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Hitting minors on bounded treewidth graphs.
II. Single-exponential algorithms∗

Julien Baste†‡ Ignasi Sau§ Dimitrios M. Thilikos§

Abstract

For a finite collection of graphs F , the F-M-Deletion (resp. F-TM-Deletion)
problem consists in, given a graph G and an integer k, decide whether there exists
S ⊆ V (G) with |S| ≤ k such that G\S does not contain any of the graphs in F as a
minor (resp. topological minor). We are interested in the parameterized complexity
of both problems when the parameter is the treewidth of G, denoted by tw, and
specifically in the cases where F contains a single connected planar graph H. We
present algorithms running in time 2O(tw) ·nO(1), called single-exponential, when H
is either P3, P4, C4, the paw, the chair, and the banner for both {H}-M-Deletion
and {H}-TM-Deletion, and when H = K1,i, with i ≥ 1, for {H}-TM-Deletion.
Some of these algorithms use the rank-based approach introduced by Bodlaender et
al. [Inform Comput, 2015]. This is the second of a series of articles on this topic, and
the results given here together with other ones allow us, in particular, to provide a
tight dichotomy on the complexity of {H}-M-Deletion in terms of H.
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1 Introduction

Let F be a finite non-empty collection of non-empty graphs. In the F-M-Deletion
(resp. F-TM-Deletion) problem, we are given a graph G and an integer k, and the
objective is to decide whether there exists a set S ⊆ V (G) with |S| ≤ k such that
G \ S does not contain any of the graphs in F as a minor (resp. topological minor).
These problems have a big expressive power, as instantiations of them correspond to
several well-studied problems. For instance, the cases F = {K2}, F = {K3}, and F =

{K5,K3,3} of F-M-Deletion (or F-TM-Deletion) correspond to Vertex Cover,
Feedback Vertex Set, and Vertex Planarization, respectively. For the sake of
readability, we use the notation F-Deletion in statements that apply to both F-M-
Deletion and F-TM-Deletion.

We are interested in the parameterized complexity of F-Deletion when the pa-
rameter is the treewidth of the input graph. Courcelle’s theorem [10] implies that F-
Deletion can be solved in time O∗(f(tw)) on graphs with treewidth at most tw, where
f is some computable function1. Our objective is to determine, for a fixed collection F ,
which is the smallest such function f that one can (asymptotically) hope for, subject to
reasonable complexity assumptions.

This line of research has recently attracted some attention in the parameterized com-
plexity community. For instance, Vertex Cover is easily solvable in time O∗(2O(tw)),
called single-exponential, by standard dynamic-programming techniques, and no algo-
rithm with running time O∗(2o(tw)) exists, unless the Exponential Time Hypothesis
(ETH)2 fails [17]. For Feedback Vertex Set, standard dynamic programming tech-
niques give a running time of O∗(2O(tw·log tw)), while the lower bound under the ETH [17]
is again O∗(2o(tw)). This gap remained open for a while, until Cygan et al. [12] presented
an optimal algorithm running in time O∗(2O(tw)), introducing the celebrated Cut&Count
technique, which produces randomized algorithms. This article triggered several other
techniques to obtain single-exponential deterministic algorithms for so-called connectiv-
ity problems on graphs of bounded treewidth, mostly based on algebraic tools [7,16]. We
refer the reader to [4] for a more detailed discussion about related work. In particular,
in this article we make use of one of the techniques presented by Bodlaender et al. [7],
called rank-based approach. It is worth mentioning that this approach has been recently
applied to dense graph classes, namely those with structured neighborhoods [6].

Our results and techniques. We provide several single-exponential algorithms when F
contains a single connected planar graphH. Namely, we show that if F ∈ {{P3}, {P4}, {K1,i},

1The notation O∗(·) suppresses polynomial factors depending on the size of the input graph.
2The ETH states that 3-SAT on n variables cannot be solved in time 2o(n); see [17] for more details.
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{C4} {paw}, {chair}, {banner}} (see Figure 1 for an illustration of these graphs), then F-
TM-Deletion can be solved in single-exponential time. Note that all these graphs have
maximum degree at most three, except K1,i for i ≥ 4, and therefore the corresponding
algorithms also apply to the F-M-Deletion problem. Indeed, for graphs H with max-
imum degree at most three, containing H as a minor is equivalent to containing H as a
topological minor. The fact that we are not able to provide single-exponential algorithms
for {K1,i}-M-Deletion with i ≥ 4 seems to be unavoidable: we prove in [5] that there is
no algorithm in time O∗(2o(tw·log tw)) for these cases, unless the ETH fails. This exhibits,
to the best of our knowledge, the first difference between the computational complexity
of both problems.

The single-exponential algorithms presented in this article are ad hoc, some being
easier than others. All of them exploit a structural characterization of the graphs that
exclude that particular graph H as a (topological) minor; cf. for instance Lemmas 2
and 9. Intuitively, the “complexity” of this characterization is what determines the
difficulty of the corresponding dynamic programming algorithm, and is also what makes
the difference between being solvable in single-exponential time or not.

More precisely, the algorithms for {P3}-Deletion, {P4}-Deletion, and {K1,i}-
TM-Deletion use standard (but non-trivial) dynamic programming techniques on
graphs of bounded treewidth, exploiting the simple structure of graphs that do not
contain these particular graphs as a topological minor (or as a subgraph, which in these
cases is equivalent). The algorithms for {P3}-Deletion and {K1,i}-TM-Deletion are
quite simple, while the one for {P4}-Deletion is slightly more technical.

The algorithms for {C4}-Deletion and {paw}-Deletion are more involved, and
use the rank-based approach introduced by Bodlaender et al. [7], exploiting again the
structure of graphs that do not contain C4 or the paw as a minor (cf. Lemma 5 and 7,
respectively). It might seem counterintuitive that this technique works for C4, and stops
working for Ci with i ≥ 5. A possible reason for that is that the only cycles of a C4-
minor-free graph are triangles and each triangle must be contained in a bag of a tree
decomposition. This property, which is not true anymore for Ci-minor-free graphs with
i ≥ 5, permits to keep track of the structure of partial solutions with tables of small size.
The algorithm for {paw}-Deletion combines classical dynamic programming techniques
and the rank-based approach.

Finally, the algorithms for {chair}-Deletion and {banner}-Deletion are a combi-
nation of the above ones, the latter one using again the rank-based approach. Given the
large amount of labels that we need in the tables and the similarity with other algorithms
for which we provide all the details, we only present a sketch of these two algorithms.
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Results in other articles of the series and discussion. In the first article of this
series [4], we show, among other results, that for every collection F containing at least one
planar graph (resp. subcubic planar graph), F-M-Deletion (resp. F-TM-Deletion)
can be solved in time O∗(2O(tw·log tw)). In the third article of this series [5], we focus on
lower bounds under the ETH. Namely, we prove that for any connected3 F , F-Deletion
cannot be solved in time O∗(2o(tw)), even if the input graph G is planar, and we provide
superexponential lower bounds for a number of collections F . In particular, we prove a
lower bound of O∗(2o(tw·log tw)) when F contains a single connected graph that is either
P5 or is not a minor of the banner, with the exception of K1,i for the topological minor
version. These lower bounds, together with the ad hoc single-exponential algorithms
given in this article and the general algorithms described in [4], cover all the cases of F-
M-Deletion where F contains a single connected planar graph H, yielding a dichotomy
in terms of H. Namely, {H}-M-Deletion can be solved in time

• O∗(2Θ(tw)), if H is a minor of the banner that is different from P5, and

• O∗(2Θ(tw·log tw)), otherwise.

In the above statements, we use the Θ-notation to indicate that these algorithms are
optimal under the ETH. This dichotomy is depicted in Figure 1, containing all connected
planar graphs H with 2 ≤ |V (H)| ≤ 5; note that if |V (H)| ≥ 6, then H is not a minor
of the banner, and therefore the second item above applies. Note also that K4 and the
diamond are the only graphs on at most four vertices for which the problem is solvable
in time O∗(2Θ(tw·log tw)) and that the chair and the banner are the only graphs on at least
five vertices for which the problem is solvable in time O∗(2Θ(tw)). Note also that the
cases F = {P2} [11, 17], F = {P3} [1, 21], and F = {C3} [7, 12] were already known.

The crucial role payed by the banner in the complexity dichotomy may seem surprising
at first sight. In fact, we realized a posteriori that the “easy” cases can be succinctly
described in terms of the banner (and P5) by taking a look at Figure 1. Nevertheless,
there is some intuitive reason for which excluding the banner constitutes the horizon
on the existence of single-exponential algorithms (forgetting about the “exception” F =

{P5}). Namely, every connected component of a graph that excludes the banner as a
(topological) minor is either a cycle (of any length) or a tree in which some vertices
have been replaced by triangles; both such types of components can be maintained by
a dynamic programming algorithm in single-exponential time. It appears that if the
characterization of the allowed connected components is enriched in some way, such as
restricting the length of the allowed cycles or forbidding certain degrees, the problem
becomes inherently more difficult.

3A connected collection F is a collection containing only connected graphs.
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Figure 1: Classification of the complexity of {H}-M-Deletion for all connected simple
planar graphs H with 2 ≤ |V (H)| ≤ 5: for the nine graphs on the left (resp. 20 graphs
on the right, and all the larger ones), the problem is solvable in time 2Θ(tw) ·nO(1) (resp.
2Θ(tw·log tw) · nO(1)). For {H}-TM-Deletion, K1,4 should be on the left. This figure
also appears in [5].

Organization of the paper. In Section 2 we give some preliminaries. We deal with
P3, P4, K1,s, C4, the paw, the chair, and the banner in Sections 3, 4, 5, 6, 7, 8, and 9,
respectively. We conclude in Section 10 with some questions for further research.

2 Preliminaries

In this section we provide some preliminaries to be used in the following sections.

Sets, integers, and functions. We denote by N the set of every non-negative integer
and we set N+ = N \ {0}. Given two integers p and q, the set [p, q] refers to the set
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of every integer r such that p ≤ r ≤ q. Moreover, for each integer p ≥ 1, we set
N≥p = N \ [0, p− 1].

We use ∅ to denote the empty set and ∅ to denote the empty function, i.e., the unique
subset of ∅ × ∅. Given a function f : A → B and a set S, we define f |S = {(x, f(x)) |
x ∈ S ∩ A}. Moreover if S ⊆ A, we set f(S) =

⋃
s∈S{f(s)}. Given a set S, we denote

by
(
S
2

)
the set containing every subset of S that has cardinality two.

