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HITTING MINORS ON BOUNDED TREEWIDTH GRAPHS. I.
GENERAL UPPER BOUNDS*

JULIEN BASTET, IGNASI SAU¥, AND DIMITRIOS M. THILIKOS*

Abstract. For a finite collection of graphs F, the F-M-DELETION problem consists in, given a
graph G and an integer k, deciding whether there exists S C V(G) with |S| < k such that G\ S does
not contain any of the graphs in F as a minor. We are interested in the parameterized complexity
of F-M-DELETION when the parameter is the treewidth of GG, denoted by tw. Our objective is to

determine, for a fixed F, the smallest function fr such that F-M-DELETION can be solved in time
fr(tw) - n®®) on n-vertex graphs. We prove that fr(w) = 920w loB™) g every collection F, that

fF(tw) = 20(wlogtw) if T contains a planar graph, and that fz(tw) = 29 if in addition the input
graph G is planar or embedded in a surface. We also consider the version of the problem where the
graphs in F are forbidden as topological minors, called F-TM-DELETION. We prove similar results
for this problem, except that in the last two algorithms, instead of requiring F to contain a planar
graph, we need it to contain a subcubic planar graph. This is the first of a series of articles on this
topic.

Key words. parameterized complexity, graph minors, treewidth, hitting minors, topological
minors, dynamic programming, Exponential Time Hypothesis.

AMS subject classifications. G.2.2

1. Introduction. Let F be a finite non-empty collection of non-empty graphs.
In the F-M-DELETION (resp. F-TM-DELETION) problem, we are given a graph G
and an integer k, and the objective is to decide whether there exists a set S C V(G)
with |S| < k such that G\ S does not contain any of the graphs in F as a minor (resp.
topological minor). These problems belong to the wider family of graph modification
problems and have a big expressive power, as instantiations of them correspond to
several well-studied problems. For instance, the cases F = {K»}, F = {K3}, and
F = {K5,K33} of F-M-DELETION (or F-TM-DELETION) correspond to VERTEX
COVER, FEEDBACK VERTEX SET, and VERTEX PLANARIZATION, respectively.

For the sake of readability, we use the notation F-DELETION in statements that
apply to both F-M-DELETION and F-TM-DELETION. Note that if F contains a
graph with at least one edge, then F-DELETION is NP-hard by the classical classifi-
cation result of Lewis and Yannakakis [36].

We are interested in the parameterized complexity of F-DELETION when the
parameter is the treewidth of the input graph (formally defined in Section 2). Since the
property of containing a graph as a (topological) minor can be expressed in Monadic
Second Order logic (see [32] for explicit formulas), by Courcelle’s theorem [12], F-
DELETION can be solved in time O*(f(tw)) on graphs with treewidth at most tw,
where f is some computable function'!. Our objective is to determine, for a fixed
collection F, which is the smallest such function f that one can (asymptotically)

*An extended abstract containing some of the results of this article appeared in the Proc. of the
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hope for, subject to reasonable complexity assumptions.

This line of research has attracted some attention in the parameterized complexity
community during the last years. For instance, VERTEX COVER is easily solvable in
time (’)*(20(“”))7 called single-exponential, by standard dynamic-programming tech-
niques, and no algorithm with running time 2°).n@(1) exists, unless the Exponential
Time Hypothesis (ETH)? fails [29)].

For FEEDBACK VERTEX SET, standard dynamic programming techniques give a
running time of O* (20 1ogt)) " hile the lower bound under the ETH [29] is again
20(w) .nO()  This gap remained open for a while, until Cygan et al. [14] presented an
optimal algorithm running in time O*(2°)) introducing the celebrated Cut& Count
technique. This article triggered several other techniques to obtain single-exponential
algorithms for so-called connectivity problems on graphs of bounded treewidth, mostly
based on algebraic tools [7, 23].

Concerning VERTEX PLANARIZATION, Jansen et al. [30] presented an algorithm
of time O*(20(tlog ™)) a5 a crucial subroutine in an FPT-algorithm parameterized by
k. Marcin Pilipczuk [39] proved that this running time is optimal under the ETH, by
using the framework introduced by Lokshtanov et al. [37] for proving superexponential
lower bounds.

Our results and techniques. We present the following algorithms for F-DELETION
parameterized by treewidth:

1. For every F, F-DELETION can be solved in time O* (2

2O(tw«log tw)

2. For every collection F containing at least one planar graph® (resp. subcubic
planar graph), F-M-DELETION (resp. JF-TM-DELETION) can be solved in
time O* (ZO(tw-logtw))'

3. If the input graph G is planar or, more generally, embedded in a surface of
bounded genus, then F-M-DELETION (resp. F-TM-DELETION if addition-
ally F contains a subcubic planar graph) can be solved in time (’)*(20(“”))
for every collection F.

Let us provide some ideas of the techniques that we use in our algorithms. Our first

O (tw-log tw)
22

algorithm running in time O* ( is not complicated and the running time is

probably quite natural for anyone used to dynamic programming on graphs of bounded
treewidth. The encoding that we use in the tables of the dynamic programming
algorithm is based in the notion of folio, which had been already used in previous
work [1, 42]. Informally speaking, the folio of a graph contains all the “partial models”
of the graphs in F that survive after the removal of a partial solution (see Section 2
for the formal definition). It is easy to see that keeping track of the folios is enough
to solve both problems and that the size of a folio is bounded by 2°0®Wlogtw) (cf,

2O(tw-log tw)

Lemma 4.3), hence the number of distinct folios is at most 2 , yielding the
claimed running time.

The algorithm running in time O*(20™1°8™)) wwhen F contains a (subcubic)
planar graph, uses the machinery of boundaried graphs, equivalence relations, and
representatives originating in the seminal work of Bodlaender et al. [9] (see also [10])
and subsequently used, for instance, in [25, 24, 32]. The main conceptual difference

with respect to the algorithm discussed above is that the encoding in the tables of

2The ETH implies that 3-SAT on n variables cannot be solved in time 2°("); see [29] for more
details.

3In the conference version of this paper [3], we further required that all the graphs in F are
connected; here we improve the result by dropping this assumption.
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the dynamic programming algorithm, which we use to construct the partial solutions,
is not based on the notion of folio anymore, but on the notion of representative of
an appropriately defined equivalence relation. Intuitively, such a representative corre-
sponds to a possible behavior of a boundaried graph (associated with the subgraph of
the input graph G rooted at a bag of a tree decomposition) with respect to the even-
tual occurrences of graphs in F when “gluing” another unknown boundaried graph to
it, corresponding to the subgraph of G that has not been explored yet (again, see Sec-
tion 2 for the formal definition). The fact that F contains a (subcubic) planar graph is
essential in order to bound the treewidth of the resulting graph after deleting a partial
solution (cf. Lemma 5.3) and this is crucially used in order to bound the number of
representatives (cf. Proposition 7.5). For technical reasons, in all our algorithms we
use branch decompositions instead of tree decompositions, whose associated widths
are equivalent from a parametric point of view [41].

The algorithm running in time O* (QO(tW)), when the input graph G is planar,
exploits sphere-cut decompositions [47, 19], a special type of branch decompositions
of planar graphs with nice topological properties. We prove that, if we use sphere-cut
decompositions and we apply essentially the same dynamic programming algorithm
discussed above, the number of representatives can be upper-bounded by the number
of (unlabeled) planar graphs on O(tw) vertices, which are 2°®) many [48]. With some
more technical details, we extend this single-exponential algorithm to graphs embed-
ded in surfaces by using surface-cut decompositions, introduced by Rué et al. [44].

We present these algorithms for the topological minor version, and then it is easy
to adapt them to the minor version within the claimed running time (cf. Lemma 3.7).

Results in other articles of the series. In the second article of this series [5], we
show that if F € {{Ps},{Ps}, {K1.:},{Cu}, {paw}, {chair}, {banner}}, then F-TM-
DELETION can be solved in single-exponential time. Note that all these graphs have
maximum degree at most three, except K ; for i > 4, and therefore the correspond-
ing algorithms also apply to the /-M-DELETION problem. In the third article of this
series [6], we focus on lower bounds under the ETH. Namely, we prove that for any
collection F containing only connected graphs of size at least two, F-DELETION can-
not be solved in time 2°™) . n@M) even if the input graph G is planar, and we also
provide superexponential lower bounds for a number of collections F. In particular,
we prove a lower bound of 20t 1ogtw) . nO() when F contains a single graph that is
either Ps or is not a minor of the banner (that is, the graph consisting of a Cy plus
a pendent edge), with the exception of K ; for the topological minor version. These
lower bounds, together with the ad hoc single-exponential algorithms given in [6] and
the algorithm described in item 2 above, cover all the cases of F-M-DELETION where
F consists of a single connected planar graph H, yielding a tight dichotomy in terms
of H. In a recent article [4], we presented an algorithm for F-M-DELETION in time
O* (20w 1logtW)) for any collection F, yielding together with the lower bounds in [6] a
dichotomy for F-M-DELETION where F consists of a single connected (not necessarily
planar) graph H.

Organization of the paper. In Section 2 we give some preliminaries, and in Sec-
tion 3 we formally state the results of this article. In Section 4 we introduce the
formalism of boundaried graphs and their equivalence classes, and prove several tech-
nical lemmas. In Section 5 we define branch decompositions of boundaried graphs
and prove some basic properties. We prove the result of item 1 in Section 6. In Sec-
tion 7 we provide improved bounds on the sets of representatives in the case where F
contains a planar (subcubic) graph, and we use this result in Section 8 to prove the
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result of item 2. Finally, we prove the result of item 3 in Section 9 (for planar graphs)
and Section 10 (for bounded-genus graphs). We conclude the article in Section 11
with some open questions for further research.

