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A complexity dichotomy for hitting connected minors on bounded
treewidth graphs: the chair and the banner draw the boundary

Julien Baste∗ Ignasi Sau† Dimitrios M. Thilikos†,‡

Abstract
For a fixed connected graph H, the {H}-M-Deletion
problem asks, given a graph G, for the minimum number of
vertices that intersect all minor models ofH inG. It is known
that this problem can be solved in time f(tw) ·nO(1), where
tw is the treewidth of G. We determine the asymptotically
optimal function f(tw), for each possible choice of H.

Namely, we prove that, under the ETH, f(tw) = 2Θ(tw)

if H is a contraction of the chair or the banner, and f(tw) =

2Θ(tw·log tw) otherwise. Prior to this work, such a complete
characterization was only known when H is a planar graph
with at most five vertices. For the upper bounds, we present
an algorithm in time 2Θ(tw·log tw) ·nO(1) for the more general
problem where all minor models of connected graphs in
a finite family F need to be hit. We combine several
ingredients such as the machinery of boundaried graphs in
dynamic programming via representatives, the Flat Wall
Theorem, Bidimensionality, the irrelevant vertex technique,
treewidth modulators, and protrusion replacement. In
particular, this algorithm vastly generalizes a result of
Jansen et al. [SODA 2014] for the particular case F =

{K5,K3,3}. For the lower bounds, our reductions are based
on a generic construction building on the one given by
the authors in [IPEC 2018], which uses the framework
introduced by Lokshtanov et al. [SODA 2011] to obtain
superexponential lower bounds.

1 Introduction
Let F be a finite non-empty collection of non-empty
graphs. In the F-M-Deletion problem, we are given
a graph G and an integer k, and the objective is to
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decide whether there exists a set S ⊆ V (G) with |S| ≤ k
such that G \ S does not contain any of the graphs in
F as a minor. This problem belongs to the family of
graph modification problems and has a big expressive
power, as instantiations of it correspond, for instance,
to Vertex Cover (F = {K2}), Feedback Vertex
Set (F = {K3}), and Vertex Planarization (F =
{K5,K3,3}). Note that if F contains a graph with at
least one edge, then F-M-Deletion is NP-hard [37].

We study the parameterized complexity of F-M-
Deletion in terms of the treewidth of the input graph
(while the size of k is not bounded). Since the prop-
erty of containing a graph as a minor can be expressed
in Monadic Second Order logic [34], by Courcelle’s
theorem [13], F-M-Deletion can be solved in time
O∗(f(tw)) on graphs with treewidth at most tw, where
f is some computable function1. As the function f(tw)
given by Courcelle’s theorem is typically enormous, our
goal is to determine, for a fixed collection F , which is
the best possible such function f that one can (asymp-
totically) hope for, subject to reasonable complexity as-
sumptions. Besides being an interesting objective in its
own, optimizing the running time of algorithms param-
eterized by treewidth has usually side effects. Indeed,
black-box subroutines parameterized by treewidth are
nowadays ubiquitous in parameterized [14], exact [19],
and approximation [47] algorithms.
Previous work. This line of research has attracted
considerable attention in the parameterized complex-
ity community during the last years. For instance,
Vertex Cover is easily solvable in time O∗(2O(tw)),
called single-exponential, by standard dynamic pro-
gramming techniques, and no algorithm with running
time O∗(2o(tw)) exists, unless the Exponential Time
Hypothesis (ETH)2 fails [27]. For Feedback Ver-
tex Set, standard dynamic programming techniques
give a running time of O∗(2O(tw·log tw)), while the

1The notation O∗(·) suppresses polynomial factors depending
on the size of the input graph.

2The ETH states that 3-SAT on n variables cannot be solved
in time 2o(n); see [27] for more details.
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lower bound under the ETH [27] is again O∗(2o(tw)).
This gap remained open for a while, until Cygan et
al. [15] presented an optimal (randomized) algorithm
running in time O∗(2O(tw)), introducing the celebrated
Cut & Count technique. This article triggered sev-
eral other (deterministic) techniques to obtain single-
exponential algorithms for so-called connectivity prob-
lems on graphs of bounded treewidth, mostly based on
algebraic tools [8, 20].

Concerning Vertex Planarization, Jansen et
al. [28] presented an algorithm running in time
O∗(2O(tw·log tw)) as a crucial subroutine in an algorithm
running in time O∗(2O(k·log k)). Marcin Pilipczuk [41]
proved afterwards that this running time is optimal un-
der the ETH, by using the framework introduced by Lok-
shtanov et al. [38] for proving superexponential lower
bounds.

Generalizing the above algorithm, the main tech-
nical contribution of the recent paper of Kociumaka
and Pilipczuk [35] is an algorithm running in time
O∗(2O((tw+g)·log(tw+g))) to solve the Genus Vertex
Deletion problem, which consists in deleting the min-
imum number of vertices from an input graph in order to
obtain a graph embeddable on a surface of Euler genus
at most g.

In a recent pair of papers [5, 6], we initiated a sys-
tematic study of the complexity of F-M-Deletion, pa-
rameterized by treewidth3. Before stating these results,
we say that a collection F is connected if it contains only
connected graphs. In [5] we showed that, for every F , F-

M-Deletion can be solved in time O∗
(

22O(tw·log tw)
)
,

and that if F is connected and contains a planar graph,
the running time can be improved to O∗(2O(tw·log tw)).
If the input graph G is planar or, more generally, em-
bedded in a surface of bounded genus, and F is con-
nected, then the running time can be further improved
to O∗(2O(tw)). We also provided single-exponential al-
gorithms for the cases where F ∈ {{P3}, {P4}, {C4}}.
Concerning lower bounds under the ETH, we proved
that for any connected F , F-M-Deletion cannot be
solved in time O∗(2o(tw)), even if the input graph G
is planar. Inspired by the reduction of Pilipczuk [41],
we proved that the problem cannot be solved in time
O∗(2o(tw·log tw)) for some families of collections F , for
example, when all graphs in F are planar and 3-
connected. In the subsequent paper [6], we focused on
small planar graphs. Namely, we classified the optimal
asymptotic complexity of {H}-M-Deletion when H

3In these papers [5, 6], we also considered the version of the
problem where the graphs in F are forbidden as topological
minors; in the current paper will will focus exclusively on the
minor version.

chair banner

Figure 1: The chair and the banner.

is a connected planar graph on at most five vertices. To
achieve that, we provided single-exponential algorithms
for a number of small patterns not considered in [5] and
superexponential lower bounds for the remaining cases,
this time inspired by a reduction of Bonnet et al. [11] for
generalized feedback vertex set problems. Full proofs of
the results in [5, 6] are available at [4].

Our results. In this article we make significant
steps towards a complete classification of the complex-
ity of the F-M-Deletion problem parameterized by
treewidth, by improving both the known upper and
lower bounds. Namely, we prove the following results:

I Our main contribution is an algorithm to solve
F-M-Deletion in time O∗(2O(tw·log tw)) for every con-
nected collection F , hence dropping the condition that
it contains a planar graph, which was critically needed
in the algorithm presented in [5] in order to bound the
treewidth of an F-minor-free graph. Besides largely im-
proving our previous results [5, 6], this algorithm also
generalizes the one for F = {K5,K3,3} given by Jansen
et al. [28], which is based on embeddings. It can be
interpreted as an exponential “collapse” of the natu-
ral dynamic programming algorithm running in time
O∗
(

22O(tw·log tw)
)

given in [5]. The algorithm is quite
involved, and we provide an overview of it in §2.

I Concerning lower bounds, we vastly improve all
previous super-exponential lower bounds [5, 6, 41] for
F-M-Deletion by proving that for every connected
graph H that is not a contraction of the chair or the
banner, depicted in Figure 1, {H}-M-Deletion cannot
be solved in time O∗(2o(tw·log tw)) under the ETH. We
also prove a lower bound of O∗(2o(tw·log tw)) for F-M-
Deletion when F is any finite non-empty subset of all
connected graphs that contain a block with at least five
edges. In particular, the former result applies to K5 and
all the connected graphs with at least six vertices.

Our reductions are based on a generic framework
that generalizes the one given in [6], which was inspired
by a reduction of Bonnet et al. [11]. These lower bounds
also subsume the ones in [5], which were proved using a
different reduction inspired by the one of Pilipczuk [41].
More precisely, in [6] we proved subexponential lower
bounds for P5, K1,i with i ≥ 4, K2,i and θi for i ≥ 3
(θi is the graph consisting of two vertices and i parallel
edges), and the following graphs (see the full version
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for a figure containing these graphs): the px, the kite,
the dart, the bull, the butterfly, the cricket, and the
co-banner. All these reductions were based on a general
construction, which is a less general version of the
construction that we present here, and then we needed
particular small gadgets to deal with each of the graphs.
Here we present a more general version of this approach
that has the following advantage: in order to prove lower
bounds, we need to distinguish cases not depending
on particular instantiations of the collection F , but on
general structural properties of the graphs in F , like
containing a block with at least five edges or the number
and relative position of cut vertices and cycles.

The above results, together with the lower and
upper bounds for planar graphs on at most five vertices
given in [5, 6] and the known cases F = {P2} [14, 27],
F = {P3} [2, 46], and F = {C3} [8, 15] imply the
following complexity dichotomy when F consists of a
single connected graph H, which we suppose to have at
least one edge.

Theorem 1.1. Let H be a connected graph. Under the
ETH, {H}-M-Deletion is solvable in time4

• 2Θ(tw) · nO(1), if H is a contraction of the chair or
the banner, and
• 2Θ(tw·log tw) · nO(1), otherwise.

Note that if |V (H)| ≥ 6, then H is not a contraction
of the chair or the banner, and therefore the second item
above applies. Note also that K4 and the diamond are
the only graphs on at most four vertices for which the
problem is solvable in time O∗(2Θ(tw·log tw)) and that
the chair and the bannerare the only graphs on at least
five vertices for which the problem is solvable in time
O∗(2Θ(tw)).

The crucial role payed by the chair and the bannerin
the complexity dichotomy may seem surprising at first
sight. In fact, we realized a posteriori that the “easy”
cases can be succinctly described in terms of the chair
and the banner. Note that the “easy” graphs can be
equivalently characterized as those that are minors of
the banner, with the exception of P5. Nevertheless, there
is some intuitive reason for which excluding the chair
or the bannerconstitutes the horizon on the existence
of single-exponential algorithms. Namely, focusing on
the banner, every connected component (with at least
five vertices) of a graph that excludes the banneras a
minor is either a cycle (of any length) or a tree in which
some vertices have been replaced by triangles; both such
types of components can be maintained by a dynamic
programming algorithm in single-exponential time [4].

4We use n and tw for the number of vertices and the treewidth
of the input graph, respectively.

A similar situation occurs when excluding the chair.
It appears that if the characterization of the allowed
connected components is enriched in some way, such as
restricting the length of the allowed cycles or forbidding
certain degrees, the problem becomes inherently more
difficult, inducing a transition from time O∗(2Θ(tw)) to
O∗(2Θ(tw·log tw)).

Organization of the paper. In §2 we provide a
high-level overview of the algorithm running in time
O∗(2O(tw·log tw)). In §3 we give some preliminaries. In
§4 we deal with flat walls, in §5 we apply the irrelevant
vertex technique in the context of boundaried graphs,
and in §6 we use this in order to bound the size of the
dynamic programming tables. The lower bounds can be
found in the full version. We conclude the article in §7.
Due to space limitations, the proofs of all the results
marked with ‘(?)’ can be found in the full version.