Graphs. All the graphs that we consider in this paper are undirected, finite, and
without loops or multiple edges. We use standard graph-theoretic notation, and we refer
the reader to [13] for any undefined terminology. Given a graph G, we denote by V (G)

the set of vertices of G and by E(G) the set of the edges of G. We call |V (G)| the
size of G. A graph is the empty graph if its size is zero. We also denote by L(G) the
set of the vertices of G that have degree exactly ones. If G is a tree (i.e., a connected
acyclic graph) then L(G) is the set of the leaves of G. A vertex labeling of G is some
injection ρ : V (G) → N+. Given a vertex v ∈ V (G), we define the neighborhood of
v as NG(v) = {u | u ∈ V (G), {u, v} ∈ E(G)} and the closed neighborhood of v as
NG[v] = NG(v) ∪ {v}. If X ⊆ V (G), then we write NG(X) = (

⋃
v∈X NG(v)) \X. The

degree of a vertex v in G is defined as degG(v) = |NG(v)|. A graph is called subcubic if
all its vertices have degree at most three.

A subgraph H = (VH , EH) of a graph G = (V,E) is a graph such that VH ⊆ V (G)

and EH ⊆ E(G)∩
(
V (H)

2

)
. If S ⊆ V (G), the subgraph of G induced by S, denoted G[S],

is the graph (S,E(G) ∩
(
S
2

)
). We also define G \ S to be the subgraph of G induced by

V (G) \ S. If S ⊆ E(G), we denote by G \ S the graph (V (G), E(G) \ S).
If s, t ∈ V (G), an (s, t)-path of G is any connected subgraph P of G with maximum

degree two and where s, t ∈ L(P ). We say that two vertices s and t are connected in
G if G contains an (s, t)-path as a subgraph. We finally denote by P(G) the set of
all paths of G. Given P ∈ P(G), we say that v ∈ V (P ) is an internal vertex of P if
degP (v) = 2. Given an integer i and a graph G, we say that G is i-connected if for each
{u, v} ∈

(
V (G)

2

)
, there exists a set Q ⊆ P(G) of (u, v)-paths of G such that |Q| = i and

for each P1, P2 ∈ Q such that P1 6= P2, V (P1) ∩ V (P2) = {u, v}. We denote by Kr, Pr,
and Cr, the complete graph, the path, and the cycle on r vertices, respectively.

Minors and topological minors. Given two graphs H and G and two functions
φ : V (H) → V (G) and σ : E(H) → P(G), we say that (φ, σ) is a topological minor
model of H in G if

• for every {x, y} ∈ E(H), σ({x, y}) is an (φ(x), φ(y))-path in G and

• if P1, P2 are two distinct paths in σ(E(H)), then none of the internal vertices of
P1 is a vertex of P2.
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The branch vertices of (φ, σ) are the vertices in φ(V (E)), while the subdivision vertices
of (φ, σ) are the internal vertices of the paths in σ(E(H)).

We say that G contains H as a topological minor, denoted by H �tm G, if there is a
topological minor model (φ, σ) of H in G.

Given two graphs H and G and a function φ : V (H) → 2V (G), we say that φ is a
minor model of H in G if

• for every x ∈ V (H), G[φ(x)] is a connected non-empty graph and

• for every {x, y} ∈ E(H), there exist x′ ∈ φ(x) and y′ ∈ φ(y) such that {x′, y′} ∈
E(G).

We say that G contains H as a minor, denoted by H �m G, if there is a minor model
φ of H in G.

Graph collections. Let F be a collection of graphs. From now on instead of “collection
of graphs” we use the shortcut “collection”. If F is a collection that is finite, non-empty,
and all its graphs are non-empty, then we say that F is a proper collection. For any
proper collection F , we define size(F) = max{{|V (H)| | H ∈ F} ∪ {|F|}}. Note that
if the size of F is bounded, then the size of the graphs in F is also bounded. We say
that F is a planar collection (resp. planar subcubic collection) if it is proper and at
least one of the graphs in F is planar (resp. planar and subcubic). We say that F is a
connected collection if it is proper and all the graphs in F are connected. We say that
F is an (topological) minor antichain if no two of its elements are comparable via the
(topological) minor relation.

Let F be a proper collection. We extend the (topological) minor relation to F such
that, given a graph G, F �tm G (resp. F �m G) if and only if there exists a graph
H ∈ F such that H �tm G (resp. H �m G). We also denote extm(F) = {G | F �tm G},
i.e., extm(F) is the class of graphs that do not contain any graph in F as a topological
minor. The set exm(F) is defined analogously.

Tree decompositions. A tree decomposition of a graph G is a pair D = (T,X ), where
T is a tree and X = {Xt | t ∈ V (T )} is a collection of subsets of V (G) such that:

•
⋃

t∈V (T )Xt = V (G),

• for every edge {u, v} ∈ E, there is a t ∈ V (T ) such that {u, v} ⊆ Xt, and

• for each {x, y, z} ⊆ V (T ) such that z lies on the unique path between x and y in
T , Xx ∩Xy ⊆ Xz.
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We call the vertices of T nodes of D and the sets in X bags of D. The width of a tree
decomposition D = (T,X ) is maxt∈V (T ) |Xt| − 1. The treewidth of a graph G, denoted
by tw(G), is the smallest integer w such that there exists a tree decomposition of G of
width at most w. For each t ∈ V (T ), we denote by Et the set E(G[Xt]).

We need to introduce nice tree decompositions, which will make the presentation of
the algorithms much simpler.

Nice tree decompositions. Let D = (T,X ) be a tree decomposition of G, r be a
vertex of T , and G = {Gt | t ∈ V (T )} be a collection of subgraphs of G, indexed by the
vertices of T . We say that the triple (D, r,G) is a nice tree decomposition of G if the
following conditions hold:

• Xr = ∅ and Gr = G,

• each node of D has at most two children in T ,

• for each leaf t ∈ V (T ), Xt = ∅ and Gt = (∅, ∅). Such t is called a leaf node,

• if t ∈ V (T ) has exactly one child t′, then either

– Xt = Xt′ ∪{vinsert} for some vinsert 6∈ Xt′ and Gt = G[V (Gt′)∪{vinsert}]. The
node t is called introduce vertex node and the vertex vinsert is the insertion
vertex of Xt,

– Xt = Xt′ \ {vforget} for some vforget ∈ Xt′ and Gt = Gt′ . The node t is called
forget vertex node and vforget is the forget vertex of Xt.

• if t ∈ V (T ) has exactly two children t′ and t′′, then Xt = Xt′ = Xt′′ , E(Gt′) ∩
E(Gt′′) = E(G[Xt]), and Gt = (V (Gt′) ∪ V (Gt′′), E(Gt′) ∪E(Gt′′)). The node t is
called a join node.

For each t ∈ V (T ), we denote by Vt the set V (Gt). As discussed in [18], given a
tree decomposition, it is possible to transform it in polynomial time to a nice new one of
the same width. Moreover, by Bodlaender et al. [8] we can find in time 2O(tw) · n a tree
decomposition of width O(tw) of any graph G. Hence, since in this section we focus on
single-exponential algorithms, we may assume that a nice tree decomposition of width
w = O(tw) is given with the input.

We also need the following simple observation that will be implicitly used in the
algorithms of Sections 3, 4, and 6.

Observation 1. Let G be a graph and h be a positive integer. Then the following
assertions are equivalent.
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• G contains Ph as a topological minor.

• G contains Ph as a minor.

• G contains Ph as a subgraph.

Moreover, the following assertions are also equivalent.

• G contains Ch as a topological minor.

• G contains Ch as a minor.

Parameterized complexity. We refer the reader to [11, 14] for basic background
on parameterized complexity, and we recall here only some very basic definitions. A
parameterized problem is a language L ⊆ Σ∗ × N. For an instance I = (x, k) ∈ Σ∗ × N,
k is called the parameter. A parameterized problem is fixed-parameter tractable (FPT) if
there exists an algorithm A, a computable function f , and a constant c such that given
an instance I = (x, k), A (called an FPT algorithm) correctly decides whether I ∈ L in
time bounded by f(k) · |I|c.

Main ingredients of the rank-based approach. We are now going to restate the
tools introduced by Bodlaender et al. [7] that we need for our purposes.

Let U be a set. We define Π(U) to be the set of all partitions of U . Given two
partitions p and q of U , we define the coarsening relation v such that p v q if for each
S ∈ q, there exists S′ ∈ p such that S ⊆ S′. (Π(U),v) defines a lattice with minimum
element {{U}} and maximum element {{x} | x ∈ U}. On this lattice, we denote by u
the meet operation and by t the join operation.

Let p ∈ Π(U). For X ⊆ U we denote by p↓X = {S ∩X | S ∈ p, S ∩X 6= ∅} ∈ Π(X)

the partition obtained by removing all elements not in X from p, and analogously for
U ⊆ X we denote p↑X = p∪{{x} | x ∈ X \U} ∈ Π(X) the partition obtained by adding
to p a singleton for each element in X \U . Given a subset S of U , we define the partition
U [S] = {{x} | x ∈ U \ S} ∪ {S}.

A set of weighted partitions is a set A ⊆ Π(U)×N. We also define rmc(A) = {(p, w) ∈
A | ∀(p′, w′) ∈ A : p′ = p⇒ w ≤ w′}.

We now define some operations on weighted partitions. Let U be a set and A ⊆
Π(U)× N.

Union. Given B ⊆ Π(U)× N, we define A ∪↓ B = rmc(A ∪ B).

Insert. Given a set X such that X∩U = ∅, we define ins(X,A) = {(p↑U∪X , w) | (p, w) ∈
A}.
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Shift. Given w′ ∈ N, we define shft(w′,A) = {(p, w + w′) | (p, w) ∈ A}.

Glue. Given a set S, we define Û = U ∪ S and glue(S,A) ⊆ Π(Û)× N as
glue(S,A) = rmc({(Û [S] u p↑Û , w | (p, w) ∈ A}).
Given w : Û × Û → N , we define gluew({u, v},A) = shft(w(u, v), glue({u, v},A)).

Project. Given X ⊆ U , we define X = U \X and proj(X,A) ⊆ Π(X)× N as
proj(X,A) = rmc({(p↓X , w) | (p, w) ∈ A,∀e ∈ X : ∀e′ ∈ X : p v U [ee′]}).

Join. Given a set U ′, B ⊆ Π(U ′)×N, and Û = U ∪U ′, we define join(A,B) ⊆ Π(Û)×N
as
join(A,B) = rmc({(p↑Û u q↑Û , w1 + w2) | (p, w1) ∈ A, (q, w2) ∈ B}).

Proposition 1 (Bodlaender et al. [7]). Each of the operations union, insert, shift, glue,
and project can be carried out in time s · |U |O(1), where s is the size of the input of the
operation. Given two weighted partitions A and B, join(A,B) can be computed in time
|A| · |B| · |U |O(1).

Given a weighted partition A ⊆ Π(U) × N and a partition q ∈ Π(U), we define
opt(q,A) = min{w | (p, w) ∈ A, p u q = {U}}. Given two weighted partitions A,A′ ⊆
Π(U)× N, we say that A represents A′ if for each q ∈ Π(U), opt(q,A) = opt(q,A′).