2. Preliminaries. In this section we provide some preliminaries to be used in
the following sections.

Sets, integers, and functions. We denote by N the set of every non-negative
integer and we set Nt = N\ {0}. Given two integers p and ¢, the set [p, q] refers to
the set of every integer r such that p < r < q. Moreover, for each integer p > 1, we
set N>, =N\ [0,p — 1].

We use () to denote the empty set and @ to denote the empty function, i.e.,
the unique subset of ) x (). Given a function f : A — B and a set S, we define
fls ={(z, f(x)) | x € SN A}. Moreover if S C A, we set f(S) = U,cs{f(s)}. Given
a set S, we denote by (‘; the set containing every subset of S that has cardinality
two. We also denote by 2~ the set of all the subsets of S. If S is a collection of objects
where the operation U is defined, then we denote JS = Uy s X.

Let p € Nwith p > 2, let f : N° — N, and let g : N°~! — N. We say that
f(w1,...,2p) = Oy, (g(x1,...,2,_1)) if there is a function h : N — N such that
flz1,. ., 2p) = O(h(zyp) - g(x1, ..., Tp—1))-

Graphs. All the graphs that we consider in this paper are undirected, finite, and
without loops or multiple edges (except for the graph 6, sometimes called pumpkin
in the literature [31]). We use standard graph-theoretic notation, and we refer the
reader to [18] for any undefined terminology. Given a graph G, we denote by V(G)
the set of vertices of G and by E(G) the set of the edges of G. We call |V(G)| the
size of G. A graph is the empty graph if its size is zero. We also denote by L(G) the
set of the vertices of G that have degree exactly 1. If G is a tree (i.e., a connected
acyclic graph) then L(G) is the set of the leaves of G. A wvertex labeling of G is some
injection p : V(G) — N*t. Given a vertex v € V(G), we define the neighborhood of
vas Ng(v) = {u | u € V(G),{u,v} € E(G)} and the closed neighborhood of v as
Ng[v] = Ng(v)U{v}. If X C V(G), then we write Ng(X) = (U,cx Na(v))\ X. The
degree of a vertex v in G is defined as degq(v) = |Ng(v)|. A graph is called subcubic
if all its vertices have degree at most three.

A subgraph H = (Vy, Ep) of a graph G = (V, E) is a graph such that Vg C V(G)
and Eg C E(G)N (V(QH)). If S C V(G), the subgraph of G induced by S, denoted
G[S], is the graph (S, E(G) N (‘29)) We also define G\ S to be the subgraph of G
induced by V(G)\ S. If S C E(G), we denote by G \ S the graph (V(G), E(G) \ S).

If s,t € V(G), an (s, t)-path of G is any connected subgraph P of G with maximum
degree two and where s,t € L(P). We finally denote by P(G) the set of all paths of
G. Given P € P(G), we say that v € V(P) is an internal vertex of P if degp(v) = 2.
Given an integer ¢ and a graph G, we say that G is i-connected if for each {u,v} €
(V(QG)), there exists a set @ C P(G) of (u,v)-paths of G such that |Q] = ¢ and for
each Py, P, € Q such that Py # Py, V(P1) NV (P2) = {u,v}. We denote by K., P,
and C,., the complete graph, the path, and the cycle on r vertices, respectively.

Minors and topological minors. Given two graphs H and G and two functions
¢:V(H) = V(G) and o : E(H) — P(G), we say that (¢,0) is a topological minor
model of H in G if

o for every {z,y} € B(H), o({z,}) is an ((x), &(y))-path in G,
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e ¢ is an injective function, and
e if Py, P; are two distinct paths in o(E(H)), then none of the internal vertices
of P; is a vertex of Ps.

The branch vertices of (¢, o) are the vertices in ¢(V (H)), while the subdivision
vertices of (¢, o) are the internal vertices of the paths in o(E(H)).

We say that G contains H as a topological minor, denoted by H =iy, G, if there
is a topological minor model (¢, o) of H in G.

Given two graphs H and G and a function ¢ : V(H) — 2V(), we say that ¢ is a
minor model of H in G if

e for every x € V(H), G[¢(z)] is a connected non-empty graph,

e if z,y are two distinct vertices of H, then ¢(x) N ¢(y) = 0, and

o for every {z,y} € E(H), there exist ' € ¢(z) and y' € ¢(y) such that
{z,y'} € E(G).

We say that G contains H as a minor, denoted by H =<, G, if there is a minor
model ¢ of H in G.

Let H be a graph. We define the set of graphs tpm(H) as follows: among all the
graphs containing H as a minor, we consider only those that are minimal with respect
to the topological minor relation. The following two observations follow easily from
the above definitions.

OBSERVATION 1. There is a function fi : N — N such that for every h-vertex
graph H, every graph in tpm(H) has at most f1(h) vertices.

An explicit function f; as in Observation 1 can be obtained by replacing every
vertex v € V(H) with degy(v) > 4 by a tree whose leaf set is Ny (v) and with no
internal vertices of degree two. Clearly, for each vertex v € V(H), the number of
such trees (each yielding a distinct graph in tpm(H)) and their size depend only on
degy (v).

OBSERVATION 2. Given two graphs H and G, H is a minor of G if and only if
there exists some graph in tpm(H) that is a topological minor of G.

Graph collections. Let F be a collection of graphs. From now on instead of
“collection of graphs” we use the shortcut “collection”. If F is a collection that is finite,
non-empty, and all its graphs are non-empty, then we say that F is a proper collection.
For any proper collection F, we define size(F) = max{|V(H)| | H € F}. Note that
if the size of F is bounded, then the size of the graphs in F is also bounded. We say
that F is an (topological) minor antichain if no two of its elements are comparable
via the (topological) minor relation.

Let F be a proper collection. We extend the (topological) minor relation to F
such that, given a graph G, F =<in G (resp. F =<, G) if and only if there exists a
graph H € F such that H < G (resp. H =< G). We also denote exim(F) = {G |
F Zim G}, Le., exem(F) is the class of graphs that do not contain any graph in F as
a topological minor. The set ex,(F) is defined analogously.

Tree decompositions. A tree decomposition of a graph G is a pair D = (T, X),
where T is a tree and X = {X; | t € V(T)} is a collection of subsets of V(G) such
that:
* UteV(T) X =V(G),
o for every edge {u,v} € E, there is a t € V(T) such that {u,v} C Xy, and
e for each {z,y,z} C V(T) such that z lies on the unique path between = and
yinT, X, NX, CX,.
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We call the vertices of T' nodes of D and the sets in X' bags of D. The width of a tree
decomposition D = (T, X') is max;cy (1) | X¢| — 1. The treewidth of a graph G, denoted
by tw(G), is the smallest integer w such that there exists a tree decomposition of G
of width at most w. For each t € V(T'), we denote by E; the set E(G[X]).

Parameterized complexity. We refer the reader to [20, 13] for basic background
on parameterized complexity, and we recall here only some very basic definitions. A
parameterized problem is a language L C ¥* x N. For an instance I = (z,k) € X* x N,
k is called the parameter. A parameterized problem is fized-parameter tractable (FPT)
if there exists an algorithm A, a computable function f, and a constant ¢ such that
given an instance I = (z,k), A (called an FPT algorithm) correctly decides whether
I € L in time bounded by f(k) - |I|°.

Definition of the problems. Let F be a proper collection. We define the parameter
tmx as the function that maps graphs to non-negative integers as follows:

(2.1) tmz(G) =min{|S| | S CV(G) NG\ S € exem(F)}.

The parameter mx is defined analogously. The main objective of this paper is to
study the problem of computing the parameters tmr and mr for graphs of bounded
treewidth under several instantiations of the collection F. The corresponding decision
problems are formally defined as follows.

F-TM-DELETION F-M-DELETION

Input: A graph G and a k € N. Input: A graph G and a k € N.
Parameter: The treewidth of G. Parameter: The treewidth of G.
Question: Is tmr(G) < k? Question: Is mr(G) < k7

Note that in both the above problems, we can always assume that F is an an-
tichain with respect to the considered relation. Indeed, this is the case because if F
contains two graphs Hy and Hy where Hy =<y Ha, then tmx(G) = tmz (G) where
F' = F\ {Hsy} (similarly for the minor relation).

Throughout the article, we let n and tw be the number of vertices and the
treewidth of the input graph of the considered problem, respectively.

3. Formal statement of the results. The purpose of the remainder of the
article is to prove the following results.

THEOREM 3.1. If F is a proper collection, where d = size(F), then there exists

an algorithm that solves F-TM-DELETION in 20a(iosm steps.

THEOREM 3.2. If F is a proper collection, where d = size(F), then there exists

an algorithm that solves F-M-DELETION in g2falriosm L, steps.

THEOREM 3.3. If F is a proper collection containing a subcubic planar graph,
where d = size(F), then there exists an algorithm that solves F-TM-DELETION in
20a(twlogtw) .y gteps.

THEOREM 3.4. If F is a proper collection containing a planar graph, where d =
size(F), then there exists an algorithm that solves F-M-DELETION in 20a(twlogtw) . p
steps.

THEOREM 3.5. If F is a proper collection containing a subcubic planar graph,
where d = size(F), then there exists an algorithm that solves F-TM-DELETION on
planar graphs in 294 . n + O(n3) steps.
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THEOREM 3.6. If F is a proper collection, where d = size(F), then there exists an
algorithm that solves F-M-DELETION on planar graphs in 294 . n 4 O(n?) steps.

It is worth mentioning that the lower bounds given in [6] imply that the algorithms
of Theorems 3.5 and 3.6 are asymptotically tight under the ETH. Note also that in
both theorems one can assume that F contains only planar graphs, as an input planar
graph G does not contain any nonplanar graph as a (topological) minor. In Section 10,
we present a generalization of Theorems 3.5 and 3.6 to input graphs embedded in
surfaces of arbitrary genus.