2 Overview of the algorithm
In order to obtain our algorithm of time
O∗(2O(tw·log tw)) for every connected collection F ,
our approach can be streamlined as follows. We use the
machinery of boundaried graphs, equivalence relations,
and representatives originating in the seminal work
of Bodlaender et al. [9] and subsequently used, for
instance, in [5,21,23,34]. Let h be a constant depending
only on the collection F (to be defined in the formal
description of the algorithm) and let t be a positive
integer that is at most the treewidth of the input
graph plus one. Skipping several technical details, a
t-boundaried graph is a graph with a distinguished
set of vertices –its boundary– labeled bijectively with
integers from the set [t]. We say that two t-boundaried
graphs are h-equivalent if for any other t-boundaried
graph that we can “glue” to each of them, resulting in
graphs G1 and G2, and every graph H on at most h
vertices, H is a minor of G1 if and only if it is a minor
of G2 (see §3 for the precise definitions). Let R(t)

h be a
set of minimum-sized representatives of this equivalence
relation. Since h-equivalent (boundaried) graphs have
the same behavior in terms of eventual occurrences
of minors of size up to h, there is a generic dynamic
programming algorithm (already used in [5]) to solve
F-M-Deletion on a rooted tree decomposition of
the input graph, via a typical bottom-up approach:
at every bag B of the tree decomposition, naturally
associated with a t-boundaried graph GB , and for
every representative R ∈ R(t)

h , store the minimum size
of a set S ⊆ V (GB) such that the graph GB \ S is
h-equivalent to R (cf. Subsection 6.2 for some more
details). This yields an algorithm running in time
O∗(|R(t)

h |2), and therefore it suffices to prove that
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|R(t)
h | = 2Oh(t·log t), where the notation ‘Oh’ means that

the hidden constants depend only on h. Since we may
assume that the graphs in R(t)

h exclude some graph on
at most h vertices as a minor (as all those that do not
are h-equivalent), hence they have a linear number of
edges, it is enough to prove that, for every R ∈ R(t)

h , it
holds that

|V (R)| = Oh(t).(2.1)

Note that this is indeed sufficient as there are at
most

(|V (R)|2
|E(R)|

)
= 2Oh(|V (R)| log |V (R)||) representatives.

In order to prove (2.1), we combine a number of different
techniques, which we proceed to discuss informally, and
that are schematically summarized in Figure 2:

t ≤ tw(G) + 1

h = f(F)

R ∈ R(t)
h

Embedding
with dispersed

vertices

[Lemma 5.1]

Confinement of
models inside

a railed annulus

[Proposition 5.2]

Collapse of
topological minor

models inside a wall

[Theorem 5.1]

Flat Wall Theorem

[12,32,44]

Large
h-homogeneous

subwall

[Lemma 4.3]

R contains
no irrelevant vertex

[Theorem 5.2]

ph,r(R) ≤ t

[Corollary 5.1]

ph,r is
bidimensional

[Lemma 4.1]

ph,r is
separable

[Lemma 4.2]

R has a treewidth modulator
of size O(t)

containing the boundary

[Lemma 6.2]

Linear protrusion
decomposition of R

[Lemma 6.3]

|V (R)| = Oh(t)

[Lemma 6.4]

|R(t)
h | = 2Oh(t·log t)

[Corollary 6.1]

Algorithm in time
O∗(2Oh(tw·log tw))
for connected F
[Theorem 1.1]

[34]

Reduce
protrusions [5]

Sparsity of the
representatives

DP algorithm
from [5]

Figure 2: Diagram of the algorithm in time
O∗(2O(tw·log tw)) for connected F .

I We use the Flat Wall Theorem of Robertson and
Seymour [44], in particular the recent optimized versions
by Kawarabayashi et al. [32] and by Chuzhoy [12]. In

a nutshell, this theorem says that every Kh-minor-free
graph G has a set of vertices A ⊆ V (G) –called apices–
with |A| = Oh(1) such that G \ A contains a flat wall
of height Ωh(tw(G)). Here, the definition of “flat wall”
is quite involved and is detailed in §4; it essentially
means a subgraph that has a bidimensional grid-like
structure, separated from the rest of the graph by its
perimeter, and that is “close” to being planar, in the
sense that it can be embedded in the plane in a way
that its potentially non-planar pieces, called flaps, have
a well-defined structure along larger pieces called bricks.
I We say that a vertex set S affects a flat wall if
some vertex within the wall has a neighbor in S that
is not an apex. With these definitions at hand, we
define a parameter, denoted by ph,r in this informal
description, mapping every graph G to the smallest size
of a vertex set that affects all flat walls with at most
h apices and height at least r in G. It is not hard to
prove that the parameter ph,r has a “bidimensional”
behavior [16, 18], in the sense that its value on a flat
wall depends quadratically on the height of the wall
(Lemma 4.1) and separable [9, 18,21] (Lemma 4.2).
I A subwall of a flat wall is h-homogeneous if for every
brick of the subwall, the flaps within that brick have
the same variety of h-folios, that is, the same sets of
“boundaried” minors of detail at most h (the detail of a
boundaried graph is the maximum between its number
of edges and its number of non-boundary vertices).
This notion is inspired (but is not the same) by the
one defined by Robertson and Seymour in [44]. Using
standard “zooming” arguments, we can prove that, given
a flat wall, we can find a large h-homogeneous subwall
inside it (Lemma 4.3). Homogeneous subwalls are very
useful because, as we explain below, they permit the
application of the irrelevant vertex technique adapted
to our purposes.
I The most complicated step towards proving (2.1) is
to find an “irrelevant” vertex inside a sufficiently large
(in terms of h) flat wall of a boundaried graph that is
not affected by its boundary (Theorem 5.2). Informally,
here “irrelevant” means a non-boundary vertex of R
that can be avoided by any minor model of a graph
on at most h vertices and edges that traverses the
boundary of R, no matter the graph that may be
glued to it and no matter how this model traverses the
boundary of R; see §5 for the precise definition. The
irrelevant vertex technique originated in the seminal
work of Robertson and Seymour [44,45] and has become
a very useful tool used in various kinds of linkage and
cut problems [1, 28, 35, 36, 42]. Nevertheless, given
the nature of our setting, it is critical that the size
of the flat wall where the irrelevant vertex appears
does not depend on the boundary size. To the best
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of our knowledge, this property is not guaranteed by
the existing results on the irrelevant vertex technique
(such as [44, (10.2)] and its subsequent proof in [45]).
To achieve it and, moreover, in order to make an
estimation of the parametric dependencies, we develop a
self-reliant theoretical framework that uses the following
ingredients:

◦ With a flat wall W we associate a bipartite graph
W̃ , which we call its leveling ; cf. Subsection 4.3 for
the precise definition. In particular, this graph has
a vertex for every flap of the flat wall, and can be
embedded in a disk in a planar way.

◦ It turns out to be more convenient to work with
topological minor models instead of minor models;
we can afford it since for every graph H there are
at most f(H) different topological minor minimal
graphs that contain H as a minor (Observation 1).
The reason for this is that it is easier to deal with
the branch vertices of a topological minor model
in the analysis. Given a topological minor model,
we say that a flap of a wall is dirty if it contains
a branch vertex of the model, or there is an edge
from the flap to an apex vertex of the wall. We also
define the leveling of a topological minor model,
and we equip its dirty flags with colors that encode
their h-folios. We now proceed to explain how to
reroute the colored leveling of a topological minor
model.

◦ In order to reroute (colored levelings of) topolog-
ical minor models, it will be helpful to use railed
annuli, a structure introduced in [29] that occurs
as a subgraph inside a flat wall (Proposition 5.1)
and that has the following nice property, recently
proved in [26] (Proposition 5.2): if a railed annu-
lus is large enough compared to h, every topolog-
ical minor model of a graph on at most h vertices
traversing it can be rerouted so that the branch
vertices are preserved and such that, more impor-
tantly, the intersection of the new model with a
large prescribed part of the railed annulus is con-
fined, in the sense that it is only allowed to use a
well-defined set of paths in that part, which does
not depend on the original model.

◦ We also need a technical result with a graph draw-
ing flavor (Lemma 5.1) guaranteeing that large
enough railed annuli contain topological minor
models of every graph of maximum degree three
with the property, in particular, that certain ver-
tices are pairwise far apart in the embedding. Using
this result and the one in [26] mentioned above, we
can finally prove (Theorem 5.1) that every topo-
logical minor model of a graph H inside a graph

with a large flat wall W can be “collapsed” inside
the wall, in the following sense: G contains another
topological minor model of a graph H ′, such that
H is a minor of H ′, and such that the new model
avoids the central part of the annulus; here is where
the irrelevant vertex will be found.

◦ To conclude, it just remains to “lift” the constructed
embedding of the colored leveling of the topological
minor to an embedding of the “original” minor in
the flat wall (Theorem 5.2). For that, we exploit the
fact that we have rerouted the model inside an h-
homogeneous subwall not affected by the boundary,
which allows to mimic the behavior of the original
minor inside the flaps of the wall, using that all
bricks have the same variety of h-folios.

The above arguments, incorporated in the proof of
Theorem 5.2, imply that if R ∈ R(t)

h is a minimum-
sized representative, then its boundary affects all large
enough flat walls, as otherwise we could remove an ir-
relevant vertex and find a smaller equivalent represen-
tative. In particular, it follows that, for every R ∈ R(t)

h ,
we have ph,r(R) ≤ t (Corollary 5.1).
I Combining that the parameter ph,r is “bidimensional”
and separable along with the fact that ph,r(R) ≤ t for
every R ∈ R(t)

h , we prove in Lemma 6.2 (whose proof is
an adaptation of [22, Lemma 3.6] – see also [21]) that
every representative R ∈ R(t)

h has a vertex subset S
containing its boundary, with |S| ≤ 2t, whose removal
leaves a graph of treewidth bounded by a function of h;
such a set is called a treewidth modulator.
I Once we have a treewidth modulator of size O(t) of a
representative R, all that remains is to pipeline it with
known techniques to compute an appropriate protrusion
decomposition [34] (Lemma 6.3) and to reduce protru-
sions to smaller equivalent ones of size bounded by a
function of h –we use the version given in [5] adapted
to the F-M-Deletion problem– (Lemma 6.4), imply-
ing that |V (R)| = Oh(t) for every every R ∈ R(t)

h and
concluding the proof of (2.1).

It should be noted that all the items above do not
need to be converted into an algorithm, they are just
used in the analysis: the conclusion is that if R ∈ R(t)

h is
a minimum-sized representative, then |V (R)| = Oh(t),
as otherwise some reduction rule could be applied to it
(either by removing an irrelevant vertex or by protru-
sion replacement), thus obtaining an equivalent repre-
sentative of smaller size and contradicting its minimal-
ity. Our main result can be formally stated as follows.

Theorem 2.1. Let F be a finite non-empty collection
of non-empty connected graphs. There exists a constant
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cF such that the F-M-Deletion problem is solvable in
time ctw·log tw

F ·n on n-vertex graphs of treewidth at most
tw.

In the full version we provide an estimation of the
constant cF in Theorem 2.1 based on the parametric
dependencies of the Unique Linkage Theorem [33,45].