Given a set Z and a function f : 2Π(U)×N × Z → 2Π(U)×N, we say that f preserves
representation if for each two weighted partitions A,A′ ⊆ Π(U)× N and each z ∈ Z, it
holds that if A′ represents A then f(A′, z) represents f(A, z).

Proposition 2 (Bodlaender et al. [7]). The union, insert, shift, glue, project, and join
operations preserve representation.

Theorem 3 (Bodlaender et al. [7]). There exists an algorithm reduce that, given a set
of weighted partitions A ⊆ Π(U) × N, outputs in time |A| · 2(ω−1)|U | · |U |O(1) a set of
weighted partitions A′ ⊆ A such that A′ represents A and |A′| ≤ 2|U |, where ω denotes
the matrix multiplication exponent.

Definition of the problems. Let F be a proper collection. We define the parameter
tmF as the function that maps graphs to non-negative integers as follows:

tmF (G) = min{|S| | S ⊆ V (G) ∧G \ S ∈ extm(F)}. (1)

The parameter mF is defined analogously. The main objective of this paper is to study
the problem of computing the parameters tmF and mF for graphs of bounded treewidth
under several instantiations of the collection F . The corresponding decision problems
are formally defined as follows.
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F-TM-Deletion
Input: A graph G and an integer k ∈ N.
Parameter: The treewidth of G.
Output: Is tmF (G) ≤ k?

F-M-Deletion
Input: A graph G and an integer k ∈ N.
Parameter: The treewidth of G.
Output: Is mF (G) ≤ k?

Note that in both above problems, we can always assume that F is an antichain with
respect to the considered relation. Indeed, this is the case because if F contains two
graphs H1 and H2 where H1 �tm H2, then tmF (G) = tmF ′(G) where F ′ = F \ {H2}
(similarly for the minor relation).

Throughout the article, we let n and tw be the number of vertices and the treewidth
of the input graph of the considered problem, respectively. We will also use w to denote
the width of a (nice) tree decomposition that is given together with the input graph
(which, based on [8], will differ from tw by at most a factor five).

3 A single-exponential algorithm for {P3}-TM-Deletion

It should be noted that a single-exponential algorithm for {P3}-TM-Deletion is already
known. Indeed, Tu et al. [21] presented an algorithm running in time O∗(4tw), and very
recently Bai et al. [1] improved it to O∗(3tw). Nevertheless, for completeness we present
in this section a simpler algorithm, but involving a greater constant than [1, 21].

We first give a simple structural characterization of the graphs that exclude P3 as a
topological minor.

Lemma 1. Let G be a graph. P3 6�tm G if and only if each vertex of G has degree at
most one.

Proof. Let G be a graph. If G has a connected component of size at least three, then
clearly it contains a P3. This implies that, if P3 6�tm G, then each connected component
of G has size at most two and so, each vertex of G has degree at most one. Conversely,
if each vertex of G has degree at most one, then, as P3 contains a vertex of degree two,
P3 6�tm G.

We present an algorithm using classical dynamic programming techniques over a tree
decomposition of the input graph. Let G be an instance of {P3}-TM-Deletion and let
((T,X ), r,G) be a nice tree decomposition of G.

We define, for each t ∈ V (T ), the set It = {(S, S0) | S, S0 ⊆ Xt, S ∩ S0 = ∅} and a
function rt : It → N such that for each (S, S0) ∈ It, r(S, S0) is the minimum ` such that
there exists a set Ŝ ⊆ V (Gt), called the witness of (S, S0), that satisfies:

• |Ŝ| ≤ `,
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• Ŝ ∩Xt = S,

• P3 6�tm Gt \ Ŝ, and

• S0 is the set of vertices of Xt of degree 0 in Gt \ S.

Note that with this definition, tmF (G) = rr(∅, ∅). For each t ∈ V (T ), we assume
that we have already computed rt′ for each children t′ of t, and we proceed to the
computation of rt. We distinguish several cases depending on the type of node t.

Leaf. It = {(∅, ∅)} and rt(∅, ∅) = 0.

Introduce vertex. If v is the insertion vertex of Xt and t′ is the child of t, then for
each (S, S0) ∈ It,

rt(S, S0) = min
(
{rt′(S′, S0) + 1 | (S′, S0) ∈ It′ , S = S′ ∪ {v}}
∪ {rt′(S, S′0) | (S, S′0) ∈ It′ , S0 = S′0 ∪ {v}, NGt[Xt](v) \ S = ∅}
∪ {rt′(S, S′0) | (S, S′0) ∈ It′ , S0 = S′0 \ {u}, u ∈ S′0,

NGt[Xt](v) \ S = {u}}
)
.

Forget vertex. If v is the forget vertex of Xt and t′ is the child of t, then for each
(S, S0) ∈ It,

rt(S, S0) = min{rt′(S′, S′0) | (S′, S′0) ∈ It′ , S = S′ \ {v}, S0 = S′0 \ {v}}

Join. If t′ and t′′ are the children of t, then for each (S, S0) ∈ It,

r(S, S0) = min{r(S′, S′0) + r(S′′, S′′0 )− |S′ ∩ S′′|
| (S′, S′0) ∈ It′ , (S′′, S′′0 ) ∈ It′′ ,

S = S′ ∪ S′′, S0 = S′0 ∩ S′′0 , Xt \ S ⊆ S′0 ∪ S′′0}.

Let us analyze the running time of this algorithm. As, for each t ∈ V (T ), S and S0

are disjoint subsets of Xt, we have that |It| ≤ 3|Xt|. Note that if t is a leaf, then rt can
be computed in time O(1), if t is an introduce vertex or a forget vertex node, and t′ is
the child of t, then rt can be computed in time O(|It′ | · |Xt|), and if t is a join node, and
t′ and t′′ are the two children of t, then rt can be computed in time O(|It′ | · |It′′ | · |Xt|).

We now show that for each t ∈ V (T ), the function rt is correctly computed by the
algorithm.

Leaf. This follows directly from the definition of rt.
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Introduce vertex. Let v be the insertion vertex of Xt. As v is the insertion vertex, we
have that NGt[Xt](v) = NGt(v), and so for each value we add to the set, we can
find a witness of (S, S0) of size bounded by this value.

Conversely, let (S, S0) ∈ It and let Ŝ be a witness. If v ∈ S, then (S \{v}, S0) ∈ It′
and r(S\{v}, S0) ≤ |Ŝ|−1, if v ∈ S0 then (S, S0\{v}) ∈ It′ and r(S, S0\{v}) ≤ |Ŝ|,
and if v ∈ Xt\(S∪S0), then by definition v has a unique neighbor, say u, in Gt\ Ŝ,
moreover u ∈ Xt\(S∪S0), v is the unique neighbor of u in Gt\Ŝ, (S, S0∪{u}) ∈ It′ ,
and r(S, S0 ∪ {u}) ≤ |Ŝ|.

Forget vertex. This also follows directly from the definition of rt.

Join. Let (S′, S′0) ∈ Rt′ and let (S′′, S′′0 ) ∈ It′′ with witnesses Ŝ′ and Ŝ′′, respectively.
If S = S′ ∪ S′′ and S′0 ∪ S′′0 = Xt \ S, then the condition Xt \ S ⊆ S′0 ∪ S′′0 ensures
that Gt \ (Ŝ′ ∪ Ŝ′′) has no vertex of degree at least two and so Ŝ′ ∪ Ŝ′′ is a witness
of (S, S′0 ∩ S′′0 ) ∈ It of size at most rt′(S′, S′0) + rt′(S

′′, S′′0 )− |S′ ∩ S′′|.

Conversely, let (S, S0) ∈ It with witness Ŝ. If Ŝ′ = Ŝ∩V (Gt′) and Ŝ′′ = Ŝ∩V (Gt′′),
then by definition of Ŝ, Ŝ′ is a witness of some (S′, S′0) ∈ It′ , and Ŝ′′ is a witness
of some (S′′, S′′0 ) ∈ It′′ such that S = S′ = S′′, S′0∪S′′0 = Xt \S, and S0 = S′0∩S′′0 ,
and we have rt′(S

′, S′0) + rt′(S
′′, S′′0 )− |S| ≤ |Ŝ|.

The following theorem summarizes the above discussion.

Theorem 4. If a nice tree decomposition of G of width w is given, {P3}-TM-Deletion
can be solved in time O(9w · w · n).

4 A single-exponential algorithm for {P4}-TM-Deletion

Similarly to what we did for {P3}-TM-Deletion, we start with a structural definition
of the graphs that exclude P4 as a topological minor.

Lemma 2. Let G be a graph. P4 6�tm G if and only if each connected component of G
is either a C3 or a star.

Proof. First note that if each connected component of G is either a C3 or a star, then
P4 6�tm G. Conversely, assume that P4 6�tm G. Then each connected component of G of
size at least 4 should contain at most 1 vertex of degree at least 2, hence such component
is a star. On the other hand, the only graph on at most 3 vertices that is not a star is
C3. The lemma follows.
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As we did for {P3}-TM-Deletion, we present an algorithm using classical dynamic
programming techniques over a tree decomposition of the input graph. Let G be an
instance of {P4}-Deletion, and let ((T,X ), r,G) be a nice tree decomposition of G.

We define, for each t ∈ T , the set It to be the set of each tuple (S, S1+, S1−, S∗, S3+, S3−)

such that {S, S1+, S1−, S∗, S3+, S3−} is a partition of Xt and the function rt : It → N
such that, for each (S, S1+, S1−, S∗, S3+, S3−) ∈ It, rt(S, S1+, S1−, S∗, S3+, S3−) is the
minimum ` such that there exists a triple (Ŝ, Ŝ∗, Ŝ3−) ⊆ V (Gt)×V (Gt)×V (Gt), called
the witness of (S, S1+, S1−, S∗, S3+, S3−), which satisfies the following properties:

• Ŝ, Ŝ∗, and Ŝ3− are pairwise disjoint,

• Ŝ ∩Xt = S, Ŝ∗ ∩Xt = S∗, and Ŝ3− ∩Xt = S3−,

• |Ŝ| ≤ `,

• P4 6�tm Gt \ Ŝ,

• S1+ is a set of vertices of degree 0 in Gt \ Ŝ,

• each vertex of S1− has a unique neighbor in Gt \ Ŝ and this neighbor is in Ŝ∗,

• each connected component of Gt[Ŝ3−] is a C3,

• there is no edge in Gt\ Ŝ between a vertex of Ŝ3− and a vertex of V (Gt)\(Ŝ∪ Ŝ3−),

• there is no edge in Gt\ Ŝ between a vertex of S3+ and a vertex of V (Gt)\(Ŝ∪S3+),
and

• there is no edge in Gt \ Ŝ between two vertices of S∗.