The following lemma is a direct consequence of Observation 2.

LEMMA 3.7. Let F be a proper collection. Then, for every graph G, it holds that
mr(G) = tmz (G) where F' = Jpertpm(F).

It is easy to see that for every (planar) graph F| the set tpm(F') contains a subcubic
(planar) graph; see the paragraph after Observation 1. Combining this observation
with Lemma 3.7 and Observation 1, Theorems 3.2, 3.4, and 3.6 follow directly from
Theorems 3.1, 3.3, and 3.5, respectively. Therefore, the following sections are devoted
to the proofs of Theorems 3.1, 3.3, and 3.5.

4. Boundaried graphs and their equivalence classes. Many of the following
definitions were introduced in [9, 24] (see also [25, 32]).

Boundaried graphs. Let t € N. A t-boundaried graph is a triple G = (G, R, \)
where G is a graph, R C V(GQ), |R| = t, and A : R — NT is an injective function.
We call R the boundary of G and we call the vertices of R the boundary vertices
of G. We also call G the underlying graph of G. Moreover, we call ¢ = |R| the
boundary size of G and we define the label set of G as A(G) = A(R). We also say that
G is a boundaried graph if there exists an integer ¢ such that G is an ¢-boundaried
graph. We say that a boundaried graph G is consecutive if A(G) = [1,|R|]. We
define the size of G = (G, R, \), as |V(G)| and we use the notation V(G) and E(G)
for V(G) and E(G), respectively. If S C V(G), we define G’ = G \ S such that
G = (G R, \N),G'=G\S, R =R\S, and X = A g.. We define B® as the set of
all t-boundaried graphs. We also use the notation By = ((0,{0}), 0, &) to denote the
(unique) 0-boundaried empty boundaried graph.

Given a t-boundaried graph G = (G, R, A), we define ¥g : R — [1,¢] such that
for each v € R, Ya(v) = {u € R | Mu) < A(v)}|. Note that, as A is an injective
function, 1q is a bijection and, given a boundary vertex v of G, we call g (v) the
index of v.

Let t € N. We say that two t-boundaried graphs Gy = (G1, R1, A1) and Gy =
(G2, Ra, \o) are isomorphic if there is a bijection o : V(G1) — V(Gz) that is an
isomorphism o : V(G1) — V(G2) from G; to G2 and additionally z/;c_;i oYag, C o,
i.e., o sends the boundary vertices of G1 to equally-indexed boundary vertices of Go.
We say that G, and Go are boundary-isomorphic if ¢c7:1 o 1q, is an isomorphism
from G1[R;] to G2[Rs] and we denote this fact by G ~ Ga. It is easy to make the
following observation.

OBSERVATION 3. For everyt € N, if S is a collection of t-boundaried graphs where
t
|S| > 2(2), then S contains at least two boundary-isomorphic graphs.

Topological minors of boundaried graphs. Let Gy = (G1, R1, A1) and G =
(G2, Ra, \2) be two boundaried graphs. We say that G is a topological minor of Go
if there is a topological minor model (¢, o) of G; in G35 such that
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® Vg, = Ya,oP|r,, i.e., the vertices of Ry are mapped via ¢ to equally indexed
vertices of Ry and
e none of the vertices in Ry \ ¢(R1) is a subdivision vertex of (¢, o).
We extend the definition of <, so that G; =<im G2 denotes that G; is a topological
minor of Gy and, given a X C B®, X =<, G, denotes that at least one of the
t-boundaried graphs in X is a topological minor of the t-boundaried graph Gs.

Operations on boundaried graphs. Let Gy = (G, R1, A1) and Go = (Ga, Rz, \2)
be two t-boundaried graphs. We define the gluing operation @& such that (G1, Ry, A1)®
(G2, Ra, \2) is the graph G obtained by taking the disjoint union of G; and G5 and
then, for each ¢ € [1,¢], identifying the vertex wé} () and the vertex d’éi (7). Keep in
mind that G; & Gs is a graph and not a boundaried graph. Moreover, the operation
@ requires both boundaried graphs to have boundaries of the same size.

Let G = (G, R, A\) be a t-boundaried graph and let I C N. We use the notation
G| = (G,)\*I(I),)\L\A(I)), i.e., we do not include in the boundary anymore the
vertices that are not indexed by numbers in I. Clearly, G|; is a t’-boundaried graph
where t' = [T NA(G)|.

Let G1 = (G1, R1, A1) and Gy = (G2, Ra, A2) be two boundaried graphs. Let also
I =X (R1)NA2(R2) and let t = |Ry|+ |Ra| — |I|. We define the merging operation ©
such that (G1, R1, A1) ® (G2, Ra, A2) is the t-boundaried graph G = (G, R, \) where G
is obtained by taking the disjoint union of G; and G2 and then for each i € I identify
the vertex A\['(i) with the vertex \; (7). Similarly, R is obtained by Ry U Ry after
applying the same identifications to pairs of vertices in Ry and Ry. Finally, A = AjU,
where, for j € [1,2], A} is obtained from \; after replacing each (z,4) € A; (for some
i € I) by (Znew, 1), where Zpey is the result of the identification of Al_l(i) and /\Q_l(i).
Observe that G; ® Gg is a boundaried graph and that the operation ® does not
require input boundaried graphs to have boundaries of the same size.

Let G = (G, R, A) be a consecutive t-boundaried graph and let I C N be such that
|I| =t. We define G = (G, R, \) oI as the unique ¢-boundaried graph G’ = (G, R, \)
where X' : R — I is a bijection and g = A.

Equivalence relations. Let F be a proper collection and let ¢ be a non-negative
integer. We define an equivalence relation =) on t-boundaried graphs as follows:
Given two t-boundaried graphs G; and Go, we write Gy =71 G4 to denote that

VG eBOF <. GG, <« F =<un G Go.

It is easy to verify that =Y is an equivalence relation. We set up a set of rep-
resentatives R ") as a set containing, for each equivalence class C of =), some
consecutive t-boundaried graph in C with minimum number of edges and, among those
with minimum number of edges, with minimum number of vertices (if there are more
than one such graphs, pick one arbitrarily). Given a t-boundaried graph G we denote
by rep-(G) the t-boundaried graph B € R where B =) G and we call B the
F-representative of G. Clearly, rep-(B) = B.

Note that if B = (B, R, \) is a ¢-boundaried graph and F =iy B, then repz(B)
is, by definition, a consecutive t-boundaried graph whose underlying graph is a graph
H € F with minimum number of edges (and out of those, with minimum number
of vertices), possibly completed with ¢t — |V (H)]| isolated vertices in the case where
|V(H)| < t. We denote this graph by F(Z>*) (if there are many possible choices, just
pick one arbitrarily). Note also that the underlying graph of every boundaried graph
in R\ {FF D} belongs to exym(F).
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We need the following three lemmas. The first one is a direct consequence of the

definitions of the equivalence relation =(%*) and the set of representatives R,

LEMMA 4.1. Let F be a proper collection and let t € N. Let also By and Bo be t-
boundaried graphs. Then By =(F1 B, if and only if VG € RN F < GOEBy <—
F Ztm G @ Ba.

We will need the following simple lemma in the proof of Lemma 7.2.

LEMMA 4.2. Let F be a proper collection, let t € N, and let B = (B,R,\) €
R, Then B contains at most size(F) isolated vertices outside of R.

Proof. If B = F(>!) then by definition B is a graph in F possibly completed by
isolated vertices in R, so the lemma follows trivially in this case. So we may assume
that F Awm B, and suppose towards a contradiction, that B contains size(F) + 1
isolated vertices in V(B) \ R. We define a boundaried graph B’ = (B’,R', \') € B®
such that R’ = R, M = A, and B’ is obtained from B by removing one of the isolated
vertices in V(B) \ R. Note that |E(B’)| = |E(B)| and |V(B’)| < |V(B)|. We claim
that B =/>Y) B, which contradicts the hypothesis that B € R,

Indeed, consider an arbitrary G € B®). Suppose first that F <¢m B’ @ G. Since
B’ is a subgraph of B, B’ @ G is a subgraph of B & G, hence F =, B® G as well.
Conversely, suppose that H <, B @ G for some graph H € F. Since all the graphs
in F, in particular H, have at most size(F) vertices, any topological minor model of
H in B® G uses at most size(F) isolated vertices in V(B) \ R. Therefore, by possibly
using another isolated vertex in V(B’) \ R instead of the removed one, B’ & G also
contains a topological minor model of H, hence F =im B’ ® G. ]

Folios. Let F be a proper collection. Given t,r € N, we define .ASQT as the set of
all pairwise non-isomorphic boundaried graphs that contain at most » non-boundary
vertices, whose label set is a subset of [1,¢], and whose underlying graph belongs to

exim(F). Note that a graph in A(}E)T is not necessarily a t-boundaried graph.

Given a t-boundaried graph B and an integer r € N, we define the (F,r)-folio

of B, denoted by folio(B, F,r), as the set containing all boundaried graphs in A(;-?T

that are topological minors of B. Moreover, in case F =in B, we also include in
folio(B, F,r) the graph F(Zt),

We also define S’(Jf-)r = 947 0P Y 40 notice that {folio(B, F,r) | B € BM} C
S(}Q,., ie., ngt)7 contains all different (F,r)-folios of t-boundaried graphs.