3 Preliminaries
Sets and integers. We denote by N the set of non-

negative integers and we set N+ = N \ {0}. Given two
integers p and q, the set [p, q] refers to the set of every
integer r such that p ≤ r ≤ q. For an integer p ≥ 1,
we set [p] = [1, p] and N≥p = N \ [0, p− 1] . In the set
[1, k]× [1, k] , a row is a set {i}× [1, k] and a column is a
set [1, k]×{i} for some i ∈ [1, k] . For a set S, we denote
by 2S the set of all the subsets of S.

Graphs. All the graphs that we consider in this
paper are undirected, finite, and without loops or mul-
tiple edges. We use standard graph-theoretic nota-
tion, and we refer the reader to [17] for any unde-
fined terminology. Let G be a graph. We say that
a pair (L,R) ∈ 2V (G) × 2V (G) is a separation of G if
L∪R = V (G) and there is no edge in G between L \R
and R \L. The order of a separation (L,R) is the value
|L∩R|. Given a graph G and a set S ⊆ V (G), be denote
by ∂(S) the set of vertices in S that have a neighbor in
V (G)\S. For S ⊆ V (G), we use the shortcut G\S to de-
note G[V (G)\S]. The contraction of an edge e = {u, v}
of a simple graph G results in a simple graph G′ ob-
tained from G \ {u, v} by adding a new vertex uv adja-
cent to all the vertices in the set NG(u)∪NG(v)\{u, v},
where NG(u) denotes the set of neighbors of u in G. A
graph G′ is a minor of a graph G if G′ can be obtained
from G by a sequence of vertex removals, edge removals,
and edge contractions. If only edge contractions are al-
lowed, we say that G′ is a contraction of G.

Treewidth. Let G = (V,E) be a graph. A tree
decomposition of G is a pair (T,X = {Xt}t∈V (T )) where
T is a tree and X is a collection of subsets of V such
that:
•
⋃

t∈V (T )Xt = V,

• ∀e = {u, v} ∈ E, ∃t ∈ V (T ) : {u, v} ⊆ Xt, and
• ∀v ∈ V , T [{t | v ∈ Xt}] is connected.

We call the vertices of T nodes and the sets in X bags
of the tree decomposition (T,X ). The width of (T,X ) is
equal to max{|Xt| − 1 | t ∈ V (T )} and the treewidth of
G is the minimum width over all tree decompositions of
G. We denote the treewidth of a graph G by tw(G).

For t ∈ N, we say that a set S ⊆ V (G) is a t-
treewidth modulator of G if tw(G \ S) ≤ t.

Boundaried graphs. Let t ∈ N. A t-boundaried
graph is a triple G = (G,B, ρ) where G is a graph,

B ⊆ V (G), |B| = t, and ρ : B → [t] is a bijection.
We say that G1 = (G1, B1, ρ1) and G2 = (G2, B2, ρ2)
are isomorphic if there is an isomorphism from G1

to G2 that extends the bijection ρ−1
2 ◦ ρ1. The triple

(G,B, ρ) is a boundaried graph if it is a t-boundaried
graph for some t ∈ N. As in [44], we define the detail
of a boundaried graph G = (G,B, ρ) as detail(G) :=
max{|E(G)|, |V (G) \ B|}. We denote by B(t) the set
of all (pairwise non-isomorphic) t-boundaried graphs
and by B(t)

h the set of all (pairwise non-isomorphic) t-
boundaried graphs with detail at most h. We also set
B =

⋃
t∈N B(t).

Minors and topological minors of boundaried
graphs. We say that a t-boundaried graph G1 =
(G1, B1, ρ1) is a minor of a t-boundaried graph G2 =
(G2, B2, ρ2), denoted by G1 �m G2, if there is a
sequence of removals of non-boundary vertices, edge
removals, and edge contractions in G2, disallowing
contractions of edges with both endpoints in B2, that
transforms G2 to a boundaried graph that is isomorphic
to G1 (during edge contractions, boundary vertices
prevail). Note that this extends the usual definition
of minors in graphs without boundary.

We say that (M,T ) is a tm-pair if M is a graph,
T ⊆ V (M), and all vertices in V (M) \ T have degree
two. We denote by diss(M,T ) the graph obtained from
M by dissolving all vertices in V (M) \ T, that is, for
every vertex v ∈ V (M) \T, with neighbors u and w, we
delete v and, if u and w are not adjacent, we add the
edge {u,w}. A tm-pair of a graph G is a tm-pair (M,T )
where if M is a subgraph of G.

Given two graphs H and G, we say that a tm-
pair (M,T ) of G is a topological minor model of H
in G if H is isomorphic to diss(M,T ). We denote this
isomorphism by σM,T : V (H)→ T. We call the vertices
in T branch vertices of (M,T ). We call each path in
M between two distinct branch vertices and with no
internal branch vertices a subdivision path of (M,T ) and
the internal vertices of such paths, i.e., the vertices of
V (M)\T, are the subdivision vertices of (M,T ).We also
extend σM,T so to also map each e = {x, y} ∈ E(H)
to the subdivision path of M with endpoints σM,T (x)
and σM,T (y). Furthermore, we extend σM,T so to also
map each subgraph H ′ of H to the subgraph of M
consisting of the vertices of σM,T (T ) and the paths in
σM,T (e), e ∈ E(H ′).

If M = (M,B, ρ) ∈ B and T ⊆ V (M) with
B ⊆ T, we call (M, T ) a btm-pair and we define
diss(M, T ) = (diss(M,T ), B, ρ). Note that we do not
permit dissolution of boundary vertices, as we consider
all of them to be branch vertices. If G = (G,B, ρ) is a
boundaried graph and (M,T ) is a tm-pair of G where
B ⊆ T, then we say that (M, T ), where M = (M,B, ρ),
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is a btm-pair of G = (G,B, ρ). Let Gi = (Gi, Bi, ρi), i ∈
[2].We say thatG1 is a topological minor ofG2, denoted
by G1 �tm G2, if G2 has a btm-pair (M, T ) such that
diss(M, T ) is isomorphic to G1.

Given a G = (G,B, ρ) ∈ B, we define ext(G)
as the set containing every topological minor minimal
boundaried graph G′ = (G′, B, ρ) among those that
contain G as a minor. Notice that we insist that B and
ρ are the same for all graphs in ext(G).Moreover, we do
not consider isomorphic boundaried graphs in ext(G) as
different graphs. The set ext(G) helps us to express the
minor relation in terms of the topological minor relation
because of the following simple observation.

Observation 1. If G1,G2 ∈ B, then G1 �m G2 ⇐⇒
∃G ∈ ext(G2) : G1 �tm G. Moreover, there is a
function f1 : N→ N such that if G is a boundaried graph
with detail h, then every graph in ext(G) has detail at
most f1(h).

Folios. We define the h-folio of G = (G,B, ρ) ∈ B:

h-folio(G)={G′ ∈ B | G′ �tm G ∧ G′ has detail ≤ h}.

Using the fact that an h-folio is a collection ofKh+1-
minor-free boundaried graphs, it follows that the h-folio
of a t-boundaried graph has at most 2O((h+t)·log(h+t)

elements. Therefore the number of distinct h-folios of t-
boundaried graphs is given by the following lemma (also
observed in [5]).

Lemma 3.1. For every t, h ∈ N, |{h-folio(G) | G ∈
B(t)
h }| = 22O((h+t)·log(h+t))

.

Equivalent boundaried graphs and represen-
tatives. We say that two boundaried graphs G1 =
(G1, B1, ρ1) and G2 = (G2, B2, ρ2) are compatible if
ρ−1

2 ◦ρ1 is an isomorphism from G1[B1] to G2[B2]. Given
two compatible boundaried graphs G1 = (G1, B1, ρ1)
and G2 = (G2, B2, ρ2), we define G1⊕G2 as the graph
obtained if we take the disjoint union of G1 and G2

and, for every i ∈ [|B1|], we identify vertices ρ−1
1 (i) and

ρ−1
2 (i).

Given h ∈ N, we say that two boundaried graphs
G1 and G2 are h-equivalent, denoted by G1 ≡h G2, if
they are compatible and, for every graph H on at most
h vertices and h edges and every boundaried graph F
that is compatible with G1 (hence, with G2 as well), it
holds that

H �m F⊕G1 ⇐⇒ H �m F⊕G2.(3.2)

Note that ≡h is an equivalence relation on B. A
minimum-sized (in terms of number of vertices) element
of an equivalence class of ≡h is called representative of
≡h . A set of t-representatives for ≡h is a collection

containing a minimum-sized representative for each
equivalence class of ≡h. Given t, h ∈ N, we denote by
R(t)

h a set of t-representatives for ≡h .
Let F be a finite non-empty collection of non-

empty graphs; we call such a collection proper. A
proper collection is called connected if all its graphs are
connected. We extend the minor relation to F such
that, given a graph G, F �m G if and only if there
exists a graph H ∈ F such that H �m G. We also
denote exm(F) = {G | F �m G}, i.e., exm(F) is the
class of graphs that do not contain any graph in F as a
minor.

Definition of the problem. Let F be a proper
collection. We define the graph parameter mF as the
function that maps graphs to non-negative integers as
follows:

mF (G) = min{|S| | S ⊆ V (G) ∧G \ S ∈ exm(F)}.

The main objective of this paper is to study the problem
of computing the parameter mF for graphs of bounded
treewidth. The corresponding decision problem is for-
mally defined as follows.

F-M-Deletion
Input: A graph G and an integer k ∈ N.
Parameter: The treewidth of G.
Output: Is mF (G) ≤ k?

At this point, we wish to stress that the folio-
equivalence defined in (3.2) is related but is not the
same as the one defined by “having the same h-folio”.
Indeed, observe first that if G1 and G2 are compatible
t-boundaried graphs and h-folio(G1) = h-folio(G2)
then G1 ≡h G2, therefore the folio-equivalence is a
refinement of ≡h. In fact, a dynamic programming
procedure for solving F-M-Deletion can also be based
on the folio-equivalence, and this has already been
done in the general algorithm in [5], which has a
double-exponential parametric dependence due to the
bound of Lemma 3.1. In this paper we build our
dynamic programming on the equivalence ≡h and we
essentially prove that ≡h is “coarse enough” so to
reduce the double-exponential parametric dependence
of the dynamic programming to a single-exponential
one. In fact, this has already been done in [5] for
the case where F contains some planar graph, as this
structural restriction directly implies an upper bound
on the treewidth of the representatives. To deal with
the general case, the only structural restriction for the
(non-trivial) representatives is the exclusion of H as
a minor. All the combinatorial machinery that we
introduce in the next two sections is intended to deal
with the structure of this general and (more entangled)
setting.
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4 Flat walls
In this section we deal with flat walls. More precisely,
in Subsection 4.1 we define them and we state the Flat
Wall Theorem of Robertson and Seymour [44], using
the terminology of [32]. In Subsection 4.2 we define a
graph parameter related to flat walls and prove that
it behaves bidimensionally and is separable. Finally,
in Subsection 4.3 we define homogeneous subwalls and
prove that a flat wall contains a large homogeneous
subwall.

4.1 The Flat Wall Theorem Before defining flat
walls, we need to introduce walls and renditions, follow-
ing the recent framework of [32].