Intuitively, Ŝ corresponds to a partial solution in Gt. Note that, by Lemma 2, each
component of Gt \ Ŝ must be either a star or a C3. With this in mind, Ŝ∗ is the set of
vertices that are centers of a star in Gt \ Ŝ, S1+ is the set of leaves of a star that are
not yet connected to a vertex of Ŝ∗, S1− is the set of leaves of a star that are already
connected to a vertex of Ŝ∗, Ŝ3− is the set of vertices that induce C3’s in Gt, and S3+ is
a set of vertices that will induce C3’s when further edges will appear.

Note that with this definition, tmF (G) = rr(∅, ∅, ∅, ∅, ∅, ∅). For each t ∈ V (T ), we
assume that we have already computed rt′ for each children t′ of t, and we proceed to
the computation of rt. We distinguish several cases depending on the type of node t.

Leaf. It = {(∅, ∅, ∅, ∅, ∅, ∅)} and rt(∅, ∅, ∅, ∅, ∅, ∅) = 0.
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Introduce vertex. If v is the insertion vertex of Xt and t′ is the child of t, then, for
each (S, S1+, S1−, S∗, S3+, S3−) ∈ It,

rt(S, S1+, S1−, S∗, S3+, S3−) = min
(
{rt′(S′, S1+, S1−, S∗, S3+, S3−) + 1

| (S′, S1+, S1−, S∗, S3+, S3−) ∈ Rt′ , S = S′ ∪ {v}}
∪ {rt′(S, S′1+, S1−, S∗, S3+, S3−)

| (S, S′1+, S1−, S∗, S3+, S3−) ∈ Rt′ ,

S1+ = S′1+ ∪ {v}, NGt[Xt\S](v) = ∅}
∪ {rt′(S, S1+, S

′
1−, S∗, S3+, S3−)

| (S, S1+, S
′
1−, S∗, S3+, S3−) ∈ Rt′ ,

S1− = S′1− ∪ {v}, z ∈ S∗, NGt[Xt\S](v) = {z}}
∪ {rt′(S, S′1+, S

′
1−, S

′
∗, S3+, S3−)

| (S, S′1+, S
′
1−, S

′
∗, S3+, S3−) ∈ Rt′ ,

S∗ = S′∗ ∪ {v}, NGt[Xt\S](v) ⊆ S′1+,

S1+ = S′1+ \NGt[Xt\S](v), S1− = S′1− ∪NGt[Xt\S](v)}
∪ {rt′(S, S1+, S1−, S∗, S′3+, S3−)

| (S, S1+, S1−, S∗, S′3+, S3−) ∈ Rt′ ,

S3+ = S′3+ ∪ {v},
[NGt[Xt\S](v) = ∅] or
[z ∈ S′3+, NGt[Xt\S](v) = {z}, NGt[Xt\S](z) = {v}]}

∪ {rt′(S, S1+, S1−, S∗, S′3+, S
′
3−)

| (S, S1+, S1−, S∗, S′3+, S3−) ∈ Rt′ ,

S3+ = S′3+ \ {z, z′}, S3− = S′3− ∪ {z, z′, v},
z, z′ ∈ S′3+, NGt[Xt\S](v) = {z, z′},
NGt[Xt\S](z) = {v, z′}, NGt[Xt\S](z

′) = {v, z}}
)
.

Forget vertex. If v is the forget vertex of Xt and t′ is the child of t, then,
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for each (S, S1+, S1−, S∗, S3+, S3−) ∈ It,

rt(S, S1+, S1−, S∗, S3+, S3−) = min{rt′(S′, S1+, S
′
1−, S

′
∗, S3+, S

′
3−)

| (S′, S1+, S
′
1−, S

′
∗, S3+, S

′
3−) ∈ It′ ,

S = S′ \ {v}, S1− = S′1− \ {v},
S∗ = S′∗ \ {v}, S3− = S′3− \ {v}}.

Join. If t′ and t′′ are the children of t, then for each (S, S1+, S1−, S∗, S3+, S3−) ∈ It,
rt(S, S1+, S1−, S∗, S3+, S3−) is

min{rt′(S, S′1+, S
′
1−, S∗, S

′
3+, S

′
3−) + rt′(S, S

′′
1+, S

′′
1−, S∗, S

′′
3+, S

′′
3−)− |S|

| (S, S′1+, S
′
1−, S∗, S

′
3+, S

′
3−) ∈ It′ , (S, S′′1+, S

′′
1−, S∗, S

′′
3+, S

′′
3−) ∈ It′′ ,

(S′1+ ∪ S′1−) ∩ (S′′3+ ∪ S′′3−) = (S′′1+ ∪ S′′1−) ∩ (S′3+ ∪ S′3−) = ∅,
∀v ∈ S′1− ∩ S′′1−, ∃z ∈ S∗ : NGt[Xt\S](v) = {z},
S1− = (S′1− ∪ S′′1−), S1+ = S′1+ ∩ S′′1+,

∀v ∈ S′3− ∩ S′′3−, ∃z, z′ ∈ S′3− ∩ S′′3− : v, z, z′ induce a C3 inGt[Xt \ S],

S3− = (S′3− ∪ S′′3−), S3+ = S′3+ ∩ S′′3+}.

Let us analyze the running time of this algorithm. As, for each t ∈ V (T ), S, S1+, S1−,
S∗, S3+, and S3− form a partition of Xt, we have that |It| ≤ 6|Xt|. Note that if t is a
leaf, then rt can be computed in time O(1), if t is an introduce vertex or a forget vertex
node, and t′ is the child of t, then rt can be computed in time O(|It′ | · |Xt|), and if t
is a join node, and t′ and t′′ are the two children of t, then rt can be computed in time
O(|It′ | · |It′′ | · |Xt|).

We now show that for each t ∈ V (T ), rt is correctly computed by the algorithm.
For each (S, S1+, S1−, S∗, S3+, S3−) ∈ It, it can be easily checked that each value ` we
compute respects, rt(S, S1+, S1−, S∗, S3+, S3−) ≤ `. Conversely, we now argue that for
each (S, S1+, S1−, S∗, S3+, S3−) ∈ It, the computed value ` is such that each witness
(Ŝ, Ŝ∗, Ŝ3−) of (S, S1+, S1−, S∗, S3+, S3−) satisfies ` ≤ |Ŝ|. We again distinguish the type
of node t.

Leaf. This follows directly from the definition of rt.

Introduce vertex. Let v be the insertion vertex of Xt, let (S, S1+, S1−, S∗, S3+, S3−) ∈
Rt, and let (Ŝ, Ŝ∗, Ŝ3−) be a witness.

• If v ∈ S, then (S \ {v}, S1+, S1−, S∗, S3+, S3−) ∈ It′ and
rt′(S \ {v}, S1+, S1−, S∗, S3+, S3−) ≤ |Ŝ| − 1.
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• If v ∈ S1+, then v is of degree 0 inGt\Ŝ, hence (S, S1+\{v}, S1−, S∗, S3+, S3−) ∈
It′ and rt′(S, S1+ \ {v}, S1−, S∗, S3+, S3−) ≤ |Ŝ|.

• If v ∈ S1−, then v has a unique neighbor that is in Ŝ∗. As v is the in-
sertion vertex of Xt, it implies that NGt(v) ⊆ S∗, and so (S, S1+, S1− \
{v}, S∗, S3+, S3−) ∈ It′ and rt′(S, S1+, S1− \ {v}, S∗, S3+, S3−) ≤ |Ŝ|.

• If v ∈ S∗, then every neighbor of v is in S1− and has degree 1 in Gt \ Ŝ.
Thus, (S, S1+ ∪NGt[Xt\S](v), S1− \NGt[Xt\S](v), S∗ \ {v}, S3+, S3−) ∈ It′ and
rt′(S, S1+ ∪NGt[Xt\S](v), S1− \NGt[Xt\S](v), S∗ \ {v}, S3+, S3−) ≤ |Ŝ|.

• If v ∈ S3+, then (S, S1+, S1−, S∗, S3+ \ {v}, S3−) ∈ It′ and
rt′(S, S1+, S1−, S∗, S3+ \ {v}, S3−) ≤ |Ŝ|.

• If v ∈ S3−, then there exist z and z′ in S3− such that {v, z, z′} induce a C3 in
Gt \ Ŝ and there is no edge in Gt \ Ŝ between a vertex of {v, z, z′} and a vertex
of V (Gt \ Ŝ)\{x, z, z′}. So (S, S1+, S1−, S∗, S3+∪{z, z′}, S3− \{x, z, z′}) ∈ It′
and rt′(S, S1+, S1−, S∗, S3+ ∪ {z, z′}, S3− \ {x, z, z′}) ≤ |Ŝ|.

Forget vertex. Let v be the forget vertex of Xt, let (S, S1+, S1−, S∗, S3+, S3−) ∈ It,
and let (Ŝ, Ŝ∗, Ŝ3−) be a witness. If v has degree 0 in Gt \ Ŝ, then (S, S1+, S1−, S∗∪
{v}, S3+, S3−) ∈ It′ and rt′(S, S1+, S1−, S∗ ∪ {v}, S3+, S3−) ≤ |Ŝ|. If v has degree
at least 1 in Gt \ Ŝ, then NGt\Ŝ(v)∩S3+ = ∅, as otherwise there would be an edge

in Gt \ Ŝ between a vertex of S3+ and a vertex of V (Gt) \ (Ŝ ∪ S3+). So, one of
the following case occurs:

• v ∈ Ŝ, (S ∪ {v}, S1+, S1−, S∗, S3+, S3−) ∈ It′ , and
rt′(S ∪ {v}, S1+, S1−, S∗, S3+, S3−) ≤ |Ŝ|,

• v ∈ Ŝ∗, (S, S1+, S1−, S∗ ∪ {v}, S3+, S3−) ∈ It′ , and
rt′(S, S1+, S1−, S∗ ∪ {v}, S3+, S3−) ≤ |Ŝ|,

• N
Gt\Ŝ(v) ⊆ Ŝ∗, (S, S1+, S1− ∪ {v}, S∗, S3+, S3−) ∈ It′ , and

rt′(S, S1+, S1− ∪ {v}, S∗, S3+, S3−) ≤ |Ŝ|, or

• v ∈ Ŝ3−, (S, S1+, S1−, S∗, S3+, S3− ∪ {v}) ∈ It′ , and
rt′(S, S1+, S1−, S∗, S3+, S3− ∪ {v}) ≤ |Ŝ|

Join. Let (S, S1+, S1−, S∗, S3+, S3−) ∈ It, and let (Ŝ, Ŝ∗, Ŝ3−) be a witness. Let t′ and
t′′ be the two children of t. We define Ŝ′ = Ŝ∩V (Gt′), Ŝ′′ = Ŝ∩V (Gt′′), Ŝ′∗ = Ŝ∗∩
V (Gt′), Ŝ′′∗ = Ŝ∗∩V (Gt′′), Ŝ′3− ⊆ Ŝ3−∩V (Gt′), and Ŝ′′3− ⊆ Ŝ3−∩V (Gt′′), such that
each connected component of Gt[Ŝ

′
3−] (resp. Gt[Ŝ

′′
3−]) is a C3 and Gt′ \ (Ŝ′ ∪ Ŝ′3−)

(resp. Gt′′ \ (Ŝ′′ ∪ Ŝ′′3−)) is a forest). Then we define

• S′ = Ŝ′ ∩Xt,
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• S′1+ = S1+ ∪ {v ∈ S1− | NGt\Ŝ(v) 6⊆ Ŝ′∗},

• S′1− = {v ∈ S1− | NGt\Ŝ(v) ⊆ Ŝ′∗},

• S′∗ = S∗ ∩ V (Gt′),

• S′3− = Ŝ′3− ∩Xt, and

• S′3+ = S3+ ∪ (S3− \ S′3−).