LEMMA 4.3. Let t € N and let F be a proper collection. For every t-boundaried
graph B and every r € N, it holds that [folio(B,F,r)| = 29+a(tlogt) yhere d =
size(F). Moreover, \SS—’_&)A = 20rratEn

Proof. Let t € N, let F be a proper collection, let » € N, and let n = ¢ + 7.
We prove a stronger result, namely that |AE‘—?)T| = 20r+a(tlogt)  The claimed bound
on |S§f-)r| then follows directly by definition of the set Sg)r By [35], there exists a
constant ¢ such that for each G € exyn(F), |E(G)| < ¢ |[V(G)|. By definition, every

underlying graph of an element of .ASQT is in exyn(F). If we want to construct an
element G = (G, R, A) of Agf-)r with at most n vertices, then there are asymptotically

C”i) < ¢ n*tem choices for the edge set E(G), at most ¢ - () < t-n'
choices for R, and tIBl < ¢t choices for the function A\. We obtain that Ag—)T is of size
at most n - 200F2en)logn gtlogt — 9Orra(tlogt) an(d the lemma follows. O

atmostc~n~(
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The following lemma indicates that folios define a refinement of the equivalence

relation =F:0),

LEMMA 4.4. Let F be a proper collection and let d = size(F). Let also By and
By be two t-boundaried graphs. If folio(By, F,d) = folio(By, F,d), then B; =Y B,.

Proof. Let By and By be two t-boundaried graphs such that folio(By, F,d) =
folio(Bo, F,d). We fix G € B, and we need to prove that F <m G @ By if and only
if F <im G @ Bo.

Assume first that F <im G @ By. Then there exists a graph F € F and a
topological minor model (¢,0) of F in G & B;. This topological minor model (¢, o
can be naturally decomposed into two topological minor models (¢, 0g) and (1, o1
of two graphs Fy and F} in Agﬁ?d, respectively, with Fy ® Fy = F, such that (¢, 09
(resp. (¢1,01)) is a topological minor model of Fy (resp. Fi) in the (boundaried
graph G (resp. By). Since folio(B1, F,d) = folio(Bs, F,d), there exists a topological
minor model (¢, 02) of F; in Bs. Combining the topological minor models (¢, o)
and (¢9,09) gives rise to a topological minor model (¢',0’) of F in G @ By, and
therefore F <im G @ Bas.

Conversely, assume that F Aym G @ By, and assume for contradiction that there
exists a graph F' € F and a topological minor model (¢, o) of F in G @& B,. Using the
same arguments as above, (¢, c) implies the existence of a topological minor model
(¢',0") of F in G ® By, contradicting the hypothesis that F Aim G ® B;. d

Lemmas 4.3 and 4.4 directly imply the following.

)
)
)
)

LEMMA 4.5. There exists a function hy : N X N — N such that if F is a proper
collection and t € N, then |[RVD| < hy(d,t) where d = size(F). Moreover hy(d,t) =

22Od(t-log t)

5. Branch decompositions of boundaried graphs. Let G = (G, R, \) be
a boundaried graph and let p be a vertex labeling of G where A C p. A branch
decomposition of G is a pair (T, 0) where T is a ternary tree and o : E(G) U {R} —
L(T) is a bijection. Let r = o(R) and let e, be the unique edge in T' that is incident
to r. We call r the root of T. Given an edge e € E(T'), we define T, as the one of
the two connected components of T'\{e} that does not contain the root r. We then
define G, = (G, Re, \e) where E(G.) = o~ Y(L(T.) N L(T)), V(G.) = UE(G.), Re
is the set containing every vertex of G that is an endpoint of an edge in F(G.) and
also belongs to a set in {R} U (E(G)\ E(G,)) (here we treat edges in E(G)\ E(G.) as
2-element sets), and A, = p|g., i.e., p serves as a universal labeling of G that imposes
a labeling of the vertices of all boundaried graphs that are obtained from subgraphs
of G. We also set t. = |R.| and observe that G, is a t.-boundaried graph. The width
of (T,o) is max{t. | e € E(T)}. The branchwidth of G, denoted by bw(G), is the
minimum width over all branch decompositions of G.

This is an extension of the definition of a branch decomposition on graphs, given
in [41], to boundaried graphs. Indeed, if G is a graph, then a branch decomposition
of G is a branch decomposition of (G, 0, ). We also define the branchwidth of G as
bw(G) = bw(G, 0, @).

LEMMA 5.1. Let G = (G, R, \) be a boundaried graph. Then bw(G) < bw(G) +
|R|.

Proof. Let (T",0") be a branch decomposition of G’ = (G,0), o) and let r be
the root of T”. Recall that G, = (G,,R.,\.),e € E(T"). We construct a branch
decomposition (T,0) of G = (G, R, \) as follows: we set T = T" and 0 = (¢ \
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{(0,7)}) U{(R,r)}. Note that G, = (G, Re, \¢), e € E(T), where R. C R, UR. This
means that |R.| < |R.| + |R|, therefore bw(G) < bw(G) + |R|. O

The following lemma is a combination of the single-exponential, linear-time, and
constant-factor approximation of treewidth by Bodlaender et al. [8], with the fact
that any graph G with |E(G)| > 3 satisfies that bw(G) < tw(G) + 1 < 3bw(G) [41];
it is worth noting that from the proofs of these inequalities, simple polynomial-time
algorithms for transforming a branch (resp. tree) decomposition into a tree (resp.
branch) decomposition can be derived.

LEMMA 5.2. There exists an algorithm that receives as input a graph G and a
w € N and either reports that bw(G) > w or outputs a branch decomposition (T, o) of
G of width O(w). Moreover, this algorithm runs in 2°) - n steps.

LEMMA 5.3. There exists a function p : N — N such that for every planar sub-

cubic collection F, every graph in exum(F) has branchwidth at most y = u(d) where
d = size(F).

Proof. Let G € exym(F) and let F' € F be a planar subcubic graph. Since F' is
subcubic and F A G, it follows (see [18]) that F' 4., G, and since F is planar this
implies by [40] that tw(G), hence bw(G) as well, is bounded by a function depending
only on F. ]

6. Proof of Theorem 3.1. We already have all the ingredients to prove Theo-
rem 3.1.

Proof of Theorem 3.1. We provide a dynamic programming algorithm for the
computation of tmz(G) for the general case where F is a proper collection. We
first consider an, arbitrarily chosen, vertex labeling p of G. From Lemma 5.2, we may
assume that we have a branch decomposition (T, 0) of (G, 0, @) of width O(w), where
w = tw(G). This gives rise to the t.-boundaried graphs G, = (Ge, Re, Ac) for each
e € E(T). Moreover, if r is the root of T, 0=(r) = ) = R,, and G., = (G,0,2).
Keep also in mind that t. = O(tw(G)) for every e € E(T).

For each e € E(T), we say that (L,C) is an e-pair if L C R, and C € 555)

where ¢, = t, — |L|. We also denote by P, the set of all e-pairs. Clearly, |P.| =
Sicior (5) - |S§f-fd_z)\, and therefore, from Lemma 4.3, |P,| = 2274""™",

We then define the function tm(}?) : P. = NU {0} such that if (L,C) € P, then
tm!?(L,C) = min{|$| | SCV(G.) A L=R.NS A C=folio(G, \ S,d)}.

In the above definition, if such a set S does not exist, we set the value of the function

to co. Note that P, = {0} x S(]?)d. Note also that the set Agg)d contains only those
graphs that do not contain some graph in F as a topological minor. Therefore

tmz(G) = min{tmc") (0,C) | C € 245},

Hence, our aim is to give a way to compute tm(]f) for every e € E(T). Our
dynamic programming algorithm does this in a bottom-up fashion, starting from
the edges that contain as endpoints leaves of T that are different from the root.
Let £ € L(T) \ {r} and let e, be the unique edge of T that contains it. Let also

o~ 1(0) = {z,y}. Clearly, G, = ({z,y}, {{z,y}}) and

Pey = {2y} x U0} U ({{ah y}} x §2) U (10} x §2),).
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As the size of the elements in P., depends only on d, it is possible to compute tmgf"; )

in Oq4(1) steps.
Let e € {e,} UE(T \ L(T)), and let e; and ez be the two other edges of T that
share an endpoint with e and where each path from them to r contains e. We also set

F, = (Re, UR.,) \ Re.

For the dynamic programming algorithm, it is enough to describe how to compute
tmgf) given tmg_f”'),i € [1,2]. For this, given an e-pair (L,C) € P, it is possible to

verify that

tm'? (L, C) = min {tm & (L1, C1) + tm'E) (L, Co) — | L1 N Lo] |
(Li,Ci) € P, i € [1,2],
Li\F.=LNR,, icl,2],
Ly N Re, NRe, = Ly N Re, N Re,, and
c= |J folio(((BioZ)® (Bao2))lz, Fote — |L|)
(B1,B2)eC1 XCo
where Z = p(R. \ L) and Z; = p(R., \ L;),i € [1,2]}.

Note that given tm(]fi),i € [1,2] and a (L,B) € P., the value of tm(]f)(L,B)
can be computed by the above formula in Og(|Pe, | - |Pe,|) = 227" steps. As
|P.| = 920" logw), the computation of the function tmgf) requires again g2falios)
steps. This means that the whole dynamic programming requires 920d(ios) AV(T)| =
9208 |E(G)| steps. As |E(G)| = O(tw(G) - |[V(G)]), the claimed running time
follows. ad

7. Improved bounds when excluding a planar graph. We now prove the
following result.

LEMMA 7.1. Let t € N and F be a proper collection containing a subcubic pla-
nar graph, where d = size(F), and let R be a set of representatives for =),
Then |[RU V| = 20a(tlogt) - Moreover, there exists an algorithm that given F and t,
constructs a set of representatives R\ in 20a(t1ogt) gpeps.

Before we proceed with the proof of Lemma 7.1, we need a series of results. The
proof of the following lemma uses ideas similar to the ones presented by Garnero et
al. [25].

