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—— Abstract

Let G be a graph class. We say that a graph G is a k-apezx of G if G contains a set S of at most k
vertices such that G \ S belongs to G. We prove that if G is minor-closed, then there is an algorithm

that either returns a set S certifying that G is a k-apex of G or reports that such a set does not
exist, in 2PV (F) 3 time. Here poly is a polynomial function whose degree depends on the maximum
size of a minor-obstruction of G, i.e., the minor-minimal set of graphs not belonging to G. In the
special case where G excludes some apex graph as a minor, we give an alternative algorithm running
in 2PYF)n? time.
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1 Introduction

Graph modification problems are fundamental in algorithmic graph theory. Typically, such a
problem is determined by a graph class G and some prespecified set M of local modifications,
and the question is, given a graph G and an integer k, whether it is possible to transform
G to a graph in G by applying k£ modification operations from M. A plethora of graph
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problems can be formulated for different instantiations of G and M. Applications span
diverse topics such as computational biology, computer vision, machine learning, networking,
and sociology [24]. As reported by Roded Sharan in [48], already in 1979, Garey and Johnson
mentioned 18 different types of modification problems [25, Section A1.2]. For more on graph
modification problems, see [9,24], as well as the running survey in [13]. In this paper we
focus our attention on the vertex deletion operation. We say that a graph G is a k-apex of a
graph class G if there is a set S C V(G) of size at most k such that the removal of S from G
results in a graph in G. In other words, we consider the following meta-problem.

VERTEX DELETION TO G
Input: A graph G and a non-negative integer k.
Question: Find, if exists, a set S C V(G) certifying that G is a k-apex of G.

To illustrate the expressive power of VERTEX DELETION TO G, if G is the class of edgeless (resp.
acyclic, planar, bipartite, (proper) interval, chordal) graphs, we obtain the VERTEX COVER
(resp. FEEDBACK VERTEX SET, VERTEX PLANARIZATION, ODD CYCLE TRANSVERSAL,
(PROPER) INTERVAL VERTEX DELETION, CHORDAL VERTEX DELETION) problem.

By the classical result of Lewis and Yannakakis [39], VERTEX DELETION TO G is NP-hard
for every non-trivial graph class G. To circumvent its intractability, we study it from the
parameterized complexity point of view and we parameterize it by the number & of vertex
deletions. In this setting, the most desirable behavior is the existence of an algorithm running
in time f(k)-n®®), where f is a function depending only on k. Such an algorithm is called
fized-parameter tractable, or FPT-algorithm for short, and a parameterized problem admitting
an FPT-algorithm is said to belong to the parameterized complexity class FPT. Also, the
function f is called parametric dependence of the corresponding FPT-algorithm, and the
challenge is to design FPT-algorithms with small parametric dependencies [14,17,20,42].

Unfortunately, we cannot hope for the existence of FPT-algorithms for every graph
class G. Indeed, the problem is W-hard! for some classes G that are closed under induced
subgraphs [40] or, even worse, NP-hard, for k = 0, for every class G whose recognition
problem is NP-hard, such as some classes closed under subgraphs or induced subgraphs (for
instance 3-colorable graphs), edge contractions [11], or induced minors [18].

On the positive side, a very relevant subset of classes of graphs does allow for FPT-
algorithms. These are classes G that are closed under minors?, or minor-closed. To see this,
we define Gj, as the class of the k-apices of G, i.e., the yes-instances of VERTEX DELETION
TO G, and observe that if G is minor-closed then the same holds for Gy, for every k. This,
in turn, implies that for every k, Gr can be characterized by a set Fj of minor-minimal
graphs not in Gi; we call these graphs the obstructions of G and we know that they are
finite because of the Robertson and Seymour theorem [46]. In other words, we know that
the obstruction set of G is bounded by some function of k. Then one can decide whether a
graph G belongs to Gy by checking whether G excludes all members of the obstruction set of
Gk, and this can be checked by using the FPT-algorithm in [45] (see also [19]).

As the Robertson and Seymour theorem [46] does not construct Fy, the aforementioned
argument is not constructive, i.e., it is not able to construct the claimed FPT-algorithm. An
important step towards the constructibility of such an FPT-algorithm was done by Adler
et al. [2], who proved that the parametric dependence of the above FPT-algorithm is indeed
a constructible function.