Note that (S′, S′1+, S
′
1−, S

′
∗, S
′
3+, S

′
3−) ∈ I ′t. We define (S′′, S′′1+, S

′′
1−, S

′′
∗ , S

′′
3+, S

′′
3−) ∈

I ′′t similarly. Moreover we can easily check that

• S = S′ = S′′, S∗ = S′∗ = S′′∗ ,

• (S′1+ ∪ S′1−) ∩ (S′′3+ ∪ S′′3−) = (S′′1+ ∪ S′′1−) ∩ (S′3+ ∪ S′3−) = ∅,

• ∀v ∈ S′1− ∩ S′′1−,∃z ∈ S∗ : NGt[Xt\S](v) = {z},

• ∀v ∈ S′3− ∩ S′′3−,∃z, z′ ∈ S′3− ∩ S′′3− : v, z, z′ induce a C3 in Gt[Xt \ S],

• (S, S1+, S1−, S∗, S3+, S3−) = (S, S′1+ ∩ S′′1+, S
′
1− ∪ S′′1−, S∗, S′3+ ∩ S′′3+, S

′
3− ∪

S′′3−), and

• rt′(S
′, S′1+, S

′
1−, S

′
∗, S
′
3+, S

′
3−) + rt′′(S

′′, S′′1+, S
′′
1−, S

′′
∗ , S

′′
3+, S

′′
3−)− |S| ≤ |Ŝ|.

This concludes the proof of correctness of the algorithm. The following theorem
summarizes the above discussion.

Theorem 5. If a nice tree decomposition of G of width w is given, {P4}-Deletion can
be solved in time O(36w · w · n).

5 Single-exponential algorithms for {K1,s}-TM-Deletion

Similarly to what we did before, we start with a (trivial) structural characterization of
the graphs that exclude K1,s, for some fixed integer s, as a topological minor.

Lemma 3. Let s be a positive integer. A graph G contains K1,s as a topological minor
if and only if it contains a vertex of degree at least s.

Proof. Let s be a fixed integer. If a graph G contains a vertex v of degree at least s,
then G contains K1,s as a subgraph and so, as a topological minor. If G contains K1,s

as a topological minor, then it implies that there exist in G a vertex v and s paths of
size at least two such that the intersection of any two of these paths contains precisely
v. Thus v has degree at least s.
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Given a fixed integer s ≥ 1, the s-Bounded-degree Vertex Deletion problem
asks, given a graph G and an integer k, whether one can remove at most k vertices from
G such that the remaining graph has maximum degree at most s. Lemma 3 implies that
for every positive integer s, {K1,s}-TM-Deletion is exactly (s−1)-Bounded-degree
Vertex Deletion. For completeness, we provide a simple single-exponential algorithm
parameterized by treewidth that solves s-Bounded-degree Vertex Deletion for any
fixed integer s ≥ 1.

Let s ≥ 1 be a fixed integer, let G be an instance of s-Bounded-degree Vertex
Deletion, and let ((T,X ), r,G) be a nice tree decomposition of G. We define, for
each t ∈ V (T ), the set It = {(S, f) | S ⊆ Xt, f : Xt \ S → [0, s− 1]} and a function
rt : It → N such that for each (S, f) ∈ It, r(S, f) is the minimum ` such that there
exists a set Ŝ ⊆ V (Gt), called the witness of (S, f), that satisfies:

• |Ŝ| ≤ `,

• Ŝ ∩Xt = S, and

• for each v ∈ Xt \ S, degGt\Ŝ(v) = f(v).

Note that with this definition, tmF (G) = rr(∅,∅). For each t ∈ V (T ), we assume that
we have already computed rt′ for each children t′ of t, and we proceed to the computation
of rt. We distinguish several cases depending on the type of node t.

Leaf. It = {(∅,∅)} and rt(∅,∅) = 0.

Introduce vertex. If v is the insertion vertex of Xt and t′ is the child of t, then for
each (S, f) ∈ It,

rt(S, f) = min
(
{rt′(S′, f) + 1 | (S′, f) ∈ It′ , S = S′ ∪ {v}}
∪ {rt′(S, f ′) | (S, f ′) ∈ It′ , f(v) = degG[Xt\S](v),

∀v′ ∈ NGt[Xt\S](v), f(v′) = f ′(v′) + 1,

∀v′ ∈ Xt′ \ (S ∪NGt[Xt\S](v)), f(v′) = f ′(v′)}
)
.

Forget vertex. If v is the forget vertex of Xt and t′ is the child of t, then for each
(S, f) ∈ It,

rt(S, f) = min{rt′(S′, f ′) | (S′, f ′) ∈ It′ , S = S′ \ {v}, ∀v′ ∈ Xt \ S, f(v′) = f ′(v′)}.

Join. If t′ and t′′ are the children of t, then for each (S, f) ∈ It,

r(S, f) = min{r(S, f ′) + r(S, f ′′)− |S|
| (S, f ′) ∈ It′ , (S, f ′′) ∈ It′′ ,
∀v ∈ Xt \ S, f(v) = f ′(v) + f ′′(v)− degGt[Xt\S](v)}.
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One can check that for each t ∈ V (T ), the set It is of size at most (s + 1)|Xt|: for each
vertex in Xt \ S there are s possible values for its degree, together with the choice of
belonging to S or not for each vertex in Xt. Using the same argumentation as in the
previous algorithms, we obtain the following theorem.

Theorem 6. Let s ≥ 1 be a fixed integer. If a nice tree decomposition of G of width w
is given, {K1,s}-TM-Deletion can be solved in time O((s+ 1)2w · w · n).

6 A single-exponential algorithm for {C4}-TM-Deletion

As discussed before, in this section we use the dynamic programming techniques intro-
duced by Bodlaender et al. [7] to obtain a single-exponential algorithm for {C4}-TM-
Deletion. It is worth mentioning that the {Ci}-TM-Deletion problem has been
studied in digraphs from a non-parameterized point of view [20]. The algorithm we
present solves the decision version of {C4}-TM-Deletion: the input is a pair (G, k),
where G is a graph and k is an integer, and the output is the boolean value tmF (G) ≤ k.

We give some definitions that will be used for the following algorithm. Given a graph
G, we denote by n(G) = |V (G)|, m(G) = |E(G)|, c3(G) the number of C3’s that are
subgraphs of G, and cc(G) the number of connected components of G. We say that G
satisfies the C4-condition if the following conditions hold:

• G does not contain the diamond as a subgraph, and

• n(G)−m(G) + c3(G) = cc(G).

As in the case of P3 and P4, we state in Lemma 5 a structural characterization of
the graphs that exclude C4 as a (topological) minor. We first need an auxiliary lemma.

Lemma 4. Let n0 be a positive integer. Assume that for each graph G′ such that 1 ≤
n(G′) ≤ n0, C4 6�tm G′ if and only if G′ satisfies the C4-condition. If G is a graph that
does not contain a diamond as a subgraph and such that n(G) = n0, then n(G)−m(G) +

c3(G) ≤ cc(G).

Proof. Let n0 be a positive integer, and assume that for each graph G′ such that 1 ≤
n(G′) ≤ n0, C4 6�tm G′ if and only if G satisfies the C4-condition. Let G be a graph
that does not contain a diamond as a subgraph and such that n(G) = n0. Let S ⊆ E(G)

such that C4 6�tm G \S and cc(G \S) = cc(G) (note that any minimal feedback edge set
satisfies these conditions). We have, by hypothesis, that G\S satisfies the C4-condition,
so n(G \ S) − m(G \ S) + c3(G \ S) = cc(G \ S). Moreover, as G does not contain
a diamond as a subgraph, each edge of G participates in at most one C3, and thus
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c3(G)− c3(G \ S) ≤ |S|. As by definition n(G) = n(G \ S) and m(G)−m(G \ S) = |S|,
we obtain that n(G)−m(G) + c3(G) ≤ cc(G \ S) = cc(G).

Lemma 5. Let G be a non-empty graph. C4 6�tm G if and only if G satisfies the C4-
condition.

Proof. Let G be a non-empty graph, and assume first that C4 6�tm G. This directly
implies that G does not contain the diamond as a subgraph. In particular, any two
cycles of G, which are necessarily C3’s, cannot share an edge. Let S be a set containing
an arbitrary edge of each C3 in G. By construction, G \ S is a forest. As in a forest
F , we have n(F )−m(F ) = cc(F ), and S is defined such that |S| = c3(G) because each
edge of G participates in at most one C3, we obtain that n(G)−m(G) + c3(G) = cc(G).
Thus, G satisfies the C4-condition.

Conversely, assume now that G satisfies the C4-condition. We prove that C4 6�tm G

by induction on n(G). If n(G) ≤ 3, then n(G) < n(C4) and so C4 6�tm G. Assume now
that n(G) ≥ 4, and that for each graph G′ such that 1 ≤ n(G′) < n(G), if G′ satisfies
the C4-condition, then C4 6�tm G′. We prove that this last implication is also true for
G. Note that, as two C3 cannot share an edge in G, we have that c3(G) ≤ m(G)

3 . This
implies that the minimum degree of G is at most 2. Indeed, if each vertex of G had
degree at least 3, then m(G) ≥ 3

2n(G), which together with the relations c3(G) ≤ m(G)
3

and n(G) −m(G) + c3(G) = cc(G) would imply that cc(G) ≤ 0, a contradiction. Let
v ∈ V (G) be a vertex with minimum degree. We distinguish two cases according to the
degree of v.

If v has degree 0 or 1, then the graph G \ {v} satisfies the C4-condition as well,
implying that C4 6�tm G \ {v}. As v has degree at most one, it cannot be inside a cycle,
hence C4 6�tm G.