LEMMA 7.2. There is a function hs : N x N — N such that if F is a proper col-
lection containing a subcubic planar graph, where d = size(F), t € N, B = (B, R, \) €
REDN\AFINY 2 € N, and X is a subset of V(B) such that X "R = 0 and
INg(X)| < z, then | X| < ha(z,d).

Proof. We set ha(z,d) = 20 (du(d)F2)-GHuld)+1)+C(uld)+2) 4 5 4 where hy is the
function of Lemma 4.5, p is the function of Lemma 5.3, and ¢ : N — N is defined as
¢(z) = 2(5). Let y=u(d),¢g=h(dy+z2)-(x4+y+1)-((y+2),s=hazd), and
observe that s = 29 + z + d. Towards a contradiction, we assume that |X| > s.

Let B = (B,R,\) € RV D\ {F)} and let p be a vertex-labeling of B where
A C p. As B # FFY it follows that

(7.1) B € exim(F).
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We set G = B[X U Ng(X)] and observe that |V(G)| > | X| > s. As G is a subgraph
of B, (7.1) implies that

(7.2) G € exim(F),

and therefore, from Lemma 5.3, bw(G) < y. Let R' = Np(X) and X = p|r. We set
G = (G,R,X). From Lemma 5.1, bw(G) < bw(G) + |R'| <y + |R| =y + =.

We now proceed to bound the number of isolated vertices of G. Note that every
isolated vertex of G either belongs to R’ or belongs to X and was already an isolated
vertex in B. Since, by Lemma 4.2, B has at most d isolated vertices in V(B) \ R, and
X N B =1, it follows that G has at most |R'| + d isolated vertices.

Hence, since for any connected component C' of G that is not an isolated vertex
it holds that |E(C)| > |V(C)|/2, we conclude that

— /_ — — —_— —

Let (T, o) be a branch decomposition of G of width at most y+z. We also consider
the graph G, = (G, Re, A.), for each e € E(T) (recall that A\, C p). Observe that

(7.4) Vee E(T), |Re] <y+ =

We define H = {repz(Ge) | e € E(T)}. From (7.4), H € Uicio.y44 R, From
Lemma 4.5, |H| < (y+ 2+ 1) - hi(d,y + z), therefore ¢ > |H| - {(y + z). Let r be
the root of T' and let P be a longest path in 7' that has r as an endpoint. As by
(7.3), G has more than 2971 edges, T also has more than 2971 leaves different from
r. This means that P has more than ¢ edges. Recall that ¢ > |H| - {(y + z). As a
consequence, there is a set S C {G. | e € E(P)} where |S| > {(y + z) and repx(S)
contains only one boundaried graph (i.e., all the boundaried graphs in & have the
same F-representative). From Observation 3, there are two graphs Ge,, Ge, € S,
e1 # eg, such that

(7.5) G, =G, and
(76) Gel ~ Geg .

W.lo.g., we assume that e; is in the path in T between r and some endpoint of es.
This implies that the underlying graph of G, is a proper subgraph of the underlying
graph of G.,, therefore

(7.7) |E(Ge,)| < [E(Ge,)l.

Recall that G, = (Ge,, Re;, Ae, ), @ € [1,2]. Let B~ = B\ (V(Ge,) \ Re,) and we set
B~ = (B7,Re,, Ae, ). Clearly, B- ~ G,. This, combined with (7.6), implies that

(7.8) B~ ~ G.,.
Let now B* = B~ @ G,,. Combining (7.7) and (7.8), we may deduce that
(7.9) |E(B")| <|E(B).

We now set B* = (B*, R, \) and recall that ¢t = |R|. Clearly, both B and B* belong
to B®),
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We now claim that B =) B*. For this, we consider any D = (D,R,\) € B®.
We define B* = (B~,R,\), Dt =D @ B*, and DT = (D", R,,, A\, ). Note that

(7.10) De&B=D"&G,, and
(7.11) DeB*=D"aG,,.

From (7.5), we have that F <y DT ® G,, <= F =¢n D" @& G,,. This, together
with (7.10) and (7.11), implies that F <y, D® B <= F =<in D @ B*, therefore
B =Y B*, and the claim follows.

We just proved that B =7+*) B*. This together with (7.9) contradict the fact
that B € R Y. Therefore |X| < s, as required. O

Given a graph G and an integer y, we say that a vertex set S C V(G) is a
branchwidth-y-modulator if bw(G \ S) < y. This notion is inspired from treewidth-
modulators, which have been recently used in a series of papers (cf., for instance, [9,
25, 24, 32)).

The following proposition is a (weaker) restatement of [24, Lemma 3.10 of the full
version] (see also [32]).

PROPOSITION 7.3. There exists a function fo : N>1 XN — N such that if d € N>q,
y € N, and G is a graph such that G € exym(Ky) and G contains a branchwidth-
y-modulator R, then there exists a partition X of V(G) and an element Xg € X
such that R C X, max{|Xo|,|X| — 1} < 2-|R|, and for every X € X \ {Xo},
[Na(X)| < fa(d,y).

LEMMA 7.4. There is a function hs : N — N such that ift € N and F is a proper
collection containing a subcubic planar graph, where d = size(F), then every graph in
R has at most t - ha(d) vertices.

Proof. We define h3 : N — N so that hs(d) = 24 ha(fa(d, u(d)), p(d)) where hg is
the function of Lemma 7.2, f5 is the function of Proposition 7.3, and p is the function
of Lemma 5.3.

As FZ1 has at most d vertices, we may assume that G = (G, R,\) € RV \
{FZ)}. Note that G € exyn(F), therefore, from Lemma 5.3, bw(G) < u(d). We set
y = p(d) and we observe that R is a branchwidth-y-modulator of G. Therefore, we can
apply Proposition 7.3 on G and R and obtain a partition X of V(G) and an element
Xy € X such that

(7.12) R C X,
(7.13) max{|Xo|,a} <2-|R|, and
(7.14) VX € X\ {Xo}: [Ne(X)| < f2(d,y).

From (7.12) and (7.14), each X € X\ {X,} is a subset of V(G) such that XN R =0
and |Ng(X)| < fo(d,y). Therefore, from Lemma 7.2, for each X € X \ {Xo},
|X| < ha(f2(d,y),d). We obtain that

Gl = |Xol+ > IX|
XeX\{Xo}
<492 [R| +|R| - ha(f2(d, y), d)
= t- (24 h2(fa(d,y),d))
= t-h3(d),

as required. 0
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The next proposition follows from the results of Baste et al. [2] on the number of
labeled graphs of bounded treewidth.

PROPOSITION 7.5 (Baste et al. [2]). Let n,q € N. The number of labeled graphs
with at most n vertices and branchwidth at most q is 29:(v1081)

We are now ready to prove Lemma 7.1.

Proof of Lemma 7.1. Before we proceed to the proof we need one more definition.
Given n € N, we set B(j;’t) = Ag?nft U{FFD},

Note that, from Lemma 7. 4, RV C B(<T;L’t), where n = t - hz(d). Also, from
Lemma 5.3, all graphs in B( ) have branchwidth at most y = max{u(d),t}. The

fact that \B(f t)| 90a(tog t) follows easily by applying Proposition 7.5 for n and q.
The algorithm claimed in the second statement of the lemma constructs a set of
representatives R as follows: first it finds a partition Q of Bgf) into equivalence
classes with respect to =¥ and then picks an element with minimum number of
edges from each set of this partition.
The computation of the above partition of B(<];’t) is based on the fact that, given

two t-boundaried graphs B; and By, B; =% B, if and only if, for every G € ng“,
F Ztm GO B, <= F =tm G @ B,. This fact follows directly from Lemma 4.1 and
taking into account that RF+) ¢ BY 1.

Note that it takes |B(F t)|3 - 0g(1) - t°) steps to construct Q, by using the

topological minor containment algorithm of Grohe et al. [27]. As |B(}- t)| 20a(tlogt),

the construction of Q, and therefore of R“**) as well, can be done in the clalmed
number of steps. 0

8. Proof of Theorem 3.3. We are now ready to prove Theorem 3.3. The main
difference with respect to the proof of Theorem 3.1 is an improvement on the size of
the tables of the dynamic programming algorithm, namely |P.|, where the fact that
the collection F contains a planar subcubic graph is exploited in order to bound the
treewidth.

Proof of Theorem 3.3. We provide a dynamic programming algorithm for the
computation of tmz(G). We first consider an, arbitrarily chosen, vertex labeling
p of G. From Lemma 5.2, we may assume that we have a branch decomposition
(T, o) of (G, 0, @) of width at most w = O(bw(G)) = O(tw(G)). This gives rise to the
t.-boundaried graphs G. = (G, Re, \¢) for each e € E(T'). Moreover, if r is the root
of T, o7 1(r) =0 = R., and G, = (G, 0, 2). Keep also in mind that t. = O(tw(G))
for every e € E(T).

Our next step is to define the tables of the dynamic programming algorithm. For
a positive integer t, we let R — g0 \{F D}, Let e € B(T). We call the pair
(L,B) an e-pair if

1. L C R, and

2. B=(B,RAeR”" where k¥ = |[R.\ L| = t. — |LI.
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For each e € E(T'), we denote by P, the set of all e-pairs. Note that

te —(F,te—1)
Pl = > (Z)m |

1€[0,tc]

= (to 4 1) - 2% . 20altelogte)  (from Lemma 7.1)
_ QOd(w-logw).

We then define the function tm(]f) : Pe = NU{oo} such that if (L, B) € P, then

tm(? (L, B) = min{|S| | SC V(G)AL=R.NS A B=reps(G,\ 9},

where the value ‘oo’ is assigned when such a set S does not exist.