! Implying that an FPT-algorithm would result in an unexpected complexity collapse; see [17].
2 A graph H is a minor of a graph G if it can be obtained from a subgraph of G by contracting edges.
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The task of specifying (or even optimizing) this parametric dependence for different

instantiations of G occupied a considerable part of research in parameterized algorithms.

The most general result in this direction says that, for every ¢, there is some ¢ such that
if the graphs in G have treewidth at most ¢, then VERTEX DELETION TO G admits an
FPT-algorithm that runs in ¢* - n©™) time [22,34]. Reducing the constant ¢ in this running
time has attracted research on particular problems such as VERTEX COVER [12] (with
¢ = 1.2738), FREEDBACK VERTEX SET [36] (with ¢ = 3.619), APEX-PSEUDOFOREST [10)]
(with ¢ = 3), PATHWIDTH 1 VERTEX DELETION (with ¢ = 4.65) [15] (see also [29] for further
related results). The first step towards a parameterized algorithm for VERTEX DELETION
TO G for cases where G has unbounded treewidth was done in [41] and later in [30] for
the PLANARIZATION problem, and the best parameterized dependence for this problem is
20(klogk) .y - achieved by Jansen et al. [28]. These results were later extended by Kociumaka
and Marcin Pilipczuk [37], who proved that if G, is the class of graphs of Euler genus at
most g, then VERTEX DELETION TO G, admits a 20s(+*1osk) . ,O0() step3 algorithm.

Our results. In this paper we give an explicit FPT-algorithm for VERTEX DELETION TO G
for every minor-closed graph class G. In particular, our main results are the following:

» Theorem 1. If G is a minor-closed graph class, then VERTEX DELETION TO G admits
an algorithm of time 2P°YK) . n3  for some polynomial poly whose degree depends on G.

We say that a graph H is an apex graph if it is a 1-apex of the class of planar graphs.

» Theorem 2. If G is a minor-closed graph class excluding some apex graph, then VERTEX
DELETION TO G admits an algorithm of time 2P°Y(K) . n2 - for some polynomial poly whose
degree depends on G.

Very recently, Fomin et al. [23] gave an FPT-algorithm of Oy x(n?) time for the following
problem: for a fixed finite family of graphs F, each on at most s vertices, decide whether an
n-vertex input graph G contains a k-apex of the class of graphs that exclude the graphs in F
as topological minors®. For every graph H, there is a finite set H of graphs such that a graph
G contains H as a minor if and only if G contains a graph in H as a topological minor. Based
on this observation, the result of Fomin et al. [23] implies that for every minor-closed graph
class G, VERTEX DELETION TO G admits an O(h(k, s) - n?) time FPT-algorithm,where s is
the maximum size of an obstruction of G. Notice that this implication is a solid improvement
on VERTEX DELETION TO G with respect to the result of [2], where only the computability
of h is proved. However, as mentioned in [23], even for fixed values of s, the dependence of h
on k is humongous. Therefore, Theorem 1 can be seen as orthogonal to the result of [23].

Our techniques. We provide here just a very succinct enumeration of the techniques that
we use in order to achieve Theorem 1 and Theorem 2; a more detailed description with the
corresponding definitions is provided, along with the algorithms, in the next sections.

Our starting point to prove Theorem 1 is to use the standard iterative compression
technique of Reed et al. [44]. This allows us to assume that we have at hand a slightly too
large set S C V(@) such that G\ S € G. We then run the algorithm of Lemma 11 (whose
proof uses [1,3,31,43]) that either reports that we have a no-instance, or concludes that the

3 Given a tuple t = (z1,...,2¢) € N and two functions x,% : N = N. We write x(n) = Og()(n)) in
order to denote that there exists a computable function ¢ : N® — N such that x(n) = O(4(t) - 1h(n)).
4 The definition is as minors, except that only edges incident to degree-two vertices are contracted.
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treewidth of G is polynomially bounded by k&, or finds a large wall R in G. In the second case,
we use the main algorithmic result of Baste et al. [5] (Proposition 3) to solve the problem
parameterized by treewidth, achieving the claimed running time. In the latter case, we apply
Proposition 12 (whose proof uses [8,32,33]) to find in R a large flat wall W together with
an apex set A. We find in W a packing of an appropriate number of pairwise disjoint large
enough subwalls. Two possible scenarios may occur. If the “interior” of each of these subwalls
has enough neighbors in the set apex S U A, we apply a combinatorial result (Lemma 15)
that guarantees that every possible solution should intersect S U A, and we can branch on it.
On the other hand, if there exists a subwall whose interior W has few neighbors in S U A,
we argue that we can define from it a flat wall in which we can apply the irrelevant vertex
technique of Robertson and Seymour [45] (Lemma 14). We stress that this flat subwall is not
precisely a subwall of W but a tiny “tilt” of a subwall of W, a new concept that is necessary
for our proofs. The application of the irrelevant vertex technique requires a lot of technical
care. For this, we use and enhance some of the ingredients introduced by Baste et al. [5].