Assume that v has degree two and participates in a C3. As G does not contain a
diamond as a subgraph, C4 �tm G if and only if C4 �tm G \ {v}. Moreover n(G \ {v}) =

n(G) − 1, m(G \ {v}) = m(G) − 2, c3(G \ {v}) = c3(G) − 1, and cc(G \ {v}) = cc(G).
This implies that G \ {v} satisfies the C4-condition, hence C4 6�tm G \ {v}, and therefore
C4 6�tm G.

Finally, assume that v has degree two and does not belong to any C3. Using the
induction hypothesis and Lemma 4, we have that n(G\{v})−m(G\{v})+c3(G\{v}) ≤
cc(G\{v}). As n(G\{v}) = n(G)−1, m(G\{v}) = m(G)−2, c3(G\{v}) = c3(G), v has
degree two in G, and G satisfies the C4-condition, we obtain that cc(G\{v}) = cc(G)−1.
This implies that G \ {v} satisfies the C4-condition, and thus C4 6�tm G \ {v}. Since v
disconnects one of the connected components of G it cannot participate in a cycle of G,
hence C4 6�tm G.
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Lemma 6. If G is a non-empty graph such that C4 6�tm G, then m(G) ≤ 3
2(n(G)− 1).

Proof. As C4 6�tm G, by Lemma 5 G satisfies the C4-condition. It follows that c3(G) ≤
1
3m(G). Moreover, as G is non-empty, we have that 1 ≤ cc(G). The lemma follows by
using these inequalities in the equality n(G)−m(G) + c3(G) = cc(G).

We now have all the tools needed to describe our algorithm. Recall that the basic
ingredients of the rank-based approach of Bodlaender et al. [7] were given in Section 2.
Let G be a graph and k be an integer. The algorithm we describe solves the decision
version of {C4}-TM-Deletion. This algorithm is based on the one given in [7, Section
3.5] for Feedback Vertex Set.

We define a new graph G0 = (V (G)∪{v0}, E(G)∪E0), where v0 is a new vertex and
E0 = {{v0, v} | v ∈ V (G)}. The role of v0 is to artificially guarantee the connectivity
of the solution graph, so that the machinery of Bodlaender et al. [7] can be applied.
In the following, for each subgraph H of G0, for each Z ⊆ V (H), and for each Z0 ⊆
E0 ∩ E(H[Z]), we denote by H〈Z,Z0〉 the graph

(
Z,Z0 ∪ E

(
H[Z \ {v0}]

))
.

Given a nice tree decomposition of G of width w, we define a nice tree decomposition
((T,X ), r,G) of G0 of width w + 1 such that the only empty bags are the root and the
leaves and for each t ∈ T , if Xt 6= ∅ then v0 ∈ Xt. Note that this can be done in linear
time. For each bag t, each integers i, j, and `, each function s : Xt → {0, 1}, each
function s0 : {v0} × s−1(1) → {0, 1}, each function r : E(Gt

〈
s−1(1), s−1

0 (1)
〉
) → {0, 1},

and for each partition p ∈ Π(s−1(1)), if C4 6�tm Gt

〈
s−1(1), s−1

0 (1)
〉
, we define:
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Et(p, s, s0, r, i, j, `) = {(Z,Z0) | (Z,Z0) ∈ 2Vt × 2E0∩E(Gt)

|Z| = i, |E(Gt〈Z,Z0〉)| = j, c3(Gt〈Z,Z0〉) = `,

Gt〈Z,Z0〉 does not contain the diamond as a subgraph,

Z ∩Xt = s−1(1), Z0 ∩ (Xt ×Xt) = s−1
0 (1),

v0 ∈ Xt ⇒ s(v0) = 1,

∀u ∈ Z \Xt : either t is the root or

∃u′ ∈ s−1(1) : u and u′ are connected in Gt〈Z,Z0〉,
∀v1, v2 ∈ s−1(1) : p v Vt[{v1, v2}]⇔ v1 and v2 are con-

nected in Gt〈Z,Z0〉,

∀e ∈ E(Gt〈Z,Z0〉) ∩
(
s−1(1)

2

)
: r(e) = 1⇔ e is an edge

of a C3 in Gt〈Z,Z0〉}

At(s, s0, r, i, j, `) = {p | p ∈ Π(s−1(1)), Et(p, s, s0, r, i, j, `) 6= ∅}.

Otherwise, i.e., if C4 �tm Gt

〈
s−1(1), s−1

0 (1)
〉
, we define

At(s, s0, r, i, j, `) = ∅.

Note that we do not need to keep track of partial solutions if C4 �tm Gt

〈
s−1(1), s−1

0 (1)
〉
,

as we already know they will not lead to a global solution. Moreover, if C4 6�tm

Gt

〈
s−1(1), s−1

0 (1)
〉
, then by Lemma 6,m(Gt

〈
s−1(1), s−1

0 (1)
〉
) ≤ 3

2(n(Gt

〈
s−1(1), s−1

0 (1)
〉
)−

1).
Using the definition of Ar, Lemma 5, and Lemma 6, we have that tm{C4}(G) ≤

k if and only if for some i ≥ |V (G) ∪ {v0}| − k and some j ≤ 2
3(i − 1), we have

Ar(∅,∅,∅, i, j, 1 + j − i) 6= ∅. For each t ∈ V (T ), we assume that we have already
computed At′ for each children t′ of t, and we proceed to the computation of At. As
usual, we distinguish several cases depending on the type of node t.

Leaf. By definition of At we have At(∅,∅,∅, 0, 0, 0) = {∅}.

Introduce vertex. Let v be the insertion vertex of Xt, let t′ be the child of t, let s, s0,
and r the functions defined as before, let H = Gt

〈
s−1(1), s−1

0 (1)
〉
, and let d3 be

the number of C3’s of H that contain the vertex v.
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• If C4 �tm H or if v = v0 and s(v0) = 0, then by definition of At we have that
At(s, s0, r, i, j, `) = ∅.

• Otherwise, if s(v) = 0, then, by definition ofAt, it holds thatAt(s, s0, r, i, j, `) =

At′(s|Xt′ , s0|Et′ , r|Et′ , i, j, `).

• Otherwise, if v = v0, then by construction of the nice tree decomposition, we
know that t′ is a leaf of T and so s = {(v0, 1)}, s0 = r = ∅, j = ` = i− 1 = 0

and At(s, s0, r, i, j, `) = ins({v0},At′(∅,∅,∅, 0, 0, 0)).

• Otherwise, we know that v 6= v0, s(v) = 1, v0 ∈ NG[s−1(1)](v), and C4 6�tm H.
As s(v) = 1, we have to insert v and we have to make sure that all vertices of
NH [v] \ {v0} are in the same connected component of H. The only remaining
choice is either we insert the edge {v, v0} or not. This is handle by the value
of s0({v0, v}). So, by adding v, we add one vertex, |NH(v)| edges, and d3

C3’s. We also have to take care not to introduce a diamond. For this, the
function r should be such that, for every edge e contained in a C3’s of H that
contains the vertex v, r(e) = 1. We define r′ : E(H[Xt′ ]) → {0, 1} such that
for every edge e ∈ E(H[Xt′ ]) contained in a C3’s of H that contains the vertex
v, r′(e) = 0, and for each other edge e of H[Xt′ ], r′(e) = r(e). Therefore, we
have that

At(s, s0, r, i, j, `) =

glue(NH [v], ins({v},At′(s|Xt′ , s0|Et′ , r
′, i− 1, j − |NH(v)|, `− d3))).

Forget vertex. Let v be the forget vertex of Xt, let t′ be the child of t, and let s, s0,
and r the functions defined as before. For each function, we have a choice on how
it can be extended in t′, and we potentially need to consider every possible such
extension. Note the number of vertices, edges, or C3’s is not affected. We obtain
that

At(s, s0, r, i, j, `) = At′(s ∪ {(v, 0)}, s0, r, i, j, `)⋃↓
s′:Xt′→{0,1}, s′|Xt=s, s′(v)=1

s′0:{v0}×s′−1(1)→{0,1}, s′0|Xt=s0

r′:E(Gt〈s′−1(1),s′−1
0 (1)〉)→{0,1}, r′|Xt=r

proj({v}, At′(s
′, s′0, r

′, i, j, `)).

Join. Let t′ and t′′ be the two children of t, let s, s0, and r be the functions defined
as before, let H = Gt

〈
s−1(1), s−1

0 (1)
〉
, and let S ⊆ E(H) be the set of edges that

participate in a C3 of H.
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We join every compatible entries At′(s
′, s′0, r

′, i′, j′, `′) and At′′(s
′′, s′′0, r

′′, i′′, j′′, `′′).
For two such entries being compatible, we need s′ = s′′ = s and s′0 = s′′0 = s0.
Moreover, we do not want the solution graph to contain a diamond as a subgraph,
and for this we need r′−1(1)∩ r′′−1(1) = S. Indeed, either H contains the diamond
as a subgraph, and then At′(s

′, s′0, r
′, i′, j′, `′) = At′′(s

′′, s′′0, r
′′, i′′, j′′, `′′) = {∅}, or

the diamond is created by joining two C3’s, one from t′ and the other one from t′′,
sharing a common edge. This is possible only if (r′−1(1) ∩ r′′−1(1)) \ S 6= ∅. For
the counters, we have to be careful in order not to count some element twice. We
obtain that

At(s, s0, r, i, j, `) =
⋃↓

r′,r′′:E(H)→{0,1},
r′−1(1)∩r′′−1(1)=S

i′+i′′=i+|V (H)|
j′+j′′=j+|E(H)|
`′+`′′=`+c3(H)

join(At′(s, s0, r
′, i′, j′, `′), At′′(s, s0, r

′′, i′′, j′′, `′′)).

Theorem 7. {C4}-TM-Deletion can be solved in time 2O(tw) · n7.

Proof. The algorithm works in the following way. For each node t ∈ V (T ) and for each
entryM of its table, instead of storingAt(M), we storeA′t(M) = reduce(At(M)) by using
Theorem 3. As each of the operation we use preserves representation by Proposition 2,
we obtain that for each node t ∈ V (T ) and for each possible entry M , A′t(M) represents
At(M). In particular, we have that A′r(M) = reduce(Ar(M)) for each possible entry
M . Using the definition of Ar, Lemma 5, and Lemma 6, we have that tm{C4}(G) ≤
k if and only if for some i ≥ |V (G) ∪ {v0}| − k and some j ≤ 2

3(i − 1), we have
A′r(∅,∅,∅, i, j, 1 + j − i) 6= ∅.

