ,m

1
i0
u nor

tu1i0 , ui0u is in T . As u1i0 still needs to be covered by T , this implies that there exists
i ¡ i0 such that in Hi, T contains a path from di to ui but by construction, this implies
that T should contain both tdi,miu and tmi, uiu or both tdi, d

1
iu and td1i,m

1
iu or both

tm1
i, u

1
iu and tu1i, uiu, three cases that imply the reload cost to be at least B � 1.

Furthermore, P ju (resp. P jd) contains the edge tu1i, ui�1u (resp. td1i, di�1u) of the

corresponding copy of G1, and the intersection of P ju (resp. P jd) with the subgraph Hi in
the corresponding copy of G1 is given by either the three edges tui,miu, tmi,m

1
iu, tm

1
i, u

1
iu

(resp. tdi,miu, tmi,m
1
iu, tm

1
i, d

1
iu) or by the edge tui, u

1
iu (resp. tdi, d

1
iu). Therefore, for

j P t1, 2u and x P tu,du, it holds that djx :� diampP jxq �
°
iPIjx

ai, where Ijx is the set of

indices i P t1, . . . , nu such that the edge tmi,m
1
iu belongs to path P jx . Note also that, for

j P t1, 2u, by construction we have that dju � djd �
°n
i�1 ai, implying in particular that

maxtdju, d
j
du ¥

B
2 . On the other hand, by the structure of T it holds that

B ¥ diampT q ¥ maxtd1
u, d

1
du �maxtd2

u, d
2
du ¥

B

2
�
B

2
� B. (1)

Equation (1) implies, in particular, that d1
u � d1

d � B
2 . In other words,

°
iPI1u

ai �°
iPI1d

ai �
B
2 , thus the sets I1

u, I
1
d define a solution of Partition. This completes the

proof.

4 A polynomial-time algorithm for cactus graphs

In this section we present a polynomial-time algorithm for Diameter-Tree problem
on cactus graphs. We begin with a definition of cactus graphs and an overview of their
structure.

A biconnected component, or block, of a graph is a maximal biconnected induced
subgraph of it. The block tree of a graph G is a tree whose nodes are the cut vertices
and the blocks of G. Every cut vertex of G is adjacent in the block tree to all the blocks
that contain it. The block tree of a graph is unique and can be computed in polynomial
time [12]. A graph is a cactus graph if every block of it is either a cycle or a single edge.
We term these blocks cycle blocks and edge blocks, respectively.

In this section, we present a polynomial-time algorithm that solves the decision
version of the Diameter-Tree optimization problem, which we call Diameter-Tree*.
Specifically, the input to the latter problem is an edge-colored graph G, a reload cost
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function c, and an integer k. The goal is to decide whether the input graph G has a
spanning tree T with diampT q ¤ k.

Observation 1. The Diameter-Tree problem can be solved in time Op|I| � fp|I|qq if
its decision version Diameter-Tree*can be solved in time fp|I|q, where |I| denotes the
size of the instance.

Proof. Given an algorithm to decide Diameter-Tree*, one can perform a binary
search over all the possible values for diampT q to determine the smallest value k for
which the algorithm returns Yes. Since 0 ¤ diampT q   |V pGq| �max c, this requires at
most logp|V pGq| � max c � log |V pGq| � log max c � Op|I|q invocations of the decision
algorithm.

Our algorithm uses dynamic programming on the block tree of the input graph. We
add a pendant vertex r to the input graph, so that its incident edge constitutes an edge
block Br. We color this edge with a new color, such that the reload cost of this color and
any other color is zero. Clearly, the obtained instance is equivalent to the original. The
algorithm processes the block tree of G in a bottom-up manner starting from its leaves,
proceeding towards Br while maintaining partial solutions for each block. At each step
of the processing, it uses an algorithm that solves an instance of the 2-Sat problem as a
subroutine. We proceed with definitions related to this structure.

We consider the block tree as a tree rooted at Br. For a block B of G, we denote by
CpBq the set of blocks that are immediate descendants of B in the block tree and refer to
them as the children of B. Similarly, the parent of a block B � Br is the first block after
B on the path from B to Br in the block tree. We denote by CEpBq and CCpBq the sets
of edge blocks and cycle blocks of CpBq, respectively. We denote by GB the subgraph of
G induced by the union of all (not necessarily proper) descendants of B. The anchor
apBq of a block B � Br is the cut vertex separating B from its parent, and apBrq � r.

Consult Figure 5 for the following definitions. Let B be a cycle block, and e an
edge of B. Clearly, B � e is a path Pe that contains all the vertices of B and the graph
GB � e is connected. The vertex apBq divides Pe into two subpaths that we denote by
Pe,� and Pe,� where the signs are chosen arbitrarily. Note that one of these subpaths
is possibly trivial (i.e., it consists of one vertex, namely apBq). We divide GB into two
induced subgraphs: subgraph GB,e,� (resp. GB,e,�) is induced by the vertices that are
reachable from apBq without using edges from Pe,� (resp. Pe,�). Note that GB,e,�
and GB,e,� intersect exactly at apBq, and the degree of apBq is one in both subgraphs
unless the subgraph under consideration is trivial. We denote by a�pBq (resp. a�pBq)
the unique neighbor of apBq in GB,e,� (resp. GB,e,�). For D P t�,�u, we denote

Ce,DpBq � tC P CpBq | apCq P Pe,Du. We have GB,e,D � Pe,� Y
��

CPCe,DpBqGC

	
. We

define the set of graphs defined in this way by a block B as follows.