In order to achieve the improved running time claimed in Theorem 2, we do not use
iterative compression. Instead, we directly invoke Lemma 11. If the treewidth is small, we
proceed as above. If a large wall is found, we apply Proposition 12 and we now distinguish
two cases. If a large flat wall whose flaps have bounded treewidth is found, we find an
irrelevant vertex using Lemma 14. Otherwise, inspired by an idea of Marx and Schlotter [41],
we exploit the fact that G excludes an apex graph, and we use flow techniques to either
find a vertex that should belong to the solution, or to conclude that we are dealing with a
no-instance.

Organization. We provide in Section 2 some definitions and preliminary results. In Section 3
we state several algorithmic and combinatorial results that will be used when finding an
irrelevant vertex and when applying the branching argument discussed above. In Section 4
we present the algorithms claimed in Theorem 1 and Theorem 2. We conclude in Section 5
with some directions for further research. All the missing proofs are available in the full
version of the paper [47].

2 Definitions and preliminary results

Before we explain our techniques, we give some necessary definitions. They concern funda-
mental tools from the Graph Minors series of Robertson and Seymour that are heavily used
in our algorithms and proofs. But first, we restate the problem in a more convenient way.

2.1 Restating the problem

Let F be a finite non-empty collection of non-empty graphs. We use F <., G to denote that
some graph in F is a minor of G.

Let G be a minor-closed graph class and F be the set of its minor-obstructions. Clearly,
VERTEX DELETION TO G is the same problem as asking, given a graph G and some k € N,
whether G contains a vertex set S of at most k vertices such that F £, G\ S. Following the
terminology of [4-7,22, 23,34, 35|, we call this problem F-M-DELETION. In order to prove
Theorem 1, we apply the iterative compression technique (introduced in [44]; see also [14])
and we give a 2P°Y(K) . n2 time algorithm for the following problem.

F-M-DELETION-COMPRESSION
Input: A graph G, a k € N, and a set S of size k + 1 such that F £, G\ S.
Objective: Find, if exists, a set S C V(G) of size at most k such that F £, G\ 5.
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Some conventions. In what follows we always denote by F the obstruction set of the
minor-closed class G of the instantiation of VERTEX DELETION TO G that we consider. Also,
given a graph G, we define its apex number to be the smallest integer a for which G is an
a-apex of the class of planar graphs. We define three constants depending on F that will
be used throughout the paper whenever we consider such a collection F. We define ar as
the minimum apex number of a graph in F, we set sz = max{|V(H)| | H € F}, and we set
lr =max{|E(H)|+|V(H)| | H € F}. We also agree that n is the size of the input graph G.
We can always assume that G has O, (k- n) edges, otherwise we can directly conclude that
(G, k) is a no-instance (for this, use the fact that F-minor free graphs are sparse [38,50]).

We present here the main result of [5]. We will use this in order to solve F-M-DELETION
on instances of bounded treewidth.

» Proposition 3. Let F be a finite collection of graphs. There exists an algorithm that given
a triple (G, tw, k) where G is a graph on n vertices and of treewidth at most tw, and k is a
non-negative integer, it outputs, if it exists, a vertex set S of G of size at most k such that
F %m G\ S. This algorithm runs in 29:=(™W1e™) . n time.

2.2 Definitions

We give here a minimal set of definitions and concepts that are necessary to support the
description of our results. Some of them are given precisely, and for some of them we just
provide enough intuition.