Walls. Let k, r ∈ N. The (k × r)-grid is the
Cartesian product of two paths on k and r vertices,
respectively. An elementary r-wall, for some odd r ≥ 3,
is the graph obtained from a (2r× r)-grid with vertices
(x, y) ∈ [2r] × [r], after the removal of the “vertical”
edges {(x, y), (x, y + 1)} for odd x + y, and then the
removal of all vertices of degree one. Notice that, as
r ≥ 3, an elementary r-wall is a planar graph that has
a unique (up to topological isomorphism) embedding in
the plane R2 such that all its finite faces are incident
to exactly six edges. The perimeter of an elementary
r-wall is the cycle bounding its infinite face, while the
cycles bounding its finite faces are called bricks. Also,
the vertices in the perimeter of an elementary r-wall
that have degree two are called pegs, while the vertices
(1, 1), (2, r), (2r − 1, 1), (2r, r) are called corners (notice
that the corners are also pegs).

Given an elementary r-wall W, some i ∈
{1, 3, . . . , 2r − 1}, and i′ = (i + 1)/2, the i′-th vertical
path of W is the one whose vertices, in order of appear-
ance, are (i, 1), (i, 2), (i+ 1, 2), (i+ 1, 3), (i, 3), (i, 4), (i+
1, 4), (i + 1, 5), (i, 5), . . . , (i, r − 2), (i, r − 1), (i + 1, r −
1), (i + 1, r). Also, given some j ∈ [2, r − 1] the j-
th horizontal path of W is the one whose vertices, in
order of appearance, are (1, j), (2, j), . . . , (2r, j). The
first horizontal path is the one containing the vertices
(1, 1), (2, 1), . . . , (2r−1, 1) while the r-th horizontal path
is the one containing the vertices (1, r), (2, r), . . . , (2r, r).
We call these two last paths the lowest and the highest
paths of W, respectively.

An r-wall is any graphW obtained from an elemen-
tary r-wall W after subdividing edges. The following
theorem of Kawarabayashi and Kobayashi [31] provides
a linear relation between the treewidth and the height
of a largest wall in a minor-free graph.

Theorem 4.1. There is a function f2 : N → N such
that, for every q, r ∈ N and every Kq-minor-free graph
G, if tw(G) ≥ f2(q) · r, then G contains an r-wall. In

particular, one may choose f2(q) = 2O(q2 log q).

We call the vertices of an r-wallW that where added
after the subdivision operations subdivision vertices,
while we call the rest of the vertices (i.e., those of W )
branch vertices. A cycle of W is a brick (resp. the
perimeter) of W if its branch vertices are the vertices of
a brick (resp. the perimeter) of W. We denote by C(W )
the set of all cycles of W , by bricks(W ) the set of all the
bricks of W , and we use D(W ) in order to denote the
perimeter of the wall W.

A vertical (resp. horizontal) path of W is one
whose branch vertices are the vertices of a vertical (resp.
horizontal) path of W. Notice that the perimeter and
the bricks of an r-wallW are uniquely defined regardless
of the choice of the elementary r-wall W. A subwall of
W is any subgraph W̆ of W that is an r′-wall, with
r′ ≤ r, and such the vertical (resp. horizontal) paths of
W̆ are subpaths of the vertical (resp. horizontal) paths
of W.

Given an r-wall W, we say that a pair (P,C) ⊆
D(W )×D(W ) is a choice of pegs and corners for W if
W is the subdivision of an elementary r-wall W where
P and C are the pegs and the corners ofW, respectively
(clearly, C ⊆ P ). A subgraph W of a graph G is called
a wall of G if W is an r-wall for some odd r ≥ 3 and we
refer to r as the height of the wall W.

The layers of an r-wallW are recursively defined as
follows. The first layer of W is its perimeter. For i =
2, . . . , (r−1)/2, the i-th layer ofW is the (i−1)-th layer
of the subwallW ′ obtained fromW after removing from
W its perimeter and removing recursively all occurring
vertices of degree one. The central vertices of an r-wall
are its two branch vertices that do not belong to any
layer. See Figure 3 for an illustration of these notions.

Figure 3: An 11-wall and its five layers.

Renditions. Let ∆ be a closed disk. Given a
subset X of ∆, we denote its closure by X and its
boundary by bd(X). A ∆-painting is a pair Γ = (U,N)
where N is a finite set of points of ∆, N ⊆ U ⊆ ∆,
U \N has finitely many arcwise-connected components,
called cells, such that, for every cell c, c is a closed disk,
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bd(c)∩∆ ⊆ N, and |bd(c)∩N | ≤ 3.We use the notation
U(Γ) := U, N(Γ) := N, and denote the set of cells of Γ
by C(Γ).

Notice that, given a ∆-painting Γ, the pair
(N(Γ), {c ∩ N | c ∈ C(Γ)}) is a hypergraph whose hy-
peredges have cardinality at most three, and Γ can be
seen as a plane embedding of this hypergraph in ∆.

Let G be a graph, and let Ω be a cyclic permutation
of a subset of V (G) that we denote by V (Ω). By an Ω-
rendition of G we mean a triple (Γ, σ, π), where

• Γ is a ∆-painting for some closed disk ∆,

• π : N(Γ)→ V (G) is an injection, and

• σ assigns to each cell c ∈ C(Γ) a subgraph σ(c) of
G, such that

(1) G =
⋃

c∈C(Γ) σ(c),

(2) for distinct c, c′ ∈ C(Γ), σ(c) and σ(c′) are
edge-disjoint,

(3) for every cell c ∈ C(Γ), π(c ∩N) ⊆ V (σ(c)),

(4) for every cell c ∈ C(Γ), V (σ(c)) ∩⋃
c′∈C(Γ)\{c} V (σ(c′)) ⊆ π(c ∩N), and

(5) π(N(Γ)∩bd(∆)) = V (Ω), such that the points
in N(Γ)∩ bd(∆) appear in bd(∆) in the same
ordering as their images, via π, in Ω.

We say that an Ω-rendition (Γ, σ, π) of G is tight if
the following conditions are satisfied:

1. for every c ∈ C(Γ) there is a path in σ(c) between
any two vertices in π(c ∩N) and

2. there is no other Ω-rendition of G satisfying Con-
dition 1 with smaller number of cells.

Flat walls. Let G be a graph and let W be a wall
a of G. We say that W is a flat wall of G if there is a
separation (X,Y ) of G and a choice (P,C) of pegs and
corners for W such that

• V (W ) ⊆ Y,

• P ⊆ X ∩ Y ⊆ V (D(W )), and

• if Ω is the cyclic ordering of the vertices X ∩ Y
as they appear in D(W ), then there exists an Ω-
rendition (Γ, σ, π) of G[Y ].

Given a flat wall W of a graph G as above, we call
G[Y ] the compass of W in G, denoted by compass(W ).
We call X ∩ Y the frontier of W. We call the set
ground(W ) := π(N(Γ)) ground set ofW.We clarify that
ground(W ) consists of vertices of the compass ofW that
are not necessarily vertices ofW.We also call the graphs

in flaps(W ) := {σ(c) | c ∈ C(Γ)} flaps of the wall W.
For each flap F ∈ flaps(W ) we define its base5 as the
set ∂F := V (F )∩ground(W ).We also refer to the triple
(Γ, σ, π) as a rendition of the compass of W in G. We
always assume that this rendition is a tight one. Based
on this assumption and by using Menger’s theorem, it
is easy to prove the following.

Observation 2. Let W be a flat wall of a graph G and
let K be the compass of W. For every flap F of W , there
exists |∂F | pairwise vertex-disjoint paths in K from ∂F
to the frontier of W. Moreover, any two vertices in ∂F
are connected by a path in F.

Let G be a graph. We say that a pair (A,W ) is
an (a, r)-apex-wall pair of G if A ⊆ V (G), |A| ≤ a and
W is a flat r-wall of G \ A. We are now ready to state
the Flat Wall Theorem, first proved By Robertson and
Seymour [44] and then reproved by Kawarabayashi et
al. [32] and Chuzhoy [12]. The version we state here is
by Chuzhoy [12].

Theorem 4.2. There is a constant c1 ∈ N such that,
for every odd r ≥ 3 and every q ∈ N, every graph G that

• is Kq-minor-free and

• contains a z-wall where z = c1 · (q · (r + q)),

contains a (q − 5, r)-apex-wall pair (A,W ).

4.2 Affecting flat walls We proceed to define a
graph parameter and then prove that it is bidimensional
and separable.

Let G be a graph, (A,W ) be an (a, r)-apex-wall pair
of G, and S ⊆ V (G). We say that S affects (A,W ) if
NG[V (compass(W ))] ∩ (S \ A) 6= ∅. For a, r ∈ N, we
define

pa,r(G) = min{k | ∃S ⊆ V (G) : |S| ≤ k ∧ S affects
every (a, r)-apex-wall pair (A,W ) of G}.

Using Theorem 4.1 and Theorem 4.2, we prove
that the above parameter grows quadratically with the
height of a largest wall, or equivalently, by Theorem 4.1,
with its treewidth.

Lemma 4.1. (?) There is a function f3 : N2 → N such
that if q, r ∈ N>0, and G is a Kq-minor-free graph, then
tw(G) ≤ f3(q, r) ·max

{
1,
√
pq−5,r(G)

}
. In particular,

one may choose f3(q, r) = r · 2O(q2 log q).

5We point out that this definition differs from the notation
∂(S) for a set of vertices defined in §3.
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We now prove that the parameter pa,r is separable,
that is, that when considering a separation of a graph,
the value of the parameter is “evenly” split along both
sides of the separation, possibly with an offset bounded
by the order of the separation.

Lemma 4.2. Let a, r ∈ N, let G be a graph, and let
S ⊆ V (G) such that S affects every (a, r)-apex-wall pair
of G. Then, for every separation (L,R) of S in G, the
set L∩(R∪S) affects every (a, r)-apex-wall pair of G[L].

Proof. Suppose for contradiction that (A,W ) is an
(a, r)-apex-wall pair of G[L] that is not affected by L ∩
(R ∪ S). In particular, it holds that V (compass(W )) ⊆
L \R. Since by assumption (A,W ) is affected by S but
not by L ∩ (R ∪ S), there should exist a vertex v ∈
S ∩ (R \L) with a neighbor in V (compass(W )) ⊆ L \R,
contracting the hypothesis that (L,R) is a separation of
G.

4.3 Homogeneous subwalls Before defining homo-
geneous subwalls, we need to define partially disk-
embedded graphs and introduce the concept of a lev-
eling of a flat wall. This concept can be seen as a way
to capture the “plane structure” of a flat wall in terms
of a graph embeddable in a disk and might be useful in
further applications of the Flat Wall Theorem.

Partially disk-embedded graphs. A closed disk
(resp. open disk) ∆ is a set homeomorphic to the set
{(x, y) ∈ R2 | x2 + y2 ≤ 1} (resp. {(x, y) ∈ R2 |
x2 + y2 < 1}). A disk of ∆ is a closed or an open
disk that is a subset of ∆. We say that a graph G is
partially disk-embedded in some closed disk ∆, if there
is some subgraph K of G that is embedded in ∆ such
that (V (G) ∩ ∆, V (G) \ int(∆)) is a separation of G,
where int is used to denote the interior of a subset of
the plane. From now on, we use the term partially ∆-
embedded graph G to denote that a graph G is partially
disk-embedded in some closed disk ∆. We also call the
graph K = G ∩ ∆ compass of the ∆-embedded graph
G and we always assume that G is accompanied by an
embedding of its compass in ∆, that is the set G∩∆.We
say that G is a ∆-embedded graph if it is partially ∆-
embedded graph and G ⊆ ∆ (the whole G is embedded
in ∆).