RpBq �
"
tGBu if B is an edge block
tGB,e,�, GB,e,� | e P EpBqu if B is a cycle block.
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b

b
b

b

b

b

b

b

b

b

a(B) = r(GB,e+) = r(GB,e,−)

B

e

Pe,+Pe,−

GB,e,−

GB,e,+

GB

C1

C2

C6

C5

C4

C3

a(C2)

b b
a−(B) = r̄(GB,e,−) a+(B) = r̄(GB,e,+)

Figure 5: The subgraph GB of a cactus G, defined by a cycle block B, and the two
subgraphs defined by an edge e of B. The children of B are CpBq � Ce,�pBq Y Ce,�pBq,
where Ce,�pBq � tC1, C2, C3u and Ce,�pBq � tC4, C5, C6u.

We note that every H P RpBq contains the vertex apBq which we denote as rpHq.
Furthermore, if H is not trivial rpHq has exactly one neighbor in H which we denote
as r̄pHq. Note that r̄pHq P ta�pBq, a�pBqu whenever H is not trivial. We use the same
notations also for spanning subgraphs H 1 of H, i.e., rpH 1q � rpHq and r̄pH 1q � r̄pHq.

A spanning tree T of G is obtained from G by the removal of one edge from every
cycle block of G. Let T be a spanning tree of G that does not contain the edge e of some
cycle block B. The spanning tree T rGBs of GB is the union of two spanning trees: a tree
TB,e,� spanning GB,e,� and a tree TB,e,� spanning GB,e,� that intersect exactly at apBq.

We proceed with definitions and results that relate the diameters and eccentricities of a
spanning tree within a cycle block and its children. We denote by EpBq �

�
CPCCpBqEpCq

the set of vectors that contain one edge from each cycle block C P CCpBq. A vector
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e P EpBq defines the following set of non-trivial subgraphs of GB

Re � tGC | C P CEpBqu Y tH � GrC, eC , Ds | C P CCpBq, D P t�,�u , |V pHq| ¡ 1u .

Namely, this set contains one subgraph for every edge block in CpBq and two subgraphs
for every cycle block in CpBq. Observe that Re �

�
CPCpBqRpCq. We further partition

the set Re of graphs into two sets Re,� and Re,�, according to the path that contains
the root of the graph. Namely, Re,D � tH P Re | rpHq P Pe,Du, for D P t�,�u.

In the following lemma, for a spanning subgraph H of GB,e,D we use the shorthand
εpHq for εHprpHqq.

Lemma 1. Let B be a cycle block, e an edge of B, D P t�,�u, e P
�

CPCpBqEpCq, and
T a spanning tree of GB,e,D that does not contain the edges of e. Then

εpT q � max

�
εPe,D

papBqq, max
HPRe,D

pfpHq � εpT rHsqq



, (2)

and diampT q is the maximum of the following four values:

diampPe,Dq,

max
HPRe,D

diampHq,

max
HPRe,D

phpHq � εpT rHsqq , and

max
H,H 1PRe,D

�
gpH,H 1q � εpT rHsq � εpT rH 1sq

�
, (3)

where f, g, h are functions that depend only on e, e, and subgraphs of Re, but not on T .

Proof. Let P be a path of G and P1, . . . , P` be subpaths of P such that P1 and P` contain
one endpoint of P each, and every two consecutive subpaths Pi, Pi�1, pi P r`� 1sq have
exactly one edge in common. Then cpP q �

°`
i�1 cpPiq. Let H P Re, and consider a

vertex v � rpHq of H. We have

distT papBq, vq � distT papBq, r̄pHqq � distT rHsprpHq, vq.

We note that distT papBq, r̄pHqq does not depend on T but only on e, e, and H, i.e., it is
a function f of H. Therefore,

max
vPV pHq�rpHq

distT papBq, vq � fpHq � εpT rHsq

max
vPV pT q�V pPe,Dq

distT papBq, vq � max
HPRe,D

pfpHq � εpT rHsqq.

Clearly, maxvPV pPe,Dq distT papBq, vq � εPe,D
papBqq. Combining the last two lines, we

obtain (2).
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We proceed with the diameter of T . Let v1, v2 be two vertices in distinct subgraphs
H1, H1 P Re. We have

distT pv1, v2q � distT pr̄pH1q, r̄pH2qq � distT rH1spv1, rpH1qq � distT rH2spv2, rpH2qq

where the first term is a function g of H1 and H2. We conclude similarly:

max
v1PH1,v2PH2

distT pv1, v2q � gpH1, H2q � εpT rH1sq � εpT rH2sq.

Let v1 be a vertex of Pe,D and v2 be a vertex of a subgraph H P Re,D. We have

distT pv1, v2q � distT pv1, r̄pHqq � distT rHspv2, rpHqq

max
v2PH

distT pv1, v2q � distT pv1, r̄pHqq � εpT rHsq

max
v1PPe,D,v2PH

distT pv1, v2q �

�
max
v1PPe,D

distT pv1, r̄pHqq



� εpT rHsq

where the first term is a function hpHq. Therefore,

max
v1PB,v2PH

distT pv1, v2q � hpHq � εpT rHsq.

Considering pairs of vertices from B and pairs of vertices that are in the same subgraph
H P Re,D we conclude (3).