Renditions. Let A be a closed disk, i.e., a set homeomorphic to the set {(z,y) € R? |

22 4 y? < 1}. Given a subset X of A, we denote its closure by X and its boundary by

bor(X). A A-painting is a pair I’ = (U, N) where N is a finite set of points of A, N CU C A,

U \ N has finitely many arcwise-connected components, called cells, such that, for every cell

¢, ¢ is a closed disk, bor(¢) N A C N, and |bor(c) N N| < 3. We use the notation U(T') := U,

N(T') := N and denote the set of cells of I" by C(T'). Notice that, given a A-painting T,

the pair (N(I"),{cN N | c e C(I")}) is a hypergraph whose hyperedges have cardinality at

most three, and I" can be seen as a plane embedding of this hypergraph in A. Let G be a

graph, and let Q be a cyclic permutation of a subset of V(@) that we denote by V(2). By an

Q-rendition of G we mean a triple (I', o, 7), where (a) I is a A-painting for some closed disk

A, (b) m: N(I') — V(G) is an injection, and (c) o assigns to each cell ¢ € C(I") a subgraph

o(c) of G, such that

(1) G= Ucec(r) a(c),

(2) for distinct ¢,¢’ € C(T), o(c) and o(c’) are edge-disjoint,

(3) for every cell c € C(T'), m(cNN) C V(o(c)),

(4) for every cell c € C(I'), V(o(c)) NUpecmn ey V(e(c))

(5) m#(N(I') nbor(A)) = V(£2), such that the points in N(T")
the same ordering as their images, via 7, in €.

We say that an Q-rendition (T, o, 7) of G is tight if the following conditions are satisfied:

(1) For every ¢ € C(I'), the graph o(c) \ m(c N N), when non-null, is connected and the
neighborhood of its vertex set in G is m(¢ N N).

(2) For every ¢ € C(T') there are |c N N| vertex-disjoint paths in G from m(c N N) to the set
V(Q).

(3) If there are two points z,y of N such that e = {n(z),7(y)} € E(G), then there is a
¢ € C(T') such that o(c) is the two-vertex connected graph (e, {e}).

It is easy to see that given an Q-rendition of a graph G where V() contains at least three

vertices that are in a cycle of G, a tight Q-rendition of G can be constructed in O(n + m)

steps.

m(cN N), and

C
Nbor(A) appear in bor(A) in
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Walls. We avoid here the detailed definition of an r-wall. As an intuitive alternative we
provide the graph G in Figure 1 where an elementary 7-wall W is the graph with red and
green vertices that has as edges the vertical and horizontal segments between a red and a
green vertex. The 7-wall W is the spanning subgraph of G that is a subdivision of W with
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Figure 1 A graph G with a 7-wall and a flat 5-wall in it.

the black vertices as subdivision vertices. The pegs of W are depicted by the squared vertices,
while the corners of W are the endpoints of the highest and the lowest horizontal path of W,
depicted by the fat squared vertices (the corners are also pegs). Notice that a wall W can
occur in several ways from the elementary wall W, depending on the way the vertices in the
perimeter of W are subdivided. Each of them gives a different selection (P, C) of pegs and
corners of W. We insist that, for every r-wall, the number r is always odd: for this, whenever
an r-wall appears with r even, we agree to round it up to the next odd r + 1.

Flat walls. Given a graph G, we say that a pair (L, R) € 2V(%) x 2V(&) is a separation of G
if LUR =V(G) and there is no edge in G between L\ R and R\ L. An r-wall has a planar
embedding where the boundary/ies of its external/internal face/es define its perimeter and
its bricks. The center of the wall W is the path between a red and a green vertex depicted
in the dashed red rectangle in Figure 1. Let G be a graph and let W be an r-wall of G. We
say that W is a flat r-wall of G if there is a separation (X,Y) of G and a choice (P,C) of
pegs and corners for W such that:

V(W) Cy,

PCXNY CV(D(W)), and

if Q is the cyclic ordering of the vertices X N'Y as they appear in D(W), then there exists

an Q-rendition (T, o, 7) of G[Y].

A subwall of W is every subgraph W’ of W that is located “orthocanonically” in W and
the wall W () is the unique r-subwall of W with the same center as W. A subwall is called
internal if it does not intersect the perimeter of W. In Figure 1, W contains only one internal
5-subwall W’ = W®) and many internal 3-subwalls, among them the wall W = W)
(depicted in blue). Of course, the graph G in Figure 1 contains also other walls as subgraphs
such as the wall W’ consisting of the purple, green, and blue edges.