Levelings. Let W be a flat wall of a graph G. We
define the leveling of W in G, denoted by W̃ , as the
bipartite graph where one part is the ground set of W,
the other part is the set of flaps of W, and, given a
pair (v, F ) ∈ ground(W )×flaps(W ), the set {v, F} is an
edge of W̃ if and only if v ∈ ∂F. Again, keep in mind
that W̃ may contain (many) vertices that are not in W.
Notice that the incidence graph of the plane hypergraph
(N(Γ), {c ∩ N | c ∈ C(Γ)}) is isomorphic to W̃ via an

isomorphism that extends π and, moreover, bijectively
corresponds cells to flaps. This permits us to treat W̃ as
a ∆-embedded graph where bd(∆)∩W̃ is the frontier of
W. We call the vertices of ground(W ) (resp. flaps(W ))
ground-vertices (resp. flap-vertices) of W̃ .

Recall that each edge of compass(W ) belongs to
exactly one flap of W. If both of the endpoints of this
edge are in the boundary of this flap, then we say that
this edge is a short edge of compass(W ). We define the
graphW • as the graph obtained fromW if we subdivide
once every short edge in W.

The next observation, which is used in the proof
of Theorem 5.2, is a consequence of the following three
facts: flap-vertices of W̃ have degree at most three, all
the vertices of a wall have degree at most three, and
every separation (A,B) of order at most three of a wall
is trivial.

Observation 3. If W is a flat wall of a graph G, then
the leveling W̃ of W in G contains a subgraph W ′

that is isomorphic to some subdivision of W • via an
isomorphism that maps each ground vertex to itself.

We call the graph W ′ as in Observation 3 repre-
sentation of the flat wall W in W̃ and we see it as a
∆-embedded subgraph of W̃ . Notice that the above ob-
servation permits to bijectively map each cycle of W to
a cycle of W ′ that is also a cycle of W̃ . That way, each
cycle C ofW corresponds to a cycle C ofW ′ denoted by
C ′ and we call C ′ as the representation of C in W̃ . From
now on, we reserve the “ ′”-notation to denote the cor-
respondence between W (resp. C) and W ′ (resp. C ′).
We define the function flaps : C(W )→ 2flaps(W ) so that,
for each cycle C of W, flaps(C) contains each flap F of
W that, when seen as a flap-vertex of the ∆-embedded
graph W̃ , belongs to the closed disk bounded by C ′.

Homogeneous subwalls. Let G be a graph and
W be a flat wall of G. Let also (Γ, σ, π) be a rendition
of the compass of W in G. Recall that Γ = (U,N) is
a ∆-painting for some closed disk ∆. Given a flap F,
we denote by Ω(F ) the counter-clockwise ordering of
the vertices of ∂F as they appear in the corresponding
cell of C(Γ). Notice that as |∂F | ≤ 3, this cyclic
ordering is significant only when |∂F | = 3, in the sense
that (x1, x2, x3) remains invariant under shifting, i.e.,
(v1, v2, v3) ≡ (v2, v3, v1) but not under inversion, i.e.,
(v1, v2, v3) 6≡ (v3, v2, v1).

Let G be a graph and let (A,W ) be an (a, r)-apex-
wall pair of G. For each cell F ∈ flaps(W ) with tF =
|∂F |, we fix ρF : ∂F → [a+1, a+tF ] such that (ρ−1

F (a+
1), . . . , ρ−1

F (a + tF )) ≡ Ω(c). We also fix a bijection
ρA : A → [a]. For each flap F ∈ flaps(W ) we define the
boundaried graph FA := (G[A∪F ], A∪∂F, ρA∪ρF ) and
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we denote by FA the underlying graph of FA. Notice
that G[V (compass(W )) ∪A] =

⋃
F∈flaps(W) F

A.
Given some ` ∈ N, we say that two flaps F1, F2 ∈

flaps(W ) are (A, `)-equivalent, denoted by F1 ∼A,` F2,
if

`-folio(FA
1 ) = `-folio(FA

2 ).

For each F ∈ flaps(W ), we define the (`, a)-color of F,
denoted by (`, a)-color(F ), as the equivalence class of
∼A,` to which FA belongs.

Let W̃ be the leveling of W in G \ A and let W ′
be the representation of W in W̃ . Recall that W̃ is a
∆-embedded graph. For each cycle C of W , we define
the (`, a)-palette of C, denoted by (`, a)-palette(C), as
the set of al the (`, a)-colors of the flaps that appear as
vertices of W̃ in the closed disk bounded by C ′ in ∆
(recall that by C ′ we denote the representation of C in
W̃ ). Let W̆ be a subwall of W. We say that W̆ is an
(`, a)-homogeneous subwall of W if every brick B of W
has the same (`, a)-palette (seen as a cycle of W ).

We would like to stress that, according to our
definition, we do not consider a homogeneous subwall
of a flat wall as a flat subwall itself. This permits us to
avoid to define, in particular, the pegs and the rendition
that would be associated with that flat subwall.

In the next lemma we prove that a sufficiently large
flat wall contains a large enough homogeneous subwall.

Lemma 4.3. (?) There is a function f4 : N3 → N such
that if `, r, a ∈ N, where r is an odd number, G is a
graph, and (A,W ) is an (a, f4(`, r, a))-apex-wall pair of
G, then W has an (`, a)-homogeneous subwall of height

r. Moreover, it holds that f4(`, r, a) = r22O((a+`)·log(a+`))

.

5 Finding an irrelevant vertex
In this section we show how to find an irrelevant vertex
inside a sufficiently large (in terms of the collection F)
flat wall of a boundaried graph that is not affected by
its boundary. We start by defining in Subsection 5.1
railed annuli, a structure introduced in [29], and reused
later in [25, 26], which occurs as a subgraph inside
a flat wall and that turns out to be quite handy to
guarantee a “confinement” property of topological minor
models (cf. Proposition 5.2). In Subsection 5.2 we
first use graph drawing tools to prove that we can
assume that our model is embedded “nicely” inside a
railed annulus, in the sense that certain vertices are
sufficiently pairwise far apart (cf. Lemma 5.1), which
will be helpful in order to reroute the model. We then
prove (cf. Theorem 5.1) that the model can be rerouted
–possibly, by obtaining another topological minor model
that can be contracted to a dissolution of the original
model– so that, in particular, a large enough central

region of the railed annulus is avoided by the model,
and such that a prescribed subset of degree-3 vertices
of the original model cannot be affected by contractions
in order to obtain the desired model. Once we have
all these ingredients, we finally show in Subsection 5.3
how the desired irrelevant vertex can be found inside
a large enough flat wall that is not affected by the
boundary (cf. Theorem 5.2). In order to prove this
result, the notion of homogeneous subwall is crucial.
We also need, in particular, to define an appropriate
“flat” representation of a topological minor model, called
its leveling, which we equip with colors encoding the
“critical” zones in which we will have to be very careful
to do the rerouting.

5.1 A lemma for model taming Before stating
Proposition 5.2, we need some definitions.

Railed annuli. Let G be a partially ∆-embedded
graph and let C = [C1, . . . , Cr], r ≥ 2, be a collection of
vertex-disjoint cycles of the compass of G. We say that
the sequence C is a ∆-nested sequence of cycles of G if
every Ci is the boundary of an open disk Di of ∆ such
that ∆ ⊇ D1 ⊇ · · · ⊇ Dr. From now on, each ∆-nested
sequence C = [C1, . . . , Cr] will be accompanied with the
sequence [D1, . . . , Dr] of the corresponding open disks
as well as the sequence [D1, . . . , Dr] of their closures.
Given x, y ∈ [r] with x ≤ y, we call the set Dx \ Dy

(x, y)-annulus of C and we denote it by ann(C, x, y).
Finally we say that ann(C, 1, r) is the annulus of C and
we denote it by ann(C).

Let r ∈ N≥3 and q ∈ N≥3 with r odd. An (r, q)-
railed annulus of a ∆-partially-embedded graph G is
a pair A = (C,P) where C = [C1, . . . , Cr] is a ∆-
nested collection of cycles of G and P = [P1, . . . , Pq]
is a collection of pairwise vertex-disjoint paths in G,
called rails, such that

• for every j ∈ [q], Pj ⊆ ann(C), and

• for every (i, j) ∈ [r] × [q], Ci ∩ Pj is a non-empty
path that we denote by Pi,j .

See Figure 4 for an example of a (5, 8)-railed annu-
lus. The following proposition states that large railed
annuli can be found inside a modestly larger wall and
will be used in the next section. The proof is easy and
can be found, for instance, in, [29]).

Proposition 5.1. For every odd x ∈ N, if W is a
(d 9

2 · xe × d
9
2 · xe)-wall, then there is a collection P of

x paths in W such that if C is the collection of the first
x layers of W, then (C,P) is an (x, x)-railed annulus
of W where the first cycle of C is the perimeter of W.
Moreover, the open disk defined by the x-th cycle of C
contains the central vertices of W.
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P3

P4P5

P6

P7

P8

P1

P2D5

Figure 4: An example of a (5, 8)-railed annulus and its
inner disk D5.

We define the annulus of A = (C,P) as the annulus
of C. We call C1 and Cr the outer and the inner cycle
of A, respectively. Also, if (i, i′) ∈ [r]2 with i < i′ then
we define Ai,i′ = ([Ci, · · · , Ci′ ],P ∩ ann(C, i, i′)).

The union-graph of an (r, q)-railed annulus A =
(C,P) is defined as G(A) := (

⋃
i∈[r] Ci) ∪ (

⋃
i∈[q] Pi).

Clearly, G(A) is a planar graph and we always assume
that its infinite face is the one whose boundary is the
fist cycle of C.

Let A be a (r, q)-railed annulus of a partially ∆-
embedded graph G. Let r = 2t+ 1, for some t ≥ 0. Let
also s ∈ [r] where s = 2t′ + 1, for some 0 ≤ t′ ≤ t.
Given some I ⊆ [q], we say that a subgraph M of G is
(s, I)-confined in A if

M ∩ ann(C, t+ 1− t′, t+ 1 + t′) ⊆
⋃
i∈I

Pi.

The following proposition has been recently proved
by Golovach et al. [26, Theorem 3].

Proposition 5.2. There exist two functions f5, f6 :
Z≥0 → Z≥0 such that if

• s is a positive odd integer,

• H is a graph on g edges,

• G is a ∆-partially-embedded graph,

• A = (C,P) is an (r, q)-railed annulus of G, where
r ≥ f6(g) + 2 + s and q ≥ 5/2 · f5(g),

• (M,T ) is a topological minor model of H in G such
that T ∩ ann(A) = ∅, and

• I ⊆ [q] where |I| > f5(g),

then G contains an topological minor model (M̃, T̃ ) of
H in G such that

1. T̃ = T,

2. M̃ is (s, I)-confined in A, and

3. M̃ \ ann(A) ⊆M \ ann(A).

Moreover f6(g) = O((f5(g))2).

5.2 Model rerouting in disk-embedded graphs
Using classic results on how to optimally draw pla-
nar graphs of maximum degree three into grids (see
e.g., [30]) one may easily derive the following.