We proceed with the description of the algorithm. Our algorithm computes a set of
“best” spanning trees for every block B. For a graph H P RpBq of some block B, λpHq is
a spanning tree T of H with diameter at most k that minimizes the eccentricity of rpHq
(in T ). Formally, let SkpHq denote the set of spanning trees of H having diameter at
most k. Then

λpHq �

"
K if SkpHq � H
arg minTPSkpHq εT prpHqq otherwise.

For every block B and every graph H P RpBq we compute λpGBq. If λpGBq � K
for some edge block B then GB (thus G as well) does not contain a spanning tree of
diameter at most k. In this case the algorithm stops and returns No. If pλpGB,e,�q �
Kq_ pλpGB,e,�q � Kq_ diampλpGB,e,�qYλpGB,e,�qq ¡ k for every edge e of B of a cycle
block B, then GB does not contain a spanning tree with diameter at most k and the
algorithm returns No. Otherwise, the processing continues until finally Br is processed
successfully and the algorithm returns Yes, since λpGBrq � λpGq is a spanning tree of
G with diameter at most k.

In the sequel we will mostly confine ourselves to cycle blocks, and overlook the case of
edge block which is, by far, simpler. We first show the following lemma stating that the
above strategy is valid, i.e., for every H P RpBq, a valid value for λpHq can be computed
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from tλpH 1q | H 1 P RpCq, C P CpBqu. We denote by ΛpHq the set of all spanning trees
T of H that can be obtained from spanning trees λpH 1q of the children of B. Formally,

ΛpHq �

$&
%Pe,D Y

�
� ¤
H 1PRe,D

λpH 1q

�

| e P EpBq

,.
- .

Lemma 2. Let B be a cycle block and H P RpBq, i.e., H � GB,e,D for some edge e of
B and some D P t�,�u. If λpHq � K then ΛpHq contains a valid value for λpHq.

Proof. Let T̄ be a valid value for λpHq. Since T̄ is a spanning tree of GB,e,D it does not
contain the edge e. Moreover, it does not contain exactly one edge eC from every cycle
block C P CCpBq. Let e be the vector of these edges. Then

T̄ � Pe,D Y

�
� ¤
H 1PRe,D

T̄ rH 1s

�

.

Clearly, diampT̄ rH 1sq ¤ diampT̄ q ¤ k and similarly, diampPe,Dq ¤ k. We define the
following spanning tree of H.

T̄λ � Pe,D Y

�
� ¤
H 1PRe,D

λpH 1q

�

.

By definition, diampλpH 1qq ¤ k and εpλpH 1qq ¤ εpT̄ pH 1qq for every H 1. Then, by Lemma
1, we have diampT̄λq ¤ k and εpT̄λq ¤ εpT̄ q, i.e., T̄λ P ΛpHq is a valid value for λpHq.

We now reduce the problem of computing λpHq to a decision problem. We define
boolean functions λ̄ as follows. For a block B and H P RpBq the value λ̄pH, iq is true if
and only if there exists a spanning tree T of H such that diampT q ¤ k and εpT q ¤ i.

Observation 2. Diameter-Tree*can be decided in time |I|2�fp|I|q if λ̄ can be computed
in time fp|I|q where |I| denotes the size of the instance.

Proof. Given an algorithm A that computes the function λ̄ in time fp|I|q, we can obtain
an algorithm that computes the function λ in time |I| � fp|I|q as follows. Perform a
binary search over the possible values of i (i.e., r0, ks) by invoking ApH, iq to find the
smallest value of i for which A returns true. This requires at most log k invocations of A
which is linear in the size of the input, as observed in Observation 1. Since the functions
λ are computed once for every edge of G, the result follows.

In the rest of this section we present a polynomial-time algorithm for the following
decision problem

Input: A graph H P RpBq where B is a cycle block,
a nonnegative integer i ¤ k,
tλpH 1q | H 1 P RpCq, C P CpBqu.
Output: λ̄pH, iq.
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Let H � GB,e,D for some edge e of B and D P t�,�u, We build an instance φ of
2-Sat over the following variables

 
xe1,D | e1 P C,C P CCpBq, D P t�,�u

(
.

A subgraph F of H implies the following truth assignment to these variables: xe1,D is
true if and only if F contains the path Pe1,D. We denote by φpF q the truth value of φ
resulting from such an assignment.

We first construct a formula φ1 such that φ1pT q is true for any spanning tree T of H.
Then we construct a formula φ2 such that φ2pT q is true for a spanning tree T P ΛpHq of
H such that diampT q ¤ k, εpT q ¤ i.

To finalize the proof, we will show that φ is satisfiable if and only if λ̄pH, iq is true.
We start with the construction of φ1. For two consecutive edges e1, e2 of a cycle block

C P CCpBq, where e1 is in Pe2,� (therefore, e2 is in Pe1,�). the formula φ1 contains two
clauses xe2,�_xe1,� and xe2,�_xe1,�. Every spanning tree T of H satisfies xe2,�_xe1,�
since otherwise T contains neither Pe2,� nor Pe1,� implying that the common vertex v
of e1 and e2 is not reachable from apCq in T . Similarly T satisfies xe2,� _ xe1,� since
otherwise T contains both Pe2,� and Pe1,� implying that v is reachable from apCq using
two edge-disjoint paths.