Compass and flaps. Given a flat wall W of a graph G as above, we call G[Y] the compass
of W in G, denoted by compass(W). We call (X,Y") the separation certifying the flat wall W
and X NY is called the frontier of W. The ground set of W is ground(W) := 7 (N(T")). We
clarify that ground(W) may consist of vertices of the compass of W that are not necessarily
vertices of W (this is not the case in the simple example of Figure 1). We also call the
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Figure 2 The rendition of the compass of the flat 5-wall W'’ of Figure 1. Trivial flaps are depicted
in purple.

graphs in flaps(W) := {o(c) | ¢ € C(I")} flaps of the wall W. For each flap F' € flaps(W) we
define its base as the set OF := V(F) Nground(W). A flap F € flaps(W) is trivial if |OF| = 2
and it consists of one edge between the two vertices in OF. As an example, the wall W’ in
Figure 1, formed by all the fat edges (purple, green, and blue), is a flat wall. The pegs are
the diamond vertices, the corners are the fat diamond vertices, and the rendition has two
types of flaps: those whose base has three vertices, that are inside the light-blue disks, and
those that are trivial flaps and are the purple fat edges that are outside of the light-blue
disks (see also Figure 2 for the rendition of W"). Notice that none of the internal subwalls
of W is a flat wall.

Tilts. Given a wall W', we define its inpegs as the vertices of its perimeter that are incident
to edges of W that are not in its perimeter. The interior of W' is the subgraph of W’
induced by the union V(W' \ V(P)) and its inpegs. We say that a wall W is a tilt of a wall
W' if W and W’ have identical interiors. For instance, in Figure 1 the wall W is a tilt of
W' =w0o).

Partially disk-embedded graphs. We say that a graph G is partially disk-embedded in
some closed disk A, if there is some subgraph K of G that is embedded in A such that
(V(@)N A, V(G) \ int(A)) is a separation of G, where int is used to denote the interior of
a subset of the plane. From now on, we use the term partially A-embedded graph G to
denote that a graph G is partially disk-embedded in some closed disk A. We call the graph
K =GN A compass of the A-embedded graph G and we assume that G is accompanied by
an embedding of its compass in A, that is the set G N A. We say that G is a A-embedded
graph if it is partially A-embedded graph and G C A (the whole G is embedded in A).

Levelings. Let W be a flat wall of a graph G. Following [5], we define the leveling of W
in G, denoted by W, as the bipartite graph where one part is the ground set of W, the
other part is the set of flaps of W, and, given a pair (v, F') € ground(W) x flaps(WW), the
set {v, F} is an edge of W if and only if v € F. Again, keep in mind that W may contain
(many) vertices that are not in W. Notice that the incidence graph of the plane hypergraph
(N(T),{cN N | ¢ € C(T)}) is isomorphic to W via an isomorphism that extends 7 and,
moreover, bijectively corresponds cells to flaps. This permits us to treat W as a A-embedded
graph where bor(A) N W is the frontier of W. We call the vertices of ground(W) (resp.
flaps(W)) ground-vertices (vesp. flap-vertices) of W. See Figure 3 for an example of a leveling.

95:7
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Figure 3 The leveling of the flat 5-wall W of Figure 1. The green vertices are the flap-vertices
and the non-green vertices are the ground-vertices.
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Recall that each edge e of compass(W) belongs to exactly one flap of W. If both of the
endpoints of e are in the boundary of this flap, then this flap should be a trivial one and we
say that e is a short edge of compass(WW). We define the graph W* as the graph obtained
from W if we subdivide once every short edge in W. The next observation is a consequence
of the following three facts: flap-vertices of W have degree at most three, all the vertices of a
wall have degree at most three, and every separation (A, B) of order at most three of a wall
is trivial.

» Observation 4. If W is a flat wall of a graph G, then the leveling W of W in G contains
a subgraph W that is isomorphic to some subdivision of W* via an isomorphism that maps
each ground vertex to itself.

We call the graph W1 as in Observation 4 representation of the flat wall W in the
A-embedded graph W, and therefore we can see it as a A-embedded subgraph of . Notice
that the above observation permits to bijectively map each cycle of W to a cycle of W that
is also a cycle of W. That way, each cycle C' of W corresponds to a cycle C' of W% denoted by
C® and we call C! the representation of C'in W. From now on, we reserve the superscript
“B»_notation to denote the correspondence between W (resp. C) and W2 (resp. C®).