We now focus on the running time of the algorithm. The size of the intermediate
sets of weighted partitions, for a leaf node and for an introduce vertex node are upper-
bounded by 2|s

−1(1)|. For a forget vertex node, as in the big union operation we take
into consideration a unique extension of s, at most two possible extensions of s0, and at
most 2|s

−1(1)| possible extensions for r, we obtain that the intermediate sets of weighted
partitions have size at most 2|s

−1(1)| + 2 · 2|s−1(1)| · 2|s−1(1)| ≤ 22|s−1(1)|+2. For a join
node, as in the big union operation we take into consideration at most 2|E(H)| possible
functions r′ and as many functions r′′, at most n+ |s−1(1)| choices for i′ and i′′, at most
3
2(n − 1) + |E(H)| choices for j′ and j′′, and at most 1

2(n − 1) + 1
3 |E(H)| choices for

`′ and `′′, we obtain that the intermediate sets of weighted partitions have size at most
2|E(H)| ·2|E(H)| ·(n+ |s−1(1)|) ·(3

2(n−1)+ |E(H)|) ·(1
2(n−1)+ 1

3 |E(H)|) ·4|s−1(1)|. As each
time we can check the condition C4 6�tm H, by Lemma 6 m(H) ≤ 3

2(n(H) − 1), so we
obtain that the intermediate sets of weighted partitions have size at most 6 ·n3 ·25|s−1(1)|.
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Moreover, for each node t ∈ V (T ), the function reduce will be called as many times as
the number of possible entries, i.e., at most 2O(w) · n3 times. Thus, using Theorem 3,
A′t can be computed in time 2O(w) · n6. The theorem follows by taking into account the
linear number of nodes in a nice tree decomposition.

7 A single-exponential algorithm for {paw}-TM-Deletion

Again, we start with a simple structural characterization of the simple graphs that
exclude the paw as a topological minor; recall the paw graph in Figure 2.

Figure 2: The paw graph.

Lemma 7. Let G be a simple graph. paw 6�tm G if and only if each connected component
of G is either a cycle or a tree.

Proof. It is easy to see that neither a cycle nor a tree contain the paw as a topological
minor. Let G be a graph such that paw 6�tm G. Let us assume w.l.o.g. that G is
connected. If G does not contains a cycle, then it is a tree. Otherwise, let C be a
chordless cycle in G. If G contains a vertex v that is not in C then, as G is connected,
there exists a path from v to C containing at least two vertices. This is not possible, as
it would imply that G contains the paw as a topological minor. As C is chordless and G
is simple, we obtain that G is exactly the cycle C, and the lemma follows.

We present an algorithm that solves the decision version of {paw}-TM-Deletion.
As the algorithm that we presented for {C4}-TM-Deletion in Section 6, this algorithm
is based on the one given in [7, Section 3.5] for Feedback Vertex Set. Let G be a
graph and k be an integer. The idea of the following algorithm is to partition V (G) into
three sets. The first one will be the solution set S, the second one will be a set F of
vertices that induces a forest, and the third one will be a set C of vertices that induces a
collection of cycles. If we can partition our graph into three such sets (S, F,C) such that
there is no edge between a vertex of F and a vertex of C and such that |S| ≤ k, then,
using Lemma 7, we know that tm{paw}(G) ≤ k. On the other hand, if such a partition
does not exist, we know that tm{paw}(G) > k. The main idea of this algorithm is to
combine classical dynamic programming techniques in order to verify that C induces a
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collection of cycles, and the rank-based approach in order to verify that F induces a
forest.

As for {C4}-TM-Deletion, we define a new graph G0 = (V (G)∪{v0}, E(G)∪E0),
where v0 is a new vertex and E0 = {{v0, v} | v ∈ V (G)}. We recall that for each
subgraph H of G0, for each Z1 ⊆ V (H), and for each Y ⊆ E0 ∩E(H[Z1]), we denote by
H〈Z1, Y 〉 the graph

(
Z1, Y ∪ E

(
H[Z1 \ {v0}]

))
.

Given a nice tree decomposition of G of width w, we define a nice tree decomposition
((T,X ), r,G) of G0 of width w + 1 such that the only empty bags are the root and the
leaves and for each t ∈ T , if Xt 6= ∅ then v0 ∈ Xt. Note that this can be done in linear
time. For each bag t, each integers i, j, and `, each function s : Xt → {0, 1, 20, 21, 22},
each function s0 : {v0} × s−1(1)→ {0, 1}, and each partition p ∈ Π(s−1(1)), we define:

Et(p, s, s0, i, j, `) = {(Z1, Z2, Y ) | (Z1, Z2, Y ) ∈ 2Vt × 2Vt × 2E0∩E(Gt), Z1 ∩ Z2 = ∅,
|Z1| = i, |Z2| = `, |E(Gt[Z1 \ {v0}]) ∪ Y | = j,

∀e ∈ E0 ∩ Et, s0(e) = 1⇔ e ∈ Y,
∀v ∈ Z2 ∩Xt, s(v) = 2z with z = degGt[Z2](v),

∀v ∈ Z2 \Xt, degGt[Z2](v) = 2,

Z1 ∩Xt = s−1(1), v0 ∈ Xt ⇒ s(v0) = 1,

Gt

〈
s−1(1), s−1

0 (1)
〉
is a forest,

∀u ∈ Z1 \Xt : either t is the root or

∃u′ ∈ s−1(1) : u and u′ are connected in Gt〈Z1, Y 〉,
∀v1, v2 ∈ s−1(1) : p v Vt[{v1, v2}]⇔ v1 and v2 are con-

nected in Gt〈Z1, Y 〉,
∀(u, v) ∈ (Z1 \ {v0})× Z2, {u, v} 6∈ E(Gt)}

At(s, s0, i, j, `) = {p | p ∈ Π(s−1(1)), Et(p, s, s0, i, j, `) 6= ∅}.

In the definition of Et, the sets Z1 (resp. Z2) correspond to the set F (resp. C)
restricted to Gt. The vertex v0 and the set Y exist to ensure that F will be connected.

By Lemma 7, we have that the given instance of {paw}-TM-Deletion is a Yes-
instance if and only if for some i and `, i+` ≥ |V (G)∪{v0}|−k andAr(∅,∅, i, i−1, `) 6= ∅.
For each t ∈ V (T ), we assume that we have already computed At′ for every children t′

of t, and we proceed to the computation of At. As usual, we distinguish several cases
depending on the type of node t.
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Leaf. By definition of At, we have At(∅,∅, 0, 0, 0) = {∅}.

Introduce vertex. Let v be the insertion vertex of Xt, let t′ be the child of t, let s :

Xt → {0, 1, 20, 21, 22}, s0 : {v0}×s−1(1)→ {0, 1}, and let H = Gt

〈
s−1(1), s−1

0 (1)
〉
.

• If v = v0 and s(v0) ∈ {0, 20, 21, 22} or if H contains a cycle, then by definition
of At we have that At(s, s0, i, j, `) = ∅.
• Otherwise, if v = v0, then by construction of the nice tree decomposition,

we know that t′ is a leaf of T and so s = {(v0, 1)}, j = ` = i − 1 = 0 and
At(s, s0, i, j, `) = ins({v0},At′(∅,∅, 0, 0, 0)).

• Otherwise, if s(v) = 0, then, by definition of At, it holds that At(s, s0, i, j, `) =

At′(s|Xt′ , s|Et′ , i, j, `).

• Otherwise, if s(v) = 2z, z ∈ {0, 1, 2}, then let Z ′2 = NGt[Xt](v) \ s−1(0). If
Z ′2 6⊆ s−1({21, 22}) or |Z ′2| 6= z then At(s, s0, i, j, `) = ∅. Otherwise Z ′2 ⊆
s−1({21, 22}) and |Z ′2| = z, and with s′ : Xt′ → {0, 1, 20, 21, 22} defined such
that ∀v′ ∈ Xt′ \ Z ′2, s′(v′) = s(v′) and for each v′ ∈ Z ′2 such that s(v′) = 2z′ ,
z′ ∈ {1, 2}, s′(v′) = 2z′−1. It holds that At(s, s0, i, j, `) = At′(s

′, s0, i, j, `− 1).

• Otherwise, we know that v 6= v0, s(v) = 1, and v0 ∈ NG[s−1(1)](v). First, if
NGt[Xt](v) \ s−1(0) 6⊆ s−1(1), then At(s, s0, i, j, `) = ∅. Indeed, this implies
that the cycle part and the forest part are connected. As s(v) = 1, we have to
insert v in the forest part and we have to make sure that all vertices of NH [v]

are in the same connected component of H. The only remaining choice is to
insert the edge {v, v0} or not. Again, this is handled by the function s0. By
adding v, we add one vertex and |NH(v)| edges in the forest part. Therefore,
we have that

At(s, s0, i, j, `) =

glue(NH [v], ins({v},At′(s|Xt′ , s0|Et′ , i− 1, j − |NH(v)|, `))).

Forget vertex. Let v be the forget vertex of Xt, let t′ be the child of t, and let s : Xt →
{0, 1, 20, 21, 22}. As a vertex from the collection of cycles can be removed only if
it has exactly two neighbors, we obtain that

At(s, s0, i, j, `) = At′(s ∪ {(v, 0)}, s0, i, j, `)

∪↓ proj({v}, At′(s ∪ {(v, 1)}, s0 ∪ {({v0, v}, 0)}, i, j, `))
∪↓ proj({v}, At′(s ∪ {(v, 1)}, s0 ∪ {({v0, v}, 1)}, i, j, `))
∪↓ At′(s ∪ {(v, 22)}, s0, i, j, `).

28



Join. Let t′ and t′′ be the two children of t, let s : Xt → {0, 1, 20, 21, 22}, s0 : {v0} ×
s−1(1)→ {0, 1}, and let H = Gt

〈
s−1(1), s−1

0 (1)
〉
. Given three functions s∗, s′, s′′ :

Xt → {0, 1, 20, 21, 22}, we say that s∗ = s′ ⊕ s′′ if for each v ∈ s−1({0, 1}), s∗(v) =

s′(v) = s′′(v), and for each v ∈ Xt such that s∗(v) = 2z, z ∈ {0, 1, 2}, there
exist z′, z′′ ∈ {0, 1, 2} such that s′(v) = 2z′ , s′′(v) = 2z′′ , and z = z′ + z′′ −
degGt[Xt\s−1(0)](v).

We join every compatible entries At′(s
′, s′0, i

′, j′, `′) and At′′(s
′′, s′′0, i

′′, j′′, `′′). For
two such entries being compatible, we need s′ ⊕ s′′ to be defined and s′0 = s′′0. We
obtain that

At(s, s0, i, j, `) =
⋃↓

s′,s′′:Xt→{0,1,20,21,22},
s=s1⊕s2

i′+i′′=i+|V (H)|
j′+j′′=j+|E(H)|

`′+`′′=`+|s−1({20,21,22})|

join(At′(s
′, s0, i

′, j′, `′), At′′(s
′′, s0, i

′′, j′′, `′′)).

Theorem 8. {paw}-TM-Deletion can be solved in time 2O(tw) · n7.