We proceed with the construction of φ2. Let

T peq � Pe,D Y

�
� ¤
CPpCEpBqXCB,e,Dq

¤
H 1PRpCq

λpH 1q

�

,

i.e., the tree obtained by the union of Pe,D and all the trees λpH 1q that intersect Pe,D.
Note that every tree spanning H contains T peq as a subtree. For H 1 � GC,e1,D1 P RpCq
we denote by xH 1 the variable xe1,D1 that corresponds to H 1. Also, we denote by PH 1 the
path Pe1,D1 , which is the intersection of H 1 with C. For every pair of graphs λpH 1

1q, λpH
1
2q

of the input such that diampT peq Y λpH 1
1q Y λpH 1

2qq ¡ k or εpT peq Y λpH 1
1q Y λpH 1

2qq ¡ i
we add to φ2 a clause xH 1

1
_ xH 1

2
.

The following observation is important for the rest of this section.

Observation 3. Let H 1, H2 P RpCq be such that H 1 is a subgraph H2. Then εpλpH 1qq ¤
εpλpH2qq for any valid values of λpH 1q and λpH2q.

Lemma 3. If λ̄pH, iq is true then φ is satisfiable.

Proof. By Lemma 2, ΛpHq contains a spanning tree T � that is a valid value for λpHq.
Since λ̄pH, iq is true, diampT �q ¤ k and εpT �q ¤ i. We will show that φpT �q is true. We
have already observed that φ1pT

�q is true. It remains to show that φ2pT
�q is true.

Assume for a contradiction that a clause xH 1

1
_ xH 1

2
of φ2 is not satisfied by T � for

some H 1
1 P RpC1q and some H 1

2 P RpC2q. By the construction of φ2, diampT peqYλpH 1
1qY

λpH 1
2qq ¡ k or εpT peqYλpH 1

1qYλpH
1
2qq ¡ i. Since the clause is not satisfied, both xH 1

1
pT �q

and xH 1

2
pT �q are true. Therefore, T � contains both PH 1

1
and PH 1

2
. For j P t1, 2u, let PH2

j
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be the longest path Pe1,Cj
that contains PH 1

j
and contained in T �. Then T � contains

both λpH2
1 q and λpH2

2 q. By Observation 3, we have εpλpH2
j qq ¥ εpλpH2

j qq for j P t1, 2u.

Then εpT �q ¥ εpT peq Y λpH2
1 q Y λpH2

2 qq ¥ εpT peq Y λpH 1
1q Y λpH 1

2qq. Furthermore, by
Lemma 1, diampT �q ¥ diampT peq Y λpH2

1 q Y λpH2
2 qq ¥ diampT peq Y λpH 1

1q Y λpH 1
2qq. We

conclude that either diampT �q ¡ k or εpT �q ¡ i, a contradiction.

Lemma 4. If φ is satisfiable then λ̄pH, iq is true.

Proof. Consider the truth values of the variables x under an assignment that satisfies

φ. Consider the graph J � Pe,D Y
��

xe1,D1�true Pe1,D1

	
. Since φ1 is satisfied by the

assignment, J is a spanning tree of the graph of GB consisting of B and its child cycle
blocks. In other words, J misses exactly one edge eC from each cycle bock C P CCpBq.
Indeed, otherwise either a child block C is contained in J , in which case every vertex of
C is reachable from apCq using two vertex disjoint paths, or two edges of a cycle block
C are not in J , in which case there is a vertex of C that is not reachable from apCq. In
both cases φ1 contains a falsified clause. Let e P EpBq be the vector consisting of the
edges not contained in J , and let

T � � T peq Y

�
� ¤
CPCpBq

pλpGC,eC ,�q Y λpGC,eC ,�qq

�

.

Clearly, T � P ΛpGB,e,Dq. It remains to show that diampT �q ¤ k and εpT �q ¤ i. Assume
that diampT �q ¡ k. Then T � contains a path P between two vertices of u, v with
cpP q ¡ k. This path intersects at most two subgraphs λpH 1

1q and λpH 1
2q, i.e., P is a

path of T peq Y λpH 1
1q Y λpH 1

2q. Therefore, diampT peq Y λpH 1
1q Y λpH 1

2qq ¡ k, implying
that φ2 contains the clause xH 1

1
_ xH 1

2
. Since this φ2 is satisfied, at least one of xH 1

1
, xH 1

2
,

say xH 1

1
,is false in the assignment. Then J (therefore also T �) does not contain PH 1

1
,

contradicting the fact that T � contains λpH 1
1q.

Corollary 1. λ̄pH, iq can be computed in time Opn2q where n is the number of vertices
of G.

Proof. The number of variables in φ is at most twice the number of edges of G which is
linear in the number of vertices of G. Therefore, the size of φ is Opn2q. Using Lemma 1,
the diameters and eccentricities of the graphs can be computed in constant time from
the diameters and eccentricities of their subgraphs. Therefore, every clause of φ can be
generated in constant time. Finally, the satisfiability of φ can be checked in time linear
to its size, i.e., Opn2q.

Combining the above corollary with Observations 1 and 2 we conclude

Theorem 4. The Diameter-Tree problem can be solved in time Op|I|5q for cactus
graphs where |I| is the size of the instance.
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5 FPT algorithm parameterized by k � tw �∆

In this section we prove that the Diameter-Tree problem is FPT on general graphs
parameterized by k, tw, and ∆. The proof is based on standard, but nontrivial, dynamic
programming on graphs of bounded treewidth. It should be mentioned that we can
assume that a tree decomposition of the input graph G of width Optwq is given together
with the input. Indeed, by using for instance the algorithm of Bodlaender et al. [7], we
can compute in time 2Optwq � n a tree decomposition of G of width at most 5tw. Note
that this running time is clearly dominated by the running time stated in Theorem 5.
Recall also that, as mentioned in Section 2, it is possible to transform in polynomial
time a given tree decomposition to a nice triple pD, r,Gq such that D has the same width
as the given tree decomposition.