Proposition 5.3. There is a function f7 : N→ N such
that for every `-vertex planar graph H with maximum
degree three there is a tm-pair (M,T ) of the (f7(`) ×
f7(`))-grid, denoted by Γ, that is a topological minor
model of H in Γ. Moreover, it holds that f7(`) = O(`).

Let Γ be an (r × r)-grid for some r ≥ 3. We see a
Γ-grid as the union of r horizontal paths and r vertical
paths. Given an i ∈ b r2c, we define the i-th layer of Γ
recursively as follows: the first layer of Γ is its perimeter,
while, if i ≥ 2, the i-th layer of Γ is the perimeter of the
(r−2(i−1)×r−2(i−1))-grid created if we remove from
Γ its i− 1 first layers. When we deal with a (r× r)-grid
Γ, we always consider its embedding where the infinite
face is bounded by the first layer of Γ.

Safely arranged models. LetG be a plane graph.
Given two vertices x and y of G, we define their face-
distance in G as the smallest integer i such that there
exists an arc of the plane (i.e., a subset homeomorphic to
the interval [0, 1]) between x and y that does not cross
the infinite face of the embedding, crosses no vertices
of G, and crosses at most i edges of G. Given two
subgraphs of W , we define their face-distance as the
minimum face-distance between two of their vertices.
We denote by F

(i)
G (x) the set of all vertices of G that

are within face-distance at most i from vertex x.
Given a c ≥ 0 and a tm-pair (M,T ) of G, we say

that (M,T ) is safely c-dispersed in G if

• every two distinct vertices t, t′ ∈ T are within face-
distance at least 2c+ 1 in G, and

• for every t ∈ T of degree d in M , the graph
M [Fc

G(t) ∩ V (M)] consists of d paths with t as a
unique common endpoint.
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With Proposition 5.3 at hand, we can prove the
following useful lemma.

Lemma 5.1. (?) There is a (polynomial) function f8 :
N3 → N such that the following holds. Let c, r, r′, ` ∈ N,
r′ ≤ r, H be a D-embedded (` + r′)-vertex graph, and
Z := {z1, . . . , zr′} ⊆ V (H) such that

• the vertices of H have degree at most three,
• Z is an independent set of H,
• all vertices of Z have degree one in H,
• bd(D) ∩H = Z, and
• (z1, . . . , zr′) is the cyclic ordering of the vertices of
Z as they appear in the boundary of D.

Let also G be a ∆-embedded graph, A = (C,P) be a
(f8(c, r, `), f8(c, r, `))-railed annulus of G, where C =
[C1, . . . , Cf8(c,r,`)], wi be the endpoint of Pi that is
contained in C1, for i ∈ [r], and I := {i1, . . . , ir′} ⊆ [r].
Then the union-graph Γ̃ := G(A) of A contains a tm-
pair (M,T ) that is a topological minor model of H in Γ̃
such that

• for each j ∈ [r′], σM,T (zj) = wij ,

• the tm-pair (M,T ) is safely c-dispersed in Γ̃, and
• none of the vertices of T \ {wi1 , . . . , wir′ } is within
face-distance less than c from some vertex in C1 or
in Cr.

Moreover, it holds that f8(c, r, `) = O(cr(`+ r)).

Let G be a partially ∆-embedded graph and let
C = [C1, . . . , Cr] be a ∆-nested sequence of cycles of
G and let [D1, . . . , Dr] (resp. [D1, . . . , Dr]) be the
sequences of the corresponding open (resp. closed)
disks.

Let also (M,T ) be a tm-pair of G and p ∈ [r]. We
define the p-crop of (M,T ) in C, denoted by (M,T )eDp,
as the tm-pair (M ′, T ′) where M ′ = M ∩ Dp and
T ′ = (T ∩Dp) ∪ (V (Cp ∩M)).

Given a graph H a set Q ⊆ V (H) and a graph
G, we say that φ : V (G) → 2V (H) is a Q-respecting
contraction-mapping of H to G if

•
⋃

x∈V (H) φ(x) = V (G),

• ∀x, y ∈ V (H), if x 6= y then φ(x) ∩ φ(y) = ∅,

• ∀x ∈ V (H), G[φ(x)] is connected,

• ∀{x, y} ∈ E(H), G[φ(x) ∪ φ(y)] is connected, and

• ∀x ∈ Q, |φ(x)| = 1.

The critical point in the above definitions is that
vertices in Q are not “uncontracted” when transforming
H to G. Given a non-negative integer x, we denote by
odd(x) the minimum odd number that is not smaller
than x.

Intrusion of a topological minor model. Let
G be graph, let S ⊆ V (G), and let (M,T ) be a tp-
pair of G. We define the S-intrusion of (M,T ) in G as
the maximum value between |S ∩ T | and the number of
subdivision paths of (M,T ) that contain vertices of S.
Notice that S can intersect many times a subdivision
path of (M,T ), however the value of the S-intrusion
counts each such path only once.

Using Proposition 5.1, Proposition 5.2, and
Lemma 5.1 we prove the following.

Theorem 5.1. There are functions f9 : N2 → N and
f10 : N → N such that the following holds. Let c, ` ∈
N and let G be a partially ∆-embedded graph, whose
compass contains a d 9

2 · f9(c, `)e-wall W with bd(∆) as
perimeter. Let also C1, . . . , Cf9(c,`) be the first f9(c, `)-
layers of W and D1, . . . , Df9(c,`) be the open disks of
∆ that they define. If (M,T ) is a tm-pair of G whose
∆∩V (G)-intrusion in G is at most ` and Q is a subset
of T containing vertices of degree at most three in M,
then there is a tm-pair (M̂, T̂ ) of G and an integer
b ∈ [f9(c, `)] such that

1. M̂ \Db is a subgraph of M \Db,

2. ann(Cb,b+f10(c,`)−1) ∩ T̂ = ∅,

3. (M̂, T̂ ) e Db+f10(c,`) is a tm-pair of W that is
safely c-dispersed in W and none of the vertices
of T̂ ∩ Db+f10(c,`) is within face-distance less than
c from some vertex of Cb+f10(c,`) ∪ Cf9(c,`) in W.

4. M̂ ∩ int(Df9(c,`)) = ∅,

5. there is a Q-respecting contraction-mapping of
diss(M,T ) to diss(M̂, T̂ ), and

6. M̂ does not intersect the two centers of W.

Moreover, it holds that f9(c, `) = O(c · (f5(`2))2).

See Figure 5 for an illustration of the conditions
guaranteed by Theorem 5.1.

Proof. Let g =
(
`
2

)
, r = f5(g) + 1, s = odd(f8(c, r, 3` +

r)), x = odd(max{f6(`) + 2 + s, d5/2 · f5(h)e}), l =
(` + 1) · x, and y = d 9

2 le. We will prove the theorem
for f9(`) = l and f10(`) = x−s

2 . Let G be a partially
∆-embedded graph, whose compass contains a y-wall
W with bd(∆) as perimeter. Let also C = [C1, . . . , Cl]
be the first l layers of W and let [D1, . . . , Dr] (resp.
[D1, . . . , Dr]) be the sequences of the corresponding
open (resp. closed) disks of ∆ bounded by the cycles
in C. From Proposition 5.1 there is a collection P =
{P1, . . . , Px} of paths in W such that A = (C,P) is an
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f11 b

f10

Df10

Figure 5: A visualization of how a tm-pair (M,T ) is
rearranged to a new tm-pair (M̂, T̂ ) as in Theorem 5.1.
The figure depicts in red the part of the tm-pair (M̂, T̂ )
that intersects the disk ∆. The cycles correspond to
the first f9(c, `) layers of W. The black vertices are
the vertices in Q, while the circled vertices inside
the turquoise area are the “new” branch vertices of
T̃ that are vertices of W. The “green clouds” are the
non-singleton images of the Q-respecting contraction-
mapping of diss(M,T ) to diss(M̂, T̂ ).

(l, l)-railed annulus of W where the outer cycle of C
is the perimeter of W and such that the two central
vertices of W belong to the interior of Dl.

Let M̆ the union of all subdivision paths of (M,T )
that intersect ∆ ∩ V (G) and let T̆ be the endpoints
of these paths. Moreover, we denote H̆ = diss(M̆, T̆ )
and observe that H̆ is a subgraph of H. Intuitively, H̆
is the subgraph of H whose topological minor model
(M̆, T̆ ) is the part of (M,T ) intersects the disk ∆. As
the ∆∩ V (G)-intrusion of (M,T ) in G is at most `, the
same bound applies to the ∆∩V (G)-intrusion of (M̆, T̆ )
in G. This in turn implies that |T̆ ∩ ∆| ≤ ` and that
|E(H̆)| ≤ `.

Since, l = (`+ 1) ·x, there is a b ≤ ` ·x+ 1 ≤ l such
that A := ann(Cb,b+x−1)) does not contain any vertex
of T. We define T out = T̆ \Db and T in = T̆ ∩Db+x−1.
Clearly, {T out, T in} is a partition of T̆ .

We set A′ = (Cb,b+x−1,P ∩A). By applying Propo-

sition 5.2 on s, H, g, the ∆-boundaried graph G, the
(x, x)-railed annulus A′, the tm-pair (M̆, T̆ ), and the
set I = [r], we have that G contains a topological minor
model (M̃, T̆ ) of H̆ in G such that M̃ is (s, I)-confined
in A′ and M̃ \ ann(A′) ⊆ M̆ \ ann(A′). We enhance M̃
by adding to it all subdivision paths of (M,T ) that are
not intersecting ∆. That way, we have that (M̃, T ) is
a topological minor model of H in G such that M̃ is
(s, I)-confined in A′ and M̃ \ ann(A′) ⊆M \ ann(A′).

Let p = b + x−s
2 and q = b + x+s

2 − 1 and
notice that q ≤ l. We set A′ := ann(Cp,q) and we
define A′′ := (Cp,q,P ′) where P ′ = P ∩ A′. Let P ′ =
{P ′1, . . . , P ′r}. Observe that, from the second property
of Proposition 5.2, the connected components of M̃ ∩A′
are some of the paths in P ′. This means that there is a
subset of indices {i1, . . . , ir′} ⊆ I such that M̃ ∩ A′ =
P ′i1 ∪ · · · ∪ P

′
ir′
. Let Z = {zi1 , . . . , zir′} be the set of

endpoints of the paths P ′i1 , . . . , P
′
ir′

that are contained
in Cp.

Let M̃ in = M̃ ∩ Dp, M̃
out = (G \ Dp) \ E(Cp),

and observe that M̃ = M̃ in ∪ M̃out and that Z =
V (M̃ in) ∩ V (M̃out). Moreover, all vertices of Z have
degree one in both M̃ in and M̃out. Let H̃ in (resp. H̃out)
be the graph obtained from M̃ in (resp. M̃out) by
dissolving all vertices in T in (resp. T out) except from
those in Z ′. Also (M̃ in, T in∪Z) (resp. (M̃out, T out∪Z))
is a topological minor model of H̃ in (resp. H̃out).

Notice that H̃ in has vertex set T in ∪ Z and can be
seen as a D-embedded graph on at most 3` + r edges
where bd(D)∩H = Z ′ and (zi1 , . . . , zir′ ) is the ordering
of the vertices of Z as they appear in Cp. Observe now
that H̃ in can be seen as the contraction of another D-
embedded graph Ĥ in on at most 3` + r vertices that
has maximum degree at most three. Moreover, we can
assume that the vertices of H̃ in that have degree at
most three are also vertices of Ĥ in that are not affected
by the contractions while transforming Ĥout to H̃out.
This implies that there is a Q-respecting contraction-
mapping of H̃out to Ĥout. Again, in the embedding of
Ĥ in in D, (zi1 . . . , zir′ ) is the ordering of the vertices of
Z as they appear in bd(D).