Proof. The algorithm works in the following way. For each node t ∈ V (T ) and for each
entryM of its table, instead of storingAt(M), we storeA′t(M) = reduce(At(M)) by using
Theorem 3. As each of the operations we use preserves representation by Proposition 2,
we obtain that for each node t ∈ V (T ) and for each possible entry M , A′t(M) represents
At(M). In particular, we have that A′r(M) = reduce(Ar(M)) for each possible entry M .
Using the definition of Ar and Lemma 7, we have that tm{paw}(G) ≤ k if and only if for
some i and `, i+ ` ≥ |V (G) ∪ {v0}| − k and A′r(∅,∅, i, i− 1, `) 6= ∅.

We now focus on the running time of the algorithm. The size of the intermediate sets
of weighted partitions for a leaf node and for an introduce vertex node, are upper-bounded
by 2|s

−1(1)|. For a forget vertex node, we take the union of four sets of size 2|s
−1(1)|, so

the intermediate sets of weighted partitions have size at most 4 ·2|s−1(1)|. For a join node,
as in the big union operation we take into consideration at most 5|Xt| possible functions
s′, as many functions s′′, at most n+ |s−1(1)| choices for i′ and i′′, at most n+ |s−1(1)|
choices for j′ and j′′ (as H is always a forest), and at most n+ |s−1({20, 21, 22}| choices
for `′ and `′′, we obtain that the intermediate sets of weighted partitions have size at most
25|Xt| · (n+ |s−1(1)|)2 · (n+ |s−1({20, 21, 22}|) · 4|s

−1(1)|. We obtain that the intermediate
sets of weighted partitions have size at most (n+ |Xt|)3 ·100|Xt|. Moreover, for each node
t ∈ V (T ), the function reduce will be called as many times as the number of possible
entries, i.e., at most 2O(w) · n3 times. Thus, using Theorem 3, A′t can be computed in
time 2O(w) · n6. The theorem follows by taking into account the linear number of nodes
in a nice tree decomposition.
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8 A single-exponential algorithm for {chair}-TM-Deletion

As in the previous cases that we solved in single-exponential time, we start with a
structural characterization of the graphs that exclude the chair as a topological minor
(hence, as a minor as well).

Lemma 8. Let G be a graph. chair 6�tm G if and only if every connected component of
G of size at least five is a path, a cycle, or a star.

Proof. It is straightforward to check that a path, a cycle, a star, or a graph of size at
most 4 do not contain the chair as a topological minor. Conversely, let G be a connected
graph of size at least five that excludes the chair as a topological minor. Let P be a
longest path of G. We denote by p1 and p2 the endpoints of this path P . It is easy to see
that if |V (P )| ≤ 3, then G has to be a star. Assume now that |V (P )| ≥ 4. Then we have
that V (P ) = V (G). Indeed, assume that V (P ) 6= V (G) and let v ∈ V (G) \ V (P ) be a
vertex adjacent with a vertex of V (P ) in G. This vertex should exist by the connectivity
of G. By maximality of P , v cannot be adjacent to p1 or p2 and as chair 6�tm G, v cannot
be adjacent to an internal vertex of the path P . Thus, |V (P )| = |V (G)| ≥ 5. Moreover,
as chair 6�tm G, neither p1 nor p2 can be adjacent to an internal vertex of the path P ,
and so, E(P ) ⊆ E(G) ⊆ E(P ) ∪ {p1, p2}. Thus, G is either a path or a cycle.

With Lemma 8 at hand, an algorithm for {chair}-TM-Deletion running in time
2O(tw) ·nO(1) can be obtained using standard dynamic programming techniques. For this,
as we did for {P3}-TM-Deletion, {P4}-TM-Deletion, and {K1,s}-TM-Deletion,
s ∈ N, we label the vertices on each bag. Each label carries two types of information.
On the one hand, it indicates whether a vertex is in a collection of paths or cycles, a
collection of stars, a clique of size 4, a paw, or a diamond; note that these are all the
possible graphs on at most 4 vertices (see Figure 1). On the other hand, it also indicates
in which “state” a vertex is with regard to the already computed graph, which will become
clear below.

As the number of distinct labels needed for the algorithm for {chair}-TM-Deletion
is quite large and the algorithm itself is not complicated, we will avoid the formal de-
scription of it. Namely, as we will discuss, we need 17 distinct labels on the vertices and
three distinct labels on the edges. We only describe how to label the vertices for each
type of component. Note that, for instance, a P3 is both a path and a star. We do not
consider this as an issue, and we will just have two types of components that can become
P3’s.

Let us proceed to the description of the labels. First, we use one label to indicate
whether a vertex belongs in the solution or not. For the collection of paths or cycles, we
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use three labels 0, 1, and 2, corresponding to the current degree of this vertex. For a
collection of stars, we use three labels, c, 0, 1 where c labels a vertex that is a center of
a star, 0 labels a vertex that is leaf of a star that is not connected to a center yet, and 1

labels a leaf of a star that is already connected to a center. For the clique of size 4, we
only need two labels 0 and 1, where 0 means that the vertex should be in a K4 but we
do not know which one yet, and 1 means that we already found in which K4 the vertex
is. The crucial argument for this is the fact that if four vertices induce a K4, then by the
properties of a tree decomposition there exists a bag that contains the four vertices. For
the paw, we use six labels c0, c1, df , dw, `0, and `1. We call leaf the only vertex of the
paw of degree 1. The label `0 (resp. `1) corresponds to a leaf of a paw that has degree
0 (resp. 1) in the currently processed graph. The label c0 (resp. c1) corresponds to a
vertex of the cycle of a paw that is not (resp. is) connected to a leaf and for which we do
not know yet the three vertices of the cycle. The label df corresponds to a vertex of the
cycle of a paw for which we already know the three vertices of the cycle and that is full,
i.e., it cannot be connected to a leaf anymore. The label dw corresponds to a vertex of
the cycle of a paw for which we know the three vertices of the cycle and that is waiting
for a leaf to be connected to.

Dealing with the diamond is a bit more complicated. We see the diamond as two C3

glued by an edge called chord. The crucial argument is that for each C3, there exists a
bag that contains the three vertices of the cycle and we “only” need to remember which
edge of the cycle is the chord of the diamond. We use two labels for the vertices a0 and
a1, and, this time, we also use three labels on the edges b0, b1, and b2. Note that in a
diamond, the number of edges is linear in the number of vertices and so, we can afford to
label the edges. Namely, a0 is used for vertices that can still be in a C3 and a1 is used
for vertices that cannot be in a new C3 anymore. The label b0 is used for edges that
are not in a C3 yet, the label b1 is used for chords for which we only found one of the
two C3’s, and the label b2 is used for edges that cannot be used anymore. Note that the
endpoints of a chord belong to two C3’s, so when detecting the first one, these endpoints
will remain labeled a0 but the chord will be now labeled b1.

Using all these labels, and updating them in a bottom-up fashion in a tree decom-
position in a standard way, we obtain the following theorem.

Theorem 9. If a nice tree decomposition of G of width w is given, {chair}-Deletion
can be solved in time 2O(w) · n.
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9 A single-exponential algorithm for {banner}-TM-Deletion

Similarly as before, we start with a structural characterization of the graphs that exclude
the banner as a (topological) minor.

Lemma 9. Let G be a graph with at least five vertices. banner 6�tm G if and only if G
is a cycle or C4 6�tm G.

Proof. Let G be a connected graph with |V (G)| ≥ 5. It is straightforward to see that if
G is a cycle or if C4 6�tm G, then banner 6�tm G. Conversely, assume that G excludes the
banner as a minor and contains a cycle C of size at least four. As we can assume that G
is connected and excludes the banner as a minor, we have that V (G) = V (C). Indeed, if
there exists a vertex v ∈ V (G)\V (C), then there exists a vertex v′ ∈ V (G′)\V (C) that is
a neighbor of a vertex of V (C), and so the graph G[V (C)∪{v′}] contains the banner as a
topological minor. By assumption, we have that |V (C)| = |V (G)| ≥ 5. Assume now for
contradiction that G is not a cycle, that is, that E(G) \E(C) contains an edge e. Then,
as |V (C)| ≥ 5, there exists a cycle C ′ containing e, such that 4 ≤ |V (C ′)| < |V (C)|, and
so G contains the banner as a minor, a contradiction. The lemma follows.

The idea of the algorithm is, as we did for {paw}-TM-Deletion (see Section 7), to
use the structural properties given by Lemma 9 and to combine the rank-based approach
and the standard dynamic programming techniques. As for {chair}-TM-Deletion (see
Section 8), we will need, in particular, to label vertices that appear in components of
size at most 4 and in components that are cycles. As for {C4}-TM-Deletion (see
Section 6), we also use one label for the solution and another label for the components
that exclude C4 as a minor. This means that, for this algorithm, we need 15 labels for
the vertices and three labels for the edges. Because of this, again we do not provide the
full formal description of the algorithm, and instead we provide a high-level description
of how it works, reusing what we presented previously.

Namely, we explain how, starting from the algorithm for {C4}-TM-Deletion given
in Section 6, we obtain the desired algorithm for {banner}-TM-Deletion. As we did
for {paw}-TM-Deletion, we modify the function s : Xt → {0, 1} to a function s : Xt →
{0, 1} ∪ L, where L corresponds to the set of labels needed for detecting if a component
is of size at most 4 or a cycle. We also add a function rd for the labeling of the edges
that appear in a diamond. Then, as we did for {paw}-TM-Deletion, when doing the
dynamic programming operations, we use the rank-based approach for the elements of
s−1(1) and standard dynamic programming operations for the elements of s−1(L). Doing
this, we obtain the following theorem.
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Theorem 10. If a nice tree decomposition of G of width w is given, {banner}-Deletion
can be solved in time 2O(w) · nO(1).

10 Conclusions and further research
We presented single-exponential algorithms for {H}-TM-Deletion taking as parameter
the treewidth of the input graph, when H ∈ {P3, P4,K1,i, C4, paw, chair, banner}. These
algorithms, combined with the results of [4,5], settle completely the complexity of {H}-
M-Deletion when H is planar and connected; see Figure 1 for an illustration.

Concerning the topological minor version, in order to establish a dichotomy for {H}-
TM-Deletion when H is planar and connected, it remains to obtain algorithms in time
O∗(2O(tw·log tw)) for the graphs H with maximum degree at least four, like the gem or
the dart (see Figure 1), as for those graphs the algorithm in time O∗(2O(tw·log tw)) given
in [4] cannot be applied.

Our algorithms for {Ci}-Deletion given here and in [4] may also be used to devise
approximation algorithms for hitting or packing long cycles in a graph (in the spirit
of [9] for other patterns), by using the fact that cycles of length at least i satisfy the
Erdős-Pósa property [15]. We did not focus on optimizing the degree of the polynomials
or the constants involved in our algorithms. Concerning the latter, one could use the
framework by Lokshtanov et al. [19] to prove lower bounds based on the Strong ETH.
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