Theorem 5. The Diameter-Tree problem can be solved in time kOp∆�tw2q � nOp1q. In
particular, it is FPT parameterized by k � tw �∆.

Proof. The general idea behind the following algorithm is, given a tree decomposition
D � pY,X � tXt | t P V pY quq of a graph G, to keep track, at each step t P V pT q of the
dynamic programming algorithm, of the solution tree, restricted to the already explored
part of the graph, together with the distance function from vertices of V pGtq to vertices
of Xt in this solution. In order to reduce the size of the dynamic programming table,
we compress the partial solution tree. This is the role of the reduce function that is
defined below. In particular, we show that the obtained reduced forest has size linear in
|Xt|. The α function that will be introduced later keeps track of the mentioned distances.
After explaining these concepts, it remains to explain how the algorithm combines partial
solutions in order to obtain the ones of the next step.

In order to provide a formal description of the dynamic programming, we need some
more definitions. Given a graph G and a set S of its vertices, we say that S is good
for G if S intersects every connected component of G. Let F be a forest and S be a
set of vertices of F that is good for F . We define ReducepF, Sq as the forest F 1 that is
obtained from F by repetitively applying the following operations to vertices that are
not in NF rSs as long as this is possible:

1. removing a vertex of degree 1 and

2. dissolving a vertex of degree 2.

Suppose now that ReducepF, Sq � F 1. We define the associated reduce function
ϕ : V pF q Ñ V pF 1q Y EpF 1q as follows. For every vertex z P V pF q, we define Kz to be
the set of vertices x of V pF 1q such that there exists a path in F from z to x that does
not use any vertex of V pF 1qztxu. Note that, if z P V pF 1q, then Kz � tzu, since for each
x P V pF 1qztzu, the path from z to x contains z, which is an element of V pF 1qztxu. If Kz

contains only one element x, then we define ϕpzq � x, otherwise we define ϕpzq � Kz. To
show that ϕ is well-defined, we claim that 1 ¤ |Kz| ¤ 2 and if |Kz| � 2 then Kz P EpF

1q.
Indeed, since each connected component of F contains an element of S, we have |Kz| ¥ 1.

22



Assume that Kz contains two distinct vertices x1 and x2. By definition, we know that
x1 and x2 are in the same connected component of F and also of F 1. Let Pi be the path
from z to xi, i P t1, 2u, in F and let P be the path from x1 to x2 in F rV pP1q Y V pP2qs.
By definition of x1 and x2, V pP q X V pF 1q � tx1, x2u. Moreover, since F is a forest, P
is the unique x1x2-path in F . Let us assume that tx1, x2u is not an edge of F 1 and let
x3 be a vertex of F 1 on the path from x1 to x2 in F 1. Then x3 should be in P . This
contradicts the fact that V pP q X V pF 1q � tx1, x2u. As F 1 is a forest, this also implies
that |Kz| ¤ 2. Intuitively, given z P V pF q, either z P V pF 1q and so Kz � tzu, or z has
been removed from the forest after the application of Operation 1 or Operation 2 and
then Kz corresponds to the vertex or edge we should start from if we want to recover z
using the reverse operation of Operation 1 and Operation 2. Roughly speaking, a vertex
z P V pF q will be represented by a vertex or an edge of F 1, depending on Kz, thanks
to the function ϕ. Note that a given vertex or edge in F 1 can represent 0, 1, or more
vertices of F .

We now proceed with the dynamic programming algorithm that solves Diameter-
Tree*, the decision version of Diameter-Tree. Let pG,χ, c, kq be an instance of
Diameter-Tree*. Consider a nice triple pD, r,Gq where D is a tree decomposition
D � pY,X � tXt | t P V pY quq of G with width at most tw and G � tGt | t P V pY qu.
For each t P V pY q we set wt � |Xt| and Vt � V pGtq. We also refer to the vertices of Xt

as t-terminals and to the edges that are incident to vertices in Xt as t-terminal edges.
Given a forest F such that Xt � V pF q, we denote by XF

t the set of all t-terminals and
all non-t-terminal edges of F .

We provide a table Rt that the dynamic programming algorithm computes for each
node of D. For this, we need first the notion of a t-pair, that is a pair pF, αq where:

• F is a forest such that

1. Xt is good for F ,

2. Xt � V pF q,

3. NF pXtq � NGpXtq,

4. |V pF qzNF rXts| ¤ wt � 2, and

5. |te P EpF q | eXXt � Hu| ¤ 2wt � 3 and

• α : Xt �XF
t Ñ r0, ks Y tKu is such that

αpv, aq � K if and only if v and a are in the same connected component of F .