Keep in mind that H̃+ = H̃out ∪ H̃ in is a minor
of Ĥ+ := H̃out ∪ Ĥ in and that if we dissolve in H̃+

all the vertices in Z we obtain H. Also let Ĥ be the
graph obtained if we dissolve in Ĥ+ all the vertices in
Z. Clearly Ĥ is a minor of H.

We now apply Lemma 5.1 for c, r, r′, `, the D-
embedded graph Ĥ in, the set Z, and the (s, s)-railed
annulus A′′ of the Dp-disk embedded graph G ∩ Dp

and obtain a tm-pair (M̂ in, T̂ in) of G(A′′) that is a
topological minor model of Ĥ in and such that for each
j ∈ [r], the function σM̂ in,T̂ in maps vertex zij to itself.
Notice that G(A′′) is a subgraph ofW ∩ann(Cp,q). From
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the second property of Lemma 5.1, (M̂ in, T̂ in) is safely
c-dispersed in W ∩ ann(Cp,q). From the third property
of Lemma 5.1, it follows that none of the vertices of
T̂ in \ {wi1 , . . . , wir′} is within face-distance less than c
from some vertex in Cp ∪ Cq in W ∩ ann(Cp,q).

We now consider the graph M̂ = M̂ in ∪ M̃out.
Properties 3 and 6 follow by the conclusions of the
previous paragraph. Moreover, M̂ does not intersect
Dq+1 and, as q ≤ l, it neither intersects Dl+1 and
Property 4 holds. Notice also that M̃ \ ann(A′) ⊆
M \ ann(A′) implies M̃ \Db ⊆M \Db. This along with
the fact that M̂ \Db = M̃ \Db, yield Property 1.

Observe that (M̂, T̂ in ∪ T out ∪ Z) is a topological
minor model of Ĥ+, which in turn implies that (M̂, T̂ in∪
T out) is a topological minor model of Ĥ. We now set
T̂ = T̂ in ∪ T out. As there is a Q-respecting contraction-
mapping of H̃out to Ĥout, we also have that there is
a Q-respecting contraction-mapping of H = diss(M,T )
to Ĥ = diss(M̂, T̂ ) and Property 5 holds. As T̂ in ⊆
int(ann(A′′)) ⊆ Dp = Db+f10(`)−1 and T out ⊆ G \ Db,

we deduce that T̂ ∈ G \ ann(Cb,b+f10(`)−1), which yields
Property 2.

5.3 Rerouting minors of small intrusion Let W
be an r-wall and c ≥ 0.We call a cycle C ofW c-internal
if it is within face-distance at least c from the perimeter
of W. Given a 0-internal cycle C of W , we define its
internal pegs (resp. external pegs) as its vertices that
are incident to edges of W that belong to the interior
(resp. exterior) of C (we see edges as open sets). Notice
that each vertex of C is either an internal or an external
peg. Given two subgraphs H1 and H2 of a graph H we
define the distance in H between H1 and H2 as the
minimum distance between a vertex in H1 and a vertex
in H2.

Given a 1-internal brick B of W , one can see the
union of all bricks ofW that have a common vertex with
B, as a subdivision of the graph in Figure 6. We call
this subgraph X of W the brick-neighborhood of B. The
perimeter P of a brick-neighborhood is defined in the
obvious way. The next lemma is based on Observation 2.

Figure 6: The base graph for the definition of a brick-
neighborhood – the external pegs of the perimeter of X
are the black round vertices.

Lemma 5.2. (?) Let W be a flat wall of a graph G and
let W ′ be its representation wall in the leveling W̃ of
W. For every 1-internal brick B of W ′ and every flap
F ∈ flaps(B), the brick-neighborhood X of B contains
|∂F | internally vertex-disjoint paths of W ′ from F to
the external pegs of the perimeter of X.

Vertices irrelevant to minors. LetG be a graph,
H be a minor of G, and S ⊆ V (G). We define the S-
minor-intrusion of H in G as the minimum S-intrusion
in G over all tm-pairs (T,M) of G such that (T,M) is a
topological minor model of G and diss(T,M) ∈ ext(H).

Let Z = (Z,B, ρ) be a t-boundaried graph and
` ∈ N. We say that a vertex v ∈ V (Z) \ B is an `-
irrelevant vertex of Z if for every boundaried graph
C = (C,B, ρ) that is compatible with Z, every minor
of C⊕Z with (V (Z) \B)-minor-intrusion in G at most
`, is also a minor of C ⊕ (Z \ v,B, ρ). Informally, such
an irrelevant vertex can be removed without affecting
the occurrences of any minor of small minor-intrusion,
where the intrusion is defined without taking into ac-
count the branching vertices in the boundary.

Using Theorem 5.1 we can finally prove the main
result of this section.

Theorem 5.2. (?) There is a function f11 : N2 → N
such that, for every a, ` ∈ N and every boundaried graph
Z = (Z,B, ρ), if (A,W ) is an (a, f11(a, `))-apex-wall
pair of Z that is not affected by B, then Z contains an
`-irrelevant vertex. Moreover, it holds that f11(a, `) =

(f5(`2))22O((a+`2)·log(a+`2))

.

By definition of the set R(t)
h , its elements are of

minimum size, and therefore a boundaried graph G =

(G,B, ρ) ∈ R(t)
h does not contain any 2h-irrelevant

vertex. To see this, recall that in (3.2) the equivalence
is defined in terms of graphs H on at most h vertices
and at most h edges, and that every topological minor-
minimal in ext(H) has at most 2h vertices and at most
2h edges. Thus, from Theorem 5.2, B should affect
every (a, f11(a, 2h))-apex-wall pair of G, for every value
of a. We conclude the following.

Corollary 5.1. If t, h, a ∈ N and G = (G,B, ρ)

is a boundaried graph in R(t)
h , then it holds that

pa,f11(a,2h)(G) ≤ t.

6 Bounding the size of the representatives
In this section we use the results obtained in the
previous sections to prove that every representative in
R(t)

h has size linear in t. For this, we first prove in
Subsection 6.1 that every representative in R(t)

h has a
set of at most 2t vertices containing its boundary whose
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removal leaves a graph with treewidth bounded by a
constant depending only on the collection F ; such a set
is called a treewidth modulator.

Once we have the treewidth modulator, we can use
known results from the protrusion machinery to achieve
our goal. Namely, in Subsection 6.2 we show how to
obtain a linear protrusion decomposition of a represen-
tative, and we reduce each of the linearly many protru-
sions in the decomposition to an equivalent protrusion of
constant size. In the full version we give upper bounds
on the constants depending on the collection F involved
in our algorithm. These upper bounds depend explicitly
on the parametric dependencies of the Unique Linkage
Theorem [33,45].

6.1 Finding a treewidth modulator of linear
size Given a graph G and a set S ⊆ V (G), we say that
a separation (L,R) of G is a 2/3-balanced separation of
S in G if |(L \ R) ∩ S|, |(R \ L) ∩ S| ≤ 2

3 |S|. We need
the following well-known property of graphs of bounded
treewidth (see e.g. [7, 14]).

Lemma 6.1. Let G be a graph and let S ⊆ V (G). There
is a 2/3-balanced separation (L,R) of S in G of order
at most tw(G) + 1.

Using Lemma 4.1, Lemma 4.2, Corollary 5.1, and
Lemma 6.1 we prove the following result, whose proof
is an adaptation to our setting of the one of [22,
Lemma 3.6] (see also [21]). We stress that p is not
a bidimensional parameter in the way this is defined
in [16,18,21,22], therefore Lemma 6.2 cannot be derived
by directly applying the results of [22].

Lemma 6.2. (?) There is a function f12 : N → N
such that if t, h, q ∈ N and G = (G,B, ρ) is a Kq-
minor-free boundaried graph in R(t)

h , then G contains an
f12(q, h)-treewidth modulator that contains B and has
at most 2t vertices. Moreover, it holds that f12(q, h) =

(f5(h2))22O((q+h2)·log(q+h2))

.

6.2 Finding a linear protrusion decomposi-
tion and reducing protrusions Equipped with
Lemma 6.2, the next step is to construct an appropriate
protrusion decomposition of a representative. We first
need to define protrusions and protrusion decomposi-
tions of graphs and boundaried graphs.

Protrusion decompositions of unboundaried
graphs. Given a graph G, a set X ⊆ V (G) is a β-
protrusion of G if |∂(X)| ≤ β and tw(G[X]) ≤ β − 1.
Given α, t ∈ N, an (α, β)-protrusion decomposition of G
is a sequence P = 〈R0, R1, . . . , R`〉 of pairwise disjoint
subsets of V (G) such that

•
⋃

i∈[`] = V (G),

• max{`, |R0|} ≤ α,
• for i ∈ [`], N [Ri] is a β-protrusion of G, and
• for i ∈ [`], N(Ri) ⊆ R0.

We call the sets N [Ri] i ∈ [`], the protrusions of P and
the set R0 the core of P.

The above notions can be naturally generalized to
boundaried graphs, just by requiring that both bound-
aries –of the host graph and of the protrusion– behave
as one should expect, namely that the intersection of the
protrusion with the boundary of the considered graph
is a subset of the boundary of the protrusion.

Protrusions and protrusion decompositions
of boundaried graphs. Given a boundaried graph
G = (G,B, ρ), a tree decomposition of G is any tree
decomposition of G with a bag containing B. The
treewidth of a boundaried graph G, denoted by tw(G),
is the minimum width of a tree decomposition of G. A
boundaried graph G′ = (G′, B′, ρ′) is a β-protrusion of
G if
• V (G′) is a β-protrusion of G,
• tw(G′) ≤ β − 1,

• ∂(V (G′)) ⊆ B′, and
• B ∩ V (G′) ⊆ B′.
Given a boundaried graph G = (G,B, ρ) and α, t ∈

N, an (α, β)-protrusion decomposition ofG is a sequence
P = 〈R0, R1, . . . , R`〉 of pairwise disjoint subsets of
V (G) such that

•
⋃

i∈[`] = V (G),

• max{`, |R0|} ≤ α,
• B ⊆ R0,
• for i ∈ [`], (G(N [Ri]), ∂(N [Ri]), ρ|∂(N [Ri])) is a β-

protrusion of G, and
• for i ∈ [`], N(Ri) ⊆ R0.

As in the unboundaried case, we call the sets N [Ri]
i ∈ [`], the protrusions of P and the set R0 core of P.

The following theorem is a reformulation using our
notation of one of the main results of Kim et al. [34],
which is stronger than what we need uin the sense that
also applies to graphs excluding a topological minor.

Theorem 6.1. Let c, β, t be positive integers, let H
be an q-vertex graph, and let G be an n-vertex H-
topological-minor-free graph. If we are given a set M ⊆
V (G) with |M | ≤ c · t such that tw(G −M) ≤ β, then
we can compute in time O(n) an ((αH ·β · c) · t, 2β+ q)-
protrusion decomposition P of G with M contained in
the core of P, where αH is a constant depending only
on H such that αH ≤ 40q225q log q.
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Having stated the above definitions, the following
lemma is an easy consequence of Lemma 6.2 and Theo-
rem 6.1.