Note that P., = {(0,B) | B € ﬁ(F’O)}, and therefore

tmz(G) =min{|S| | SCV(G) A F Zim G\ S} (from Equation (2.1))
=min{|S| | SCV(Ge,) AN 0=R.. NS A F Zim Ge, \ S}
= min {min{|S||SC V(G ) N 0 =R.. NS A B=repr((Ge, \ S,0,2))}
BerR”

_ : (er)
a Ber%l(gf)){tm]: (0.B)}.

Therefore, in order to compute tmx(G), it is enough to compute tmgﬁ) for every

e € E(T). Note that, by Lemma 7.1, we may assume that we have at hand the set
R of representatives for every t < w. Our dynamic programming algorithm does
this in a bottom-up fashion, starting from the edges that contain as endpoints leaves
of T that are different to the root. Let I € L(T) \ {r} and let e, be the edge of T that
contains it. Let also 071(¢) = {z,y}. Clearly, G, = ({x,y}, {{z,y}}) and

P, = ({0} % REN U ({{ah {o}} x RED) U ({0} x RE2),
(er)

As the size of the elements in P, depends only on F, it is possible to compute tm»
in Og4(1) steps.

Let e € {e,} UE(T \ L(T)), and let e; and ez be the two other edges of T' that
share an endpoint with e and where each path from them to r contains e. We also
set F, = (R61 U REZ) \ R.. For the dynamic programming algorithm, it is enough to
describe how to compute tmgf) given tmgfi),i € [1,2].

For this, given an e-pair (L, B) € P, where B = (B, R, \), it is possible to verify
that

tm Y (L, B) = min {tm{?) (L, By) + tm!?)(Ly, By) — | Ly N Lo| |
(Li,B;) € P.,,i € [1,2],
L\F.=LNR.,ic[1,2],
LiNRe, NRe, = Ly N Re, N Re,, and
B= rep;(((Bl <& Zl) O) (B2 & Z2))|Z> where
Z = p(R.\ L) and Z; = p(Re, \ Li),i € [1,2]}.

Note that given tm(]f"),i € [1,2] and a pair (L,B) € P, the value of tm(]f) (L,B)
can be computed by the above formula in Og(|Pe, |- [P, |) = 29¢(#1°8 @) steps. Indeed,
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by Lemma 7.4, the representatives in the sets R, for ¢/ € [0,t], have size Og4(w),
and therefore in the above equation, the boundaried graph ((By < Z1) ® (B2¢ Z5))|z
has size at most twice the maximum size of a representative, hence Og(w) as well.

Hence, rep;(((Bl ©Z1)® (Bao ZQ))|Z> can be computed by creating a repository

(in a preprocessing phase) containing the representative of every graph on at most
Og4(w) vertices, which can be done, by Lemma 4.1, in time 29¢(*1°8%) Ly ysing the
set R provided by Lemma 7.1.

As |P.| = 20a(wlogw) the computation of the function tmgf) requires again
20a(wlogw) steps. This means that the whole dynamic programming algorithm re-
quires 20a(wlogw) | ()| = 20a(wlogw) . O(|E(G)|) steps. As |E(G)| = O(bw(G) -
[V (G)]), the claimed running time follows. d

We conclude this section by observing that the dynamic programming algorithm
presented in the proof of Theorem 3.3 is robust, in the sense that it does not explicitly
use the fact that the equivalence relation =% is defined for the particular topological
minor containment relation. Indeed, all that the algorithm uses about =" is that
the size of any representative is O4(t) (Lemma 7.4) and this allows to conclude that
the number of equivalence classes is 204(*1°¢?) (Lemma 7.1), where d = size(F).
Moreover, as discussed at the end of the proof of Theorem 3.3, given a graph of size
at most twice the maximum size of a representative, in order to perform the join
operation we need to compute (or even precompute) its representative within the
claimed asymptotic running time.

Hence, as far as these conditions are fulfilled, the algorithm of Theorem 3.3 could
also be applied for the F-€-DELETION problem where € is an arbitrary containment
relation, and the equivalence relation E,(f’t) is defined according to €. This discussion
is summarized in the following theorem, which we state here for further reference.

THEOREM 8.1. Let € be a graph containment relation, let F be a proper collection
of graphs, let d = size(F), let t be a positive integer, and let E(g’t) be the equivalence
relation on t-boundaried graphs defined by €. Suppose that there exist three functions
fo, frs fr : N2 = N such that

e any minimum-sized representative of E(G}—7t) has size at most fs(d,t),

e the number of equivalence classes of E(g’t) is at most fo(d,t), and
e given a t-boundaried graph of size at most 2fs(d,t), it is possible to compute a
minimum-size representative of its equivalence class of E(J’t) in time f,(d,t).
Then the F-€-DELETION problem can be solved in time max{f,(d,t), f,(d,t)}°™) .

20(t) . on n-vertex graphs of treewidth at most t.

Note that Theorem 3.3 is a particular case of Theorem 8.1 with € being the
topological minor contaiment relation, F containing a planar graph, fs(d,t) = O4(t),
and fo(d,t) = fo(d, t) = 20a(tlost),

9. Single-exponential algorithm for planar graphs. The purpose of this
section is to prove Theorem 3.5. We do this by proving that, on planar graphs, our
dynamic programming approach can be easily modified in order to yield an algorithm
of single-exponential dependance on tw. Later, in Section 10 we extend the result of
this section to graphs of bounded genus.

We start with some definitions about planar graphs. We denote the sphere by X,
ie., Yo = {(z,y,2) € R | 22 +y? + 22 = 1}. We say that a graph G is $g-embedded if
it is embedded in X without edge crossings. More generally, given a disk A (that is
a subset of ¥y homeomorphic to {(z,y) € R? | 22 +y? < 1}), a A-embedded graph is
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a graph that is embedded in A without edge crossings and without edges intersecting
its boundary. To simplify notation, when we consider a Yg-embedded graph or a
A-embedded graph, we treat it both as the pair (V(G), E(G)) and as the set of its
points in the embedding.

An O-arc of ¥y is a subset of X that is homeomorphic to the circle {(z,y) € R? |
22+ y? = 1} and an I-arc is a subset of ¥y that is homeomorphic to the open interval
(0,1). Given a Yg-embedded graph G and a set A C X, we say that A is G-normal if
ANG CV(G). If an O-arc is G-normal, then we call it a noose of G. Two nooses Ny
and Ny of G are confluent if one of the two disks bounded by N; contains N5. The
length of a noose N is the number of vertices it meets, i.e., [N| = |[V(G) N N|.

Sphere-cut decompositions.. Let G = (G, R,\) € B®, for some t € N and let
A be a disk of ¥y. We say that G is a A-embedded t-boundaried graph if G is a A-
embedded graph and G Nbd(A) = R, where we use bd(A) to denote the boundary
of A.

A branch-decomposition (T, 0) of a A-embedded boundaried graph G with root
r € V(T) is called a sphere-cut decomposition (or, in short, sc-decomposition), if for
every edge e of T, there exists a noose N, of G, such that*:

e The nooses in {N, | e € E(T')} are pairwise confluent,
e N. =bd(A),
e for every e € E(T), it holds that G, = A, NG, where A, is the disk bounded
by N. such that A, C A,
Notice that for every e € E(T), G, can be seen as a A.-embedded t.-boundaried
graph.

The following proposition has been proved in [47, 19] (for the running time,

see [28]).

PROPOSITION 9.1. Let G be a 2-connected X-embedded planar graph such that
|E(G)| > 2. There exists a sphere-cut decomposition of G of width equal to bw(G).
Moreover, a sphere-cut decomposition of G of optimal width can be computed in O(n?)
steps.

Oriented disk-embedded boundaried graphs.An oriented disk-embedded t-bounda-
ried graph G (in short, ode-t-boundaried graph) is a quadruple G = (G, A, v, s) where
A is a disk, G is a A-embedded graph, |GNbd(A)| = t, v € GNbd(A), and s € {+, —}.
We call s orientation of G. We say that the set G Nbd(A), denoted by R(G), is the
boundary of G. We use Ec()t) to denote all ode-t-boundaried graphs. Given a G € Ec(,t),
we define G = (G, R, \) where R = R(G), A(v) = 1, and the rest of the vertices of R

are indexed by consecutive numbers in {2,...,|R|}, following their order on bd(A)
by keeping the interior of A on the right or on the left depending on whether s = +
or s = —. Clearly, G is a consecutive t-boundaried graph.

Notice that, given a sphere-cut decomposition (T, o) of a A-embedded boundaried
graph G, for every e € E(T), v € R, and s € {+,—}, the quadruple (G., A.,v,s)
is an ode-t-boundaried graph. We will use those ode-t-boundaried graphs for our
dynamic programming algorithm on sphere-cut decompositions. More precisely, the
tables of the dynamic programming will consist of this type of objects, and note that,
thanks to the topological structure of the separators in a sc-decomposition, they carry
all the information that we need in order to glue them together, namely, A., v, and s.

4This definition is slightly different from the original definition given in [47, 19], but it can be
easily seen that they are equivalent. Also, note that we consider G to be A-embedded instead of
Yp-embedded; this will be useful to preserve the recursive properties given by the separators of a
sc-decomposition.
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We will prove in Lemma 9.3 that their number is single-exponential and this will yield
the running time of Theorem 3.5. To this end, we need to adapt the gluing operation
for ode-t-boundaried graphs and, based on this, define a suitable equivalence relation
from which the tables will be constructed.

Let G; = (G, A, v;,8:),% € [2] be two graphs in M. Notice that the graph
G| ® Gy defines a Yp-embedded graph: just take the union of the points of the
embeddings of G7 and Gy by identifying same index vertices (in case s; = s3, we
redraw one of the graphs by reflecting it outside its disk). We extend @ by defining
G1® Gy =Gy Go.

We define an equivalence relation ng’t) on &S” as follows: Given Gq, Gy € &Et),

we write G1 ng’t) G, if

VG c Y F<m GO G, ——= F <im G Go.