We call the vertices in V pF qzNF rXts external vertices of F and the edges of te P
EpF q | e X Xt � Hu external edges of F . Intuitively a t-pair pF, αq, corresponding
to a partial solution, is such that there exists a spanning forest F̂ of Gt, such that
F � ReducepF̂ ,Xtq and for each z P V pF̂ q and v P Xt, the cost to go from z to v in F̂ is
upper-bounded by αpv,Kzq. The reason why we do not allow the edges incident to Xt

to be modified, by the reduce function, is because we will need them to compute the
reload cost when we will consider the next bags.
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We need the function βt :
�
adjGpXtq

2

�
Ñ r0, ks Y tKu so that, for each e1, e2 P adjGpXtq,

if there exists x P Xt such that e1 X e2 � txu, then βtpe1, e2q � cpe1, e2q, otherwise
βtpe1, e2q � K. Intuitively, the function βt takes the role of the reload cost function but
is defined between edges incident to a given vertex of the working bag Xt instead of
being defined between colors. In particular, thanks to this, we do not have to take into
consideration the number of colors.

Let pF, αq be a t-pair. Given a t-pair pF, αq as above we say that it is admissible if
for every pa, a1q P XF

t �XF
t one of the following holds:

• there is no path between a and a1 in F containing a vertex in Xt,

• one, say a, of a, a1 is a vertex in Xt and αpa, a1q ¤ k,

• some internal vertex b of the path P between a and a1 in F belongs in Xt and
αtpb, aq � βtpe

�, e�q � αtpb, a
1q ¤ k, where e�, e� are the two edges in P that are

incident to b.

Intuitively, the admissibility of a t-pair pF, αq assures that the transferring cost, indicated
by α, between any two external elements is bounded by k.

We also need to explain how to combine t-pairs. Let pF1, α1q and pF2, α2q be two
t-pairs where F1 and F2 are edge-disjoint and their union F is a forest. Let also
β : adjF1

pXtq � adjF2
pXtq Ñ r0, ks Y tKu. We define the function α1`βα2 : Xt �XF

t Ñ
r0, ks Y tKu that builds the transferring costs of moving in F by taking into account
the corresponding transferring costs in F1 and F2. The values of α1`βα2 are defined
as follows. Let pv, aq P Xt � XF

t . Let P be the path in F between v and a and let
V pP q � tv0, . . . , vru, ordered in the way these vertices appear in P and assuming that
v0 � v. To simplify notation, we assume that tv0, v1u is an edge of F1 (otherwise,
exchange the roles of F1 and F2). Given i P rr � 1s, we define e�i (resp. e�i ) as the edge
incident to vi that appears before (resp. after) vi when traversing P from v to a. We
define the set of indices

I � ti | e�i and e�i belong to different sets of tEpF1q, EpF2quu.

Let I � ti1, . . . , iqu, where numbers are ordered in increasing order and we also set i0 � 0.
Then we set

α1 `β α2pv, aq �
¸

hPr0,t q�1
2

us

α1pv2ih , v2ih�1q �
¸

hPr0,t q�2
2

us

α2pv2ih�1, v2ih�2q

�
¸
hPrqs

βpe�ih , e
�
ih
q � αpq mod 2q�1pviq , aq.

Roughly speaking, α1`β α2pv, aq is the cost of the path P from v to a in F calculated
as the sum of the cost of each connected component, provided by α1 and α2, of P X F1

and P X F2 together with the sum of the costs, provided by β, of each transition from
F1 to F2 and F2 to F1 used by P .
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It is now time to give the precise definition of the tableRt of our dynamic programming
algorithm. A pair pF, αq belongs in Rt if G contains a spanning tree T̂ where diampT q ¤ k
and the forest F̂ � T̂ rVts (i.e., the restriction of T̂ to the part of the graph that has been
processed so far) satisfies the following properties:

• ReducepF̂ ,Xtq � F , with the reduce function ϕ,

• for each x P Xt and y P XF
t , αpx, yq � K if and only if x and y are in two

different connected components in F and if αpx, yq �� K, then for each z P ϕ�1pyq,
costF̂ px, zq �� K and αpx, yq ¥ costF̂ px, zq.

Notice that each pF, αq as above is a t-pair. Indeed, Conditions 1–3 follow by the fact
that T̂ is a spanning tree of G and therefore F̂ is a spanning forest of Gt. Conditions 4
and 5 follow by the fact that the number of internal vertices (resp. edges) of a tree with
no vertices of degree two is at most two less than the number of leaves (resp. at most
twice the number of leaves minus three). Moreover, the values of α are bounded by k
because the diameter of T̂ is at most k and therefore the same holds for all the connected
components of F̂ . Notice that, for the same reason, all pairs in Rt must be admissible.

In the above definition, the external vertices and edges of F correspond to the parts
of F̂ that have been “compressed” during the reduction operation and the function α
stores the transfer costs between those parts and the terminals. In this way, the trees in
the t-pairs in Rt “represent” the restriction of all possible solutions in Gt. Moreover, the
values of α indicate how these partial solutions interact with the t-terminals.

Our next concern is to bound the size of Rt.

Claim 1. For every t P V pY q, it holds that |Rt| ¤ kOp∆�tw2q � p∆ � twqOptwq.

Proof. As we impose N rXts � V pF q, we have at most 2∆�tw choices for the set te P
EpF q | eXXt �� Hu and at most p∆ � twqOptwq choices for the other edges or vertices. So
the number of forests we take into consideration in Rt is at most 2∆�tw � p∆ � twqOptwq.
As the number of vertices and the number of edges of F is upper bounded by Op∆ � twq,
the number of functions α is at most kOp∆�tw2q. So |Rt| ¤ kOp∆�tw2q � p∆ � twqOptwq and
the claim holds.