Lemma 6.3. There is a function f13 : N2 → N such
that if t, h, q ∈ N and G = (G,B, ρ) is a Kq-
minor-free boundaried graph in R(t)

h , then G admits a
(f13(q, h) · t, f13(q, h))-protrusion decomposition. More-

over, it holds that f13(q, h) = (f5(h2))22O((q+h2)·log(q+h2))

.

Proof. By Lemma 6.2, G contains an f12(q, h)-treewidth
modulator M that contains B and has at most 2t
vertices. We can now apply Theorem 6.1 to G and M
with H = Kq, c = 2, and β = f12(q, h), obtaining
a (f13(q, h) · t, f13(q, h))-protrusion decomposition P of
G with M contained in the core of P and f13(q, h) :=
2 ·f12(q, h) ·40q225q log q. Since B ⊆M andM contained
in the core of P, it can be easily seen that P is also a
(f13(q, h) · t, f13(q, h))-protrusion decomposition of G.

Once we have the protrusion decomposition given
by Lemma 6.3, all that remains is to replace the pro-
trusions by equivalent ones of size depending only on
the collection F . The protrusion replacement technique,
which is nowadays part of the basic toolbox of param-
eterized complexity, originated in the meta-theorem of
Bodlaender et al. [9], whose objective was to produce
linear kernels for a wide family of problems on graphs
of bounded genus. This technique was later extended
to graphs excluding a fixed minor by Fomin et al. [21]
and then to graphs excluding a fixed topological minor
by Kim et al. [34]. We could directly apply the results
of Fomin et al. [21] to the protrusion decomposition of a
representative given by Lemma 6.3, hence reducing each
protrusion to an equivalent one of size OF (1), yielding
an equivalent representative of size OF (t). However, the
drawback of the results in [21] (and also in [9, 34]) is
that they do not provide explicit bounds on the hidden
constants. In order to be able to do so, we apply the
protrusion replacement used by Baste et al. [5], which
is suited for the F-M-Deletion problem. This yields
explicit constants because it uses ideas similar to the
ones presented by Garnero et al. [23] (later generalized
in [24]) for obtaining kernels with explicit constants.

Given a function ξ : N2 → N and a t-boundaried
graph G, we say that G is ξ-protrusion-bounded if, for
every t′ ∈ N, all β-protrusions of G have at most ξ(β)
vertices. The following lemma is again a reformulation
using our notation of one of the results of Baste et al. [5].
Namely, it is a consequence of the proof6 of [4, Lemma
15].

6In the statement of [4, Lemma 15] it is required that the

Lemma 6.4. There is a function f14 : N2 → N such
that if t, h, q ∈ N and G = (G,B, ρ) is a Kq-minor-free
boundaried graph in R(t)

h , then G is f14(q, h)-protrusion-

bounded. Moreover, f14(q, h) = 222O(f13(q,h))·log f13(q,h))

.

Using Lemma 6.3 and Lemma 6.4, we can easily
prove Theorem 6.2, that is the main result on which
the algorithm of Theorem 2.1 is based (cf. §2). In
particular, it implies (2.1).

Theorem 6.2. There is a function f15 : N2 → N such
that, for every t, h ∈ N≥1, if G = (G,B, ρ) is a Kq-
minor-free boundaried graph in R(t)

h , then |V (G)| ≤
f15(q, h)·t. Moreover, it holds that f15(q, h) ≤ f13(q, h)·

(f14(q, h) + 1).

Proof. By Lemma 6.3, G admits a (f13(q, h) ·
t, f13(q, h))-protrusion decomposition P. By
Lemma 6.4, each of the protrusions of P has at
most f14(q, h) vertices. Therefore,

|V (G)| ≤ f13(q, h) · t+ f13(q, h) · f14(q, h) · t,

and the theorem follows with f15(q, h) := f13(q, h) ·
(f14(q, h) + 1).

Let h := maxF∈F{maxH∈ext(F ) |V (H)|}. The fol-
lowing corollary is an immediate consequence of Theo-
rem 6.2, by using the fact that all t-representatives in
R(t)

h , except one, are Kh-minor-free, hence they have
O(f15(h, h) · h

√
log h) · t edges; see for instance [40].

Corollary 6.1. There is a function f16 : N→ N such
that for every t ∈ N≥1, |R(t)

h | ≤ 2f16(h)·t·log t. In par-
ticular, the relation ≡h partitions B(t) into 2f16(h)·t·log t

equivalence classes. Moreover, it holds that f16(h) =
O(f13(h, h) · f14(h, h)) = O(f14(h, h)).

The dynamic programming algorithm. Hav-
ing proved Corollary 6.1, we can just reuse the dynamic
programming algorithm given in [5] to compute the pa-
rameter mF (G) in the claimed running time. For the
sake of completeness, let us comment some details of
this algorithm, whose details can be found in [4, proof
of Theorem 3]. First of all, to run the algorithm we
need to have the set R(t)

h of representatives at hand.
This can be done easily relying on Theorem 6.2, by gen-
erating all t-boundaried graphs on at most f15(h, h) · t

family F contains a planar graph, an assumption that is not true
anymore in our case. However, in the proof this fact is only used to
guarantee that the considered protrusion has treewidth bounded
by a function depending only on F . Thanks to Lemma 6.3, we
can assume that this also holds in our setting.
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vertices and O(f15(h, h) · h
√

log h) · t edges, partition-
ing them into equivalence classes according to ≡h, and
picking an element of minimum size in each of them;
see [4, proof of Lemma 14] for more details. To sim-
plify the description of the dynamic programming up-
date operations, the algorithm in [5] in written in terms
of branchwidth instead of treewidth. Without defining
branchwidth here, it is enough to say that it is paramet-
rically equivalent to treewidth, in the sense that both
parameters differ by a constant factor and whose cor-
responding decompositions can be easily transformed
from one to the other [43]. Also, the algorithm in [5] is
written in terms of topological minors, that is, it com-
putes a minimum-size set of vertices S ⊆ V (G) whose
removal leaves a graph without any of the graphs in
a fixed collection F as a topological minor; we denote
|S| =: tmF (G). It is easy to see that computing this
parameter suffices for computing mF (G), since, as ob-
served in [4, Lemma 4], for every proper collection F and
every graph G, it holds that mF (G) = tmF ′(G), where
F ′ is the family containing every topological minor min-
imal graph among those that contain some graph in F
as a minor; note that F ′ has size bounded by a small
function of F (see Observation 1).

The algorithm then computes, in a typical bottom-
up manner, at every bag separator B of the branch
decomposition associated with a t-boundaried graph
GB and for every representativeR ∈ R(t)

h , the minimum
size of a set S ⊆ V (GB) such that GB \S ≡h R. These
values can be computed in a standard way by combining
the values associated with the children of a given node;
cf. [4, proof of Theorem 3]. The overall running time
is bounded by |R(t)

h |2 · |E(G)|, and taking into account
that |E(G)| ≤ tw(G) · |V (G)|, from Corollary 6.1 we
obtain the following theorem, which is a more precise
reformulation of Theorem 2.1.

Theorem 6.3. Let t, h ∈ N, F be a proper connected
collection of size at most h, and G be an n-vertex graph
of treewidth at most t. Then mF (G) can be computed by
an algorithm that runs in 2(2·f16(h)·t+1)·log t · n steps.

7 Further research
Our main algorithmic result is an algorithm solving F-
M-Deletion in time O∗(2O(tw·log tw)) for every con-
nected collection F . One may wonder why the connec-
tivity of F is necessary. In fact, in the whole algorithm
(see Figure 2) the connectivity of the graphs in F is
only used at the very end, when we apply the dynamic
programming algorithm of [5] based on representatives.
This algorithm uses the connectivity of F in the “base
case”, namely to guarantee that the representative of
a graph G without boundary is the empty boundaried

graph if and only if G does not contain any of the graphs
in F as a minor (see [4, Lemma 7]). We think that this is
a technical hurdle, rather than an intrinsic one, and we
believe that the condition on the connectivity of F can
be dropped, that is, that there exists an algorithm to
solve F-M-Deletion in timeO∗(2O(tw·log tw)) for every
collection F . As an evidence towards this, note that the
minor obstructions for being embeddable on a surface
of Euler genus at most g contain disconnected graphs if
g ≥ 2 (for instance, the disjoint union of two K5’s is an
obstruction for being embeddable on the torus [39]), and
that Kociumaka and Pilipczuk [35] presented an algo-
rithm running in timeO∗(2O((tw+g)·log(tw+g))) for delet-
ing a minimum number of vertices to obtain a graph
embeddable on a surface of Euler genus at most g.

We also presented a framework to obtain
lower bounds for ruling out algorithms in time
O∗(2o(tw·log tw)) under the ETH. In particular, when
F = {H} and H is connected, it settles completely
the asymptotic complexity of {H}-M-Deletion (The-
orem 1.1). However, we do not have a complete clas-
sification when |F| ≥ 2, even for connected F . To ease
the presentation, let us call a connected graph H easy
(resp. hard) if {H}-M-Deletion is solvable in time
O∗(2Θ(tw)) (resp. O∗(2Θ(tw·log tw))). Suppose that F =
{H1, H2} with both H1 and H2 being connected. Using
the recent results of Baste [3], it is possible to prove that
if both H1 and H2 are easy, then F is easy as well (easi-
ness of graph collections is defined in the obvious way).
However, if both H1 and H2 are hard, then strange
things may happen. For instance, Bodlaender et al. [10]
presented an algorithm running in time O∗(2O(tw)) for
Pseudoforest Deletion, which consists in, given a
graph G and an integer k, deciding whether one can
delete at most k vertices from G to obtain a pseudo-
forest, i.e., a graph where each connected component
contains at most one cycle. Note that Pseudofor-
est Deletion is equivalent to {diamond, butterfly}-M-
Deletion. While both the diamond and the butterfly
are hard graphs, {diamond, butterfly} is an easy collec-
tion. The cases where H1 is easy and H2 is hard seem
even trickier. Obtaining (tight) lower bounds when F
may contain disconnected graphs is a challenging avenue
for further research.

It is also interesting to consider the version of the
problem where the graphs in F are forbidden as topo-
logical minors; we call this problem F-TM-Deletion.
While the lower bounds that we presented in this ar-
ticle also hold for F-TM-Deletion (with the excep-
tion of K1,i for i ≥ 4; see [4]), the algorithm in time
O∗(2O(tw·log tw)) for every connected collection F does
not work for topological minors. In this direction,
the algorithm in time O∗(2O(tw·log tw)) in [5] for F-M-
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Deletion (when F is connected and contains a planar
graph) also works for F-TM-Deletion if we addition-
ally require F to contain a subcubic planar graph (in
order to bound the treewidth of the representatives).
The main obstacle for applying our approach in order
to achieve a time O∗(2O(tw·log tw)) for every connected
collection F , is that topological-minor-free graphs do
not enjoy the flat wall structure that is omnipresent
in our proofs. Another reason is that in our rerouting
procedure, in order to find an irrelevant vertex (The-
orem 5.1), we may find a different topological minor
model that corresponds to the same minor. Neverthe-
less, we think that this latter difficulty can be overcome
for planar graphs –or even minor-free graphs– by mak-
ing use of the rerouting potential of Proposition 5.2, as
this is done in [26] for planar graphs.
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