We define the function flaps : C(W) — 2M2ps(W) 50 that, for each cycle C of W, flaps(C)
contains each flap F of W that, when seen as a flap-vertex of the A-embedded graph
W, belongs to the closed disk bounded by CF. The following result is very similar to [33,
Lemma 6.1]. The proof is strongly based on the notion of levelings.

» Lemma 5. Let a,r,r’ € N, where r > v’ > 3. Also, let G be a graph, let (A, W) be an

(a,r)-apex wall pair of G, and let W' be an internal r'-subwall of W. Then W' has a tilt

W' such that (A, W") is an (a,r")-apex wall pair of G. Moreover,

1. the compass of W' in G\ A is a subgraph of the compass of W in G\ A and

2. if P’ is the perimeter of W', then the vertex set of the compass of W' in G\ A is a subset
of Uflaps(P').

Morever, given G, (A, W), and W', the (a,r’)-apex wall pair (A, W") can be constructed in

O(n) time.

From now on we refer to an (A, W) as in Lemma 5 as an (a,r’)-apex wall pair generated
by the internal r’-subwall W’ of W and we keep in mind that the compasses of all such
flat walls W may differ only on their perimeter. The proof of Lemma 5 also implies the
following.
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» Observation 6. Let W be a flat wall of a graph G, and W® be the representation of W in
the leveling W of W in G. Then for every internal subwall W of WE there exist an internal
subwall W' of W and a tilt W" of W' such that
W is the representation of W' in the leveling W of W,
W' is a flat wall, and
the vertex set of the compass of W' in G is a subset of Uflaps(P'), where P’ is the
perimeter of W'.
Moreover, given G, W, and W, the flat wall W can be constructed in O(n) steps.

Boundaried graphs. Let t € N. A t-boundaried graph is a triple G = (G, B, p) where G is
a graph, B C V(G), |B| =t, and p : B — [t] is a bijection. We say that Gy = (G1, B1, p1)
and Go = (G2, Ba, p2) are isomorphic if there is an isomorphism from G; to G that extends
the bijection py ! o p1. The triple (G, B, p) is a boundaried graph if it is a t-boundaried
graph for some t € N. As in [45], we define the detail of a boundaried graph G = (G, B, p)
as detail(G) := max{|E(G)|,|V(G) \ B|}. We denote by B the set of all (pairwise non-
isomorphic) t-boundaried graphs. We also set B = (J,y B®.

Folios. We say that a t-boundaried graph G; = (G1, By, p1) is a minor of a t-boundaried
graph Go = (Ga, Ba, p2), denoted by G =<, G, if there is a sequence of removals of
non-boundary vertices, edge removals, and edge contractions in G5, disallowing contractions
of edges with both endpoints in By, that transforms Gy to a boundaried graph that is
isomorphic to Gi (during edge contractions, boundary vertices prevail). Note that this
extends the usual definition of minors in graphs without boundary.

We say that (M,T) is a tm-pair if M is a graph, T C V(M), and all vertices in V(M) \ T
have degree two. We denote by diss(M,T') the graph obtained from M by dissolving all
vertices in V(M) \ T. A tm-pair of a graph G is a tm-pair (M, T) where if M is a subgraph
of G. We call the vertices in T' branch vertices of (M, T).

IfM = (M,B,p) € BandT C V(M) with B C T, we call (M, T') a btm-pair and we define
diss(M, T') = (diss(M,T), B, p). Note that we do not permit dissolution of boundary vertices,
as we consider all of them to be branch vertices. If G = (G, B, p) is a boundaried graph and
(M, T) is a tm-pair of G where B C T, then we say that (M, T), where M = (M, B, p), is
a btm-pair of G = (G, B, p). Let G; = (G, B;, p;), 1 € [2]. We say that Gy is a topological
minor of Ga, denoted by G1 =tm Ga, if G2 has a btm-pair (M, T') such that diss(M, T') is
isomorphic to G1. We define the ¢-folio of G = (G, B, p) € B as (-folio(G) = {G' € B |
G’ <im G and G’ has detail at most /}.

Homogeneous walls. Let G be a graph and W be a flat wall of G. Let also (', o, 7) be a
rendition of the compass of W in G. Recall that T' = (U, N) is a A-painting for some closed
disk