Clearly, pG,χ, c, kq is a Yes-instance if and only if Rr �� H. We now proceed with the
description of how to compute the set Rt for every node t P T . For this, we will assume
inductively that, for every descendant t1 of t, the set Rt1 has already been computed. We
distinguish several cases depending on the type of node t:

• If t is a leaf node. Then Gt � tH,Hu and Rt � tppH,Hq,∅qu.

• If t is an vertex-introduce node. Let v be the insertion vertex of Xt and let t1 be
the child of t. Then

Rt �
 �
pV pF 1q Y tvu, EpF 1qq, α

�
| DpF 1, α1q P Rt1 :

α � α1 Y
 �
pv, vq, 0

�(
Y
 �
pv, aq,K

�
| a P XF 1

t ztvuqqs
(
.
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Notice that at this point v is just an isolated vertex of Gt. This vertex is added in
F and α is updated with the corresponding “void” transfer costs.

• If t is an edge-introduce node. Let e � tx, yu be the insertion edge of Xt and let t1 be
the child of t. We define F 2 � pXt, teuq and we set up α2 : Xt�X

F 2

t Ñ r0, ksYtKu
(notice that XF 2

t � Xt) so that α2px, yq � α2py, xq � 0 and is K for all other pairs
of Xt �Xt. Then

Rt � Rt1 Y tpF, αq | pF, αq is admissible, F is a forest, and there exists a pair

pF 1, α1q P Rt1 such that F � F 1 Y F 2 and α � α1 `βt α
2u.

In the above case, the single edge graph F 2 is defined and the F of each new t-pair
is its union with F 1. Similarly, the function α2 encodes the trivial transfer costs in
F 2. Also, α is updated so that it includes the fusion of the transfer costs of α and
α2.

• If t is an forget node. Let v be the forget vertex and let t1 be the child of t. Then
Rt contains every t-pair pF, αq such that there exists pF 1, α1q P Rt1 where:

– if t is not the root of Y , then the connected component of F 1 containing v
also contains another element v1 P Xt (this is necessary as Xt should always
be good for F ),

– F � ReducepF 1, Xtq, with associated reduce function ϕ,

– we denote by Z the set of every edge and every vertex that is in F 1 but not
in F . Moreover, if ϕpvq is a vertex, then we further set Z Ð Z Y tϕpvqu.
Notice also that if z P Z, then ϕpzq � ϕpvq. Then α � α1|Xt�pXF

t ztϕpvquq Y �
px, ϕpvqq,maxyPZ α

1px, yq
�
| x P Xt

(
.

Notice that F is further reduced because v has been “forgotten” in Xt. This may
change the status of v as follows: either v is not any more in F or v is still in F
but it is not a t-terminal. In the first case ϕpvq is either a vertex or an edge of F
and in the second ϕpvq � v. In any case we should update the values of αpx, φpvqq
for every x P Xt to the maximum transition cost (with respect to α1) from x to
some element of Z.

• If t is an join node. Let t1 and t2 be the children of t. We define

Rt � Rt1 Y tpF, αq | pF, αq is admissible, F is a forest, and there exist two

pairs pF 1, α1q P Rt1 and pF 2, α2q P Rt2 such

that F � F 1 Y F 2 and α � α1 `βt α
2u.

The above case is very similar to the case of the edge-introduce node. The only
difference is that now F 2 is now taken from Rt2 .

Taking into account Claim 1 on the bound of the size of Rt, it is easy to verify that,
in each of the above cases, Rt can be computed in kOp∆�tw2q � p∆ � twqOptwq steps. So we
can solve our problem in time kOp∆�tw2q � p∆ � twqOptwq � n, and the theorem follows.
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6 Polynomially bounded costs

So far, we have completely characterized the parameterized complexity of the Diameter-
Tree problem for any combination of the three parameters k, tw, and ∆. In this section
we focus on the special case when the maximum cost value is polynomially bounded by
n. The following corollary is an immediate consequence of Theorem 5.

Corollary 2. If the maximum cost value is polynomially bounded by n, the Diameter-
Tree problem is in XP parameterized by tw and ∆.

From Corollary 2, a natural question is whether the Diameter-Tree problem is FPT
or Wr1s-hard parameterized by tw and ∆, in the case where the maximum cost value is
polynomially bounded by n. The next theorem provides an answer to this question.

Theorem 6. When the maximum cost value is polynomially bounded by n, the Diameter-
Tree problem is Wr1s-hard parameterized by tw and ∆.

Proof. We present a parameterized reduction from the Bin Packing problem param-
eterized by the number of bins. In Bin Packing, we are given n integer item sizes
a1, . . . , an and an integer capacity B, and the objective is to partition the items into a
minimum number of bins with capacity B. Jansen et al. [26] proved that Bin Packing
is Wr1s-hard parameterized by the number of bins in the solution, even when all item
sizes are bounded by a polynomial in the input size. Equivalently, this version of the
problem corresponds to the case where the item sizes are given in unary encoding; this is
why it is called Unary Bin Packing in [26].