Notice that we can see each ode-t-boundaried graph G = (G,A,v,s) as an embedding
in A of the boundaried graph G. This implies that, if we ignore the way combinatorial

)

graphs are embedded, zEf  induces a coarsening of the restriction of =% to the
combinatorial boundaried graphs in Ec(,t). As for every combinatorial planar graph

there is a finite number of ways to embed it in ¥y (up to topological isomorphism),

Lemma 4.5 can also bound the number of equivalence classes of sz’“. As we did for

(Ft (

=71 we set up a set RS ) of representatives of = f7t), defined analogously.

LEMMA 9.2. For every t € N, the number of different ode-t-boundaried graphs in
£ with at most O(t) vertices is 20).

Proof. The proof uses the well-known fact that there are 2°(" ¥j-embedded
graphs on n vertices (up to topological isomorphism). This can be easily verified as fol-
lows. As a consequence of the results of Tutte [48] the number of planar triangulations
on n vertices is 2°(™) (see also [11] for more refined bounds). Since planar triangula-
tions are 3-connected graphs, by Whitney’s theorem [49], they have a unique embed-
ding in ¥y. Taking into account that every Yy-embedded graph can be completed into
a Yg-embedded triangulation by adding at most 3n —6 edges, in follows that the num-
ber of Yp-embedded graphs on n vertices is at most (256/27)"+Oogn).93n=6 — 90(n),

Given a A-embedded graph G and a set F' C E(G), we say that the pair (G, F)
is a partially edge-annotated A-embedded graph. We extend the concept of topological
isomorphism to partially edge-annotated A-embedded graphs by demanding anno-
tated edges to be mapped to annotated edges and non-annotated edges to be mapped
to non-annotated edges. Combining this with the above upper bound for the number
of Yg-embedded graphs and the fact that there are at most 23:=6 = 20(Y) ways to
choose F, we conclude that there are at most 2°() different partially edge-annotated
A-embedded graphs.

We correspond each tuple (G, A,v,s) € Eét) to the partially edge-annotated A-
embedded graph (é, F) where F are the edges corresponding to the G-normal I-arcs
of the set bd(A) \ V(@) and G = (V(G), E(G) U F) (notice that some of the edges

in F may already be edges of G). Clearly G is also a A-embedded graph. Therefore,
the number of different elements in " with at most O(t) vertices is bounded by the
number of different partially edge-annotated A-embedded graphs (that is 2°®), as
shown above), multiplied by the k possible choices of v € R and the 2 possible choices
of s € {+,—}. The lemma follows. O

LEMMA 9.3. Lett € N and F be a proper collection containing a subcubic planar

graph, where d = size(F), and let Rgf’t) be a set of representatives for ng’t). Then
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|Rgf’t)| = 294() " Moreover, there exists an algorithm that given F and t, constructs
a set of representatives Rg}-’t) in 204(t) steps.

Proof. Observe first that Lemma 7.2 holds for Rg}-’t)7 instead of RZY), with
essentially the same proof. Indeed, Lemmas 4.2, 5.3, and 5.1 are not affected by this
change and, as we argued before, there is an analogue of Lemma 4.5 bounding the
size of Rg]:’t). The only difference is that now we have that each boundaried graph,
say X € B(")_ that appears in the proof is now a member of &S” and therefore, during
the gluing operations, we replace it by X that is the boundaried graph corresponding
to X.

Based on the above observation, Lemma 7.4 also holds for Rg}-’t) instead of R ’t),
as it uses the analogue of Lemma 7.2 as well as Lemma 5.3 and Proposition 7.3
(that is also not affected by the change). Now combining this version of Lemma 7.4
with Lemma 9.2, we conclude that |Rgf’t)| = 29a(Y) The algorithm claimed in the
second statement of the lemma is the same as the corresponding one in the proof of
Lemma 7.1, with the only difference that now, instead of enumerating ¢-boundaried
graphs, we enumerate ode-t-boundaried graphs that are 294() many by Lemma 9.2.0

We are now ready to present the proof of Theorem 3.5.

Proof of Theorem 3.5. Let (G, k) be an instance of F-TM-DELETION. First of
all, we consider a tree decomposition (X,T”) of G’ whose bags are its blocks and
each block is seen as a 1-boundaried graph whose boundary is some cut-vertex of
G (this orientation of the blocks can be done by arbitrarily rooting the tree T" of
the tree decomposition). Given this, we can process each one of the blocks by doing
conventional dynamic programming in order to join them, using as tables those of the
algorithm given in the proof of Theorem 3.1. This processing will cost Og(1) steps
per block, therefore O4(n) steps in total. In what follows, we explain how to process
each one of the blocks.

We consider a block G = (G, R, \) of G’ where |R| <1 (if G is not the root block
of (T",X), then |R| = 1, otherwise |R| = 0). As each block is 2-connected, we can
construct, using the algorithm of Proposition 9.1, an optimal sphere-cut decomposi-
tion (T, 0) of G in O(|V(G)|?) steps. Notice that for each e € E(T), the graph G can
be seen as the graph G. @ G/, where G, = (G, A.,v,+) and G, = (G, A.,v, —),
where G, = G N (Zp \ int(A,)) and v is the minimum index vertex in R., where
int(A,) denotes the interior of the disk A,. Given these conventions, the dynamic
programming is the same as the one in the proof of Theorem 3.3. The only difference
is that now we use Rg}—’t) instead of R>Y). This latter change implies, because of
Lemma 9.3, that the tables of the dynamic programming for the edge e € E(T) have
20a(te) entries. Therefore the algorithm runs in 29¢(™) . n steps in total. 0

10. Single-exponential algorithm for graphs embedded in surfaces. In
this section, we give a concise description of how Theorem 3.5 can be extended to
graphs embedded in surfaces. The idea is again to treat the graphs processed by the
dynamic programming of the proof of Theorem 3.3 as embedded graphs. However,
when it comes to embeddings in surfaces, this is more technical to describe formally.
For this, we need to provide some more definitions.

Surfaces are seen as connected compact 2-manifolds without boundaries. It is
known (see e.g., [38]) that any surface ¥ can be obtained, up to homeomorphism, by
adding eg(X) crosscaps to the sphere, where eg(X) is called the Euler genus of 3.
We say that a graph G is X4-embedded if it is embedded without crossings in a surface
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whose Euler genus is g. Theorems 3.5 and 3.6 can be extended as follows.

THEOREM 10.1. If F is a proper collection containing a subcubic planar graph,
where d = size(F), then there exists an algorithm that solves F-TM-DELETION on
Yg-embedded graphs in 20a+s(tW) . 3 steps.

Proof. The proof is an adaptation of the proof of Theorem 3.5 to more general
surfaces, using some of the tools developed in [44]. A noose of a ¥4-embedded graph G
is any G-normal O-arc of .. We say that a noose N is non-contractible if none of the
connected components of G\ N is homeomorphic to the interior of a disk. We say that
a Yg-embedded graph is polyhedrally 3,-embedded if it is 3-connected and every non-
contractible noose of G has size at least 3. Given a graph G, a polyhedral decomposition
of a ¥,-embedded graph G is a triple (A, X,T) where A C V(G),|A| = O(g), and
(X,T) is a tree decomposition of G4 := G'\ A where

e the adhesion of (X, T) is at most 2,

e for every t € V(T'), the torso of X; is polyhedrally ¥,,-embedded, for some

9i < 9.

In the above definition, the adhesion of (X, T) is the maximum size of the intersection
between two bags of (X, T). Moreover, the torso of a bag X; is the graph obtained by
G[X;] if we make adjacent each pair of vertices that both belong to the intersection
of X; with some other bag. We also call A apex set of G. We remark that, during
the course of this proof, the presence of A in the notation G4 should be interpreted
as the “absence” of A from some more general graph G.

According to [44], given a ¥ -embedded graph G, a polyhedral decomposition of G
can be constructed in O(n?) steps. We now consider such a polyhedral decomposition
of G, we root it at the union of the apex set A and the intersection of its bag with
its parent bag in 7" and, as we did the beginning of the proof of Theorem 3.5, we
process the bags of (X,T') in a bottom-up fashion. The only difference is that now,
given that we have a way to process each of the the “almost polyhedrical” bags,
we do conventional dynamic programming, as in Theorem 3.1, for tables that have
O(g) instead of at most 1 vertices. This reduces the proof to the case where the
input graph, we call it G, contains a set A of O(g) apex vertices such that are G4 =
G\ A is a polyhedrally ¥,-embedded graph for some ¢’ < g. We also see G4 as
a Yg-embedded ¢-boundaried graph G whose boundary has size at most 2. To
deal with this, we will use an analogue of sphere-cut decompositions for graphs that
are polyhedrally embedded in higher-genus surfaces, called surface-cut decomposition,
introduced in [44]. This requires some definitions in order to extend the concept of
A-embedded t-boundaried graph to surfaces.