Given an instance pta1, a2, . . . , anu, B, kq of Unary Bin Packing, where k is the
number of bins in the solution and where we can assume that k ¥ 2, we create an
instance pG,χ, cq of Diameter-Tree as follows. The graph G contains a vertex r and,
for i P rns and j P rks, we add to G vertices vi, `

i
j , r

i
j and edges tr, `1ju, tvi, `

i
ju, tvi, r

i
ju,

and t`ij , r
i
ju. Finally, for i P rn � 1s and j P rks, we add the edge trij , `

i�1
j u. Let G1 be

the graph constructed so far; see Figure 6 for an illustration.

v2 vi vn

r

`i1

`i2

`ik

ri1

ri2

rik

`11

`12

`1k

`21

`22

`2k

`n1

`n2

`nk

rn1

rn2

rnk

r21

r22

r2k

r11

r12

r1k

v1

Figure 6: Graph G1 built in the reduction of Theorem 6. Reload costs are not depicted.

Similarly to the proof of Theorem 3, we define G to be the graph obtained by
taking two disjoint copies of G1 and identifying vertex r of both copies. Note that
G can be clearly built in polynomial time, and that twpGq ¤ k � 1 and ∆pGq � 2k
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(since we assume k ¥ 2q. Therefore, twpGq � ∆pGq is indeed bounded by a func-
tion of k, as required. (Again, the claimed bound on the treewidth can be eas-
ily seen by building a path decomposition of G with consecutive bags of the form
tvi, `

i
1, `

i
2, . . . , `

i
k, r

i
1u, tvi, `

i
1, `

i
2, . . . , `

i
k�1, r

i
1, r

i
2u, tvi, `

i
1, `

i
2, . . . , `

i
k�2, r

i
1, r

i
2, r

i
3u, . . .)

Let us now define the coloring χ and the cost function c. Once more, for simplicity,
we associate a distinct color with each edge of G, and thus it is enough to describe the
cost function c for every pair of incident edges of G. The cost function is symmetric for
both copies of G1, so we just focus on one copy. For i P rns, let e1, e2 be two distinct
edges containing vertex vi. We set cpe1, e2q � 2B�1 unless e1 � tvi, `

i
ju and e2 � tvi, r

i
ju

for some j P rks, in which case we set cpe1, e2q � ai. The cost associated with any other
pair of edges of G is set to 0. Note that, as pta1, a2, . . . , anu, B, kq is an instance of
Unary Bin Packing, the reload costs of the instance pG,χ, cq of Diameter-Tree are
polynomially bounded by |V pGq|.

We claim that pta1, a2, . . . , anu, B, kq is a Yes-instance of Unary Bin Packing if
and only if G has a spanning tree with diameter at most 2B.

Assume first that pta1, a2, . . . , anu, B, kq is a Yes-instance of Unary Bin Packing,
and let S1, . . . , Sk be the k subsets of t1, . . . , nu defining the k bins in the solution.
We define a spanning tree T of G with diampT q ¤ 2B as follows. For each of the two
copies of G1, tree T contains, for i P rn� 1s and j P rks, edges tr, `1ju and trij , `

i�1
j u. For

i P rn� 1s, if the item ai belongs to the set Sj , we add to T the two edges tvi, `
i
ju and

tvi, r
i
ju; otherwise we add to T the edge t`ij , r

i
ju. Since the total item size of each bin in

the solution of Unary Bin Packing is at most B, it can be easily checked that T is a
spanning tree of G with diampT q ¤ 2B.

Conversely, let T be a spanning tree of G with diampT q ¤ 2B, and we proceed to
define a solution S1, . . . , Sk of Unary Bin Packing. Let T1 and T2 be the restriction
of T to the two copies of G1. By the choice of the reload costs and since diampT q ¤ 2B,
for every i P rns and every x P t1, 2u, tree Tx contains the two edges tvi, `

i
ju and

tvi, r
i
ju for some j P rks, and none of the other edges incident with vertex vi. Therefore,

for every x P t1, 2u, tree Tx consists of k paths sharing vertex r. This implies that
diampT q ¥ 1

2diampT1q �
1
2diampT2q, and since diampT q ¤ 2B, it follows that there exists

x P t1, 2u such that diampTxq ¤ B. Assume without loss of generality that x � 1, i.e.,
that diampT1q ¤ B. We define the bins S1, . . . , Sk as follows. For every i P rns, if T1

contains the two edges tvi, `
i
ju and tvi, r

i
ju, we add item ai to the bin Sj . Let us verify

that this defines a solution of Unary Bin Packing. Indeed, assume for contradiction
that for some j P rks, the total item size in bin Sj exceeds B. As bin Sj corresponds to
one of the k paths in tree T1, the diameter of this path would also exceed B, contradicting
the fact that diampT1q ¤ B. The theorem follows.

7 Concluding remarks

We provided an accurate picture of the (parameterized) complexity of the Diameter-
Tree problem for any combination of the parameters k, tw, and ∆, distinguishing
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whether the reload costs are polynomial or not. Some questions still remain open. First
of all, in the hardness result of Theorem 3, we already mentioned that the bound ∆ ¤ 3
is tight, but the bound tw ¤ 3 might be improved to tw ¤ 2. A relevant question is
whether the problem admits polynomial kernels parameterized by k� tw�∆ (recall that
it is FPT by Theorem 5). Theorem 6 motivates the following question: when all reload
costs are bounded by a constant, is the Diameter-Tree problem FPT parameterized by
tw�∆? It also makes sense to consider the color-degree as a parameter (cf. [23]). Finally,
we may consider other relevant width parameters, such as pathwidth (note that the
hardness results of Theorems 1, 3, and 6 also hold for pathwidth), cliquewidth, treedepth,
or tree-cutwidth.
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