Given a ¥ -embedded graph G, any G-normal O-arc of 3, is called noose N of
G. We say that a collection N' = {Ni,...,N,} of O-arcs in X, is a surface-cut if
they are pairwise confluent, U1§i<j§s N; N N; is finite, and X, \ N has exactly two
connected components. We use the notation C(N) = |JN. We say that a subset ¥
of ¥, is a g-disk if it is the closure of one of the connected components of 3, \ C(N)
for some surface-cut collection N of ¥,. Notice that there are O4(1) different g-disks
up to homeomorphism. We say that two g-disks ¥, and Uy are g-complementary, if
U, UWy =3, and ¥; N ¥y is the boundary of both ¥y and W,. We also refer to the
g-disks Uy and Uy as the two disks bounded by N. Given a g-disk ¥, we say that a
graph G is V-embedded if G is embedded in ¥ without edge crossings and without
edges intersecting its boundary. Notice that we can see bd(¥), i.e., the boundary of
U, as a graph if we fix the vertex set to be R(G) := V(G) Nbd(¥) (called frontier
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vertices); we call this graph frontier of the W-embedded graph G and we denote it
by Fg. We also denote by Fé‘ the graph obtained by Fg after taking its disjoint
union with some set A of isolated vertices (called apez vertices). Given that a = |A|,
we call Fé} a-enhanced frontier graph of the W-embedded graph G. We denote by
Eg?a the set obtained taking all a-enhanced frontier graphs of all W-embedded graphs
with ¢t — a vertices in their boundary, and renaming their vertices by numbers in
[t]. Moreover, we update ﬁg)a by repetitively removing one graph from any pair of
isomorphic graphs in this sef, as long as such a pair exists. Notice that after this
relaxation, all graphs in E(t)a are pairwise non-isomorphic. Moreover it is easy to

prove that if a = O(g), then |Ly ® | = 29®) Intuitively, the set E o €ncodes all
permissible ways the boundaries of two t-boundaried graphs can be 1dent1ﬁed so that
such a gluing will result in a ¥,-embeddable graph, and its cardinality corresponds to
the number of automorphisms of every frontier graph Fg enhanced with a additional
apex vertices. Later, we will demand that, while gluing boundaried graphs, frontier
vertices are identified to frontier vertices and apex vertices are identified to apex
vertices.

Given a g-disk U, a t-boundaried graph G = (G, R, A\) and aset A C V(G), we say
that (G, A) is an a-almost W-embedded t-boundaried graph if A C R, a = |A|, G =
G\ A is a U-embedded graph, GANbd(A) = R\ A, and ) is an isomorphism from Fg
to the unique graph in Eg?a that is isomorphic to Féx by an isomorphism that maps A
to apex vertices. We denote by &, (t) the set of all a-almost W-embedded ¢-boundaried
graphs and by 5( ) the union of all S\I, , for all possible ¥ and a. Given a (G, A4) € E(t)
and a (G',A) € &) +ars We say that (G, A) and (G, A") are complementary if ¥ = \I/,
t =1t', FA is isomorphic to F¢ , and A(A) = A(A’). We denote by C(G, A) the set of
all members of Sét) that are complementary to (G, A). For simplicity, when we refer
to a member of (G, 0) € 5\(1,?0 we write G instead of (G, ) and we call G V-embedded
t-boundaried graph.

The concept of a surface-cut decomposition was introduced in [44] in order to
accelerate dynamic programming algorithms in surfaces. We next present this con-
cept, adapted to the terminology that we introduced above. A branch-decomposition
(T, o) of a U-embedded t-boundaried graph G# = (G4, R4, A1) with root r € V(T)
is called a surface-cut decomposition if, for every edge e of T, there exists a surface-cut
collection of nooses N, of the W-embedded graph G, such that:

e The nooses in |J, . E(T) N, are pairwise confluent,

e N. =bd(V),

e for every e € E(T), it holds that G# = ¥, NG, where ¥, is the generalized

disk bounded by N, such that ¥. C ¥, ,

Notice that each G2 is a ¥.-embedded graph and that all above conditions reduce
to a sphere-cut decomposition in case ¢ = 0 and G is a A-embedded ¢-boundaried
graph. We define G, = (G,, Re, \¢) as a t.-boundaried graph where G, is obtained
by G4 after adding to it the vertices in A and the edges of G that connect vertices
in A with vertices in G2, R. = R(G&) U A, and A. = p|y(q,). Moreover, we define
the complement of G, as G. = (Ge,Re, Ae), where G. =G. \ (V(Ge) \ R.). Notice
that for every e € E(T), (G, A) € 5$§,)a and (G, A) € 5g)a. Keep in mind that, for

every e € E(T), (G¢, A) and (G, A) are complementary members of 55” and that
Ge @ Ge == G
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It was proved in [44] that there is an algorithm that, given a polyhedrally W-
embedded ¢-boundaried graph G# where bw(G4) < w, it returns a surface-cut de-
composition of G4 of width O(w), in 2°*) . n? steps. By adding the apex set A to
all the t.-boundaried graphs G4 corresponding to this decomposition, we obtain the
decomposition on which the algorithm of Theorem 3.3 now applies. It is important
to keep in mind that now we are working with members of Sét), therefore we need to

adapt the equivalence relation =7 for 6}9). Then we use the almost-embeddability
property in order to prove that the number of equivalence classes — and therefore
the tables of the dynamic programming — is bounded by a function that is single-
exponential in t..

n Efli’zt) on 8\(;,)(1 as follows:

Given (G, 41), (Ge, A43) € 5&,%, we say that (Gy, A1) EE;;’;) (Gq, Ag) if

We define the equivalence relatio

VG €C(G,A) F=Zm GBG, — F <um G Go.

We also say that (Gq,Aq) ng’t) (Ga, Ay) if both (Gq, A1), (Ga, A2) are a-almost

U-embedded t-boundaried graphs and (Gi, A1) E\(Ifz;t) (Ga, As). Again using Theo-

rem 4.5, it is easy to derive that the number of equivalence classes of ng’t) depends

only on g, t, and d = size(F). It is now easy to see that Lemma 9.3 can be extended
to a set of representatives Rgf’t) of E_E,}-’t), i.e., that |Rgf’t)| = 29s+a() and that

Rg}-’t) can be constructed in 29s+¢() steps. Indeed, this is a direct consequence of

the fact that an analogue of Lemma 9.2 can be proved using that |£$)a| = 204(1)

(for a = O(g)) and the fact that there are 29¢(*) ¥ -embedded graphs on ¢ vertices
(this follows from the bounds on planar graphs by a standard planarization argument
cutting along non-contractible cycles). Now, by replacing R by R!(]}-’t) in the ta-
bles of the dynamic programming algorithm of Theorem 3.3, we can derive that, for
Yg-embedded graphs, the algorithm runs in 20a+s(W) .y steps, as claimed. 0

Again, by Lemma 3.7 and Observation 1 we obtain the following counterpart of
Theorem 10.1 for the minor version.

THEOREM 10.2. If F is a proper collection containing a planar graph, where d =
size(F), then there exists an algorithm that solves F-M-DELETION on 3,-embedded
graphs in 294+s(W) . p3 steps.

11. Conclusions and further research. We presented parameterized algo-
rithms for F-M-DELETION and F-TM-DELETION taking as parameter the treewidth
of the input graph. These algorithms are complemented by single-exponential algo-
rithms and lower bounds presented in [5, 6].

The ultimate goal is to establish the tight complexity of F-M-DELETION and
F-TM-DEeLETION for all collections F. Recently, the authors made a significant
step in this direction [4], by providing an algorithm to solve F-M-DELETION in time
O* (20w logtw)) for every collection F. This algorithm uses, as a black box, the
algorithm of Section 8 (as stated in Theorem 8.1), as well as other ingredients such
as Bidimensionality [21], the irrelevant vertex technique [43, 42], and recent results
about rerouting paths on flat structures [26]. Note that this result vastly generalizes
the ones of Jansen et al. [30] and Kociumaka and Pilipczuk [34], running in time
O* (20w logtw)) “for the problems of deleting a minimum number of vertices to obtain
a planar graph and a graph of Euler genus at most g, respectively. Combined with the
lower bounds presented in [6], the algorithm in [4] settles completely the complexity
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of F-M-DELETION when F consists of a single connected graph. Determining the
tight complexity, conceivably either O*(20t) or O* (20w logtw)) "when F contains
more than one graph, or when the graph(s) in F may be disconnected, remains still
open.

On the other hand, we still do not have such a general algorithm running in
time O*(20(twlogtw)) for the F-TM-DELETION problem, the fastest one being the
algorithm of Theorem 3.1. In particular, we do not know whether there exists some
F for which there is a lower bound of, say, 20(w?) . O0(1) for F-TM-DELETION.

We presented single-exponential algorithms for F-DELETION when the input
graph is planar or, more generally, embedded in a fixed surface. In both cases, the
key tool is a special type of branch decomposition with nice topological properties.
It seems plausible that this result could be extended to input graphs excluding a
fixed graph H as a minor, by using the so-called H-minor-free cut decompositions
introduced by Rué et al. [45].

In the last years, the F-M-DELETION problem has been extensively studied in
the literature taking as the parameter the size of the solution [32, 22, 31, 33, 30, 46].
In all these papers, FPT-algorithms parameterized by treewidth play a fundamental
role. The results that we presented in this paper have already been used in [4], which
in turn has been strongly used in the algorithms in [46].

Our results have also interesting consequences by applying the Bidimensionality
framework [21, 15, 16], as we proceed to discuss. Let F be a collection containing a
planar graph and consider the /-M-DELETION problem parameterized by the solution
size k, restricted to input graphs G that exclude some fixed graph H as a minor. The
linearity in terms of treewidth of the size of a largest grid in an H-minor-free graph [17]
implies that positive instances of F-M-DELETION have treewidth Oz g (vk). Indeed,
otherwise, for any solution S C V(G) of size at most k, G\ S would contain as a minor
a large enough grid, as a function of F, which would contain a planar graph in F
as a minor, contradicting the fact that S is a solution. Therefore, when F contains
a planar graph, Theorem 3.4 yields an algorithm to solve F-M-DELETION in time
2071 (VElogk) .y when the input graph is H-minor-free, and, by Theorem 10.2, in
time 2075(VF) . 1 when the input graph has genus at most g. Plausibly, using the
results in [45], the running time 297 9(V¥) .y could be achieved also for H-minor-free
graphs. To be best of our knowledge, subexponential algorithms for /-M-DELETION
on these classes of graphs were not known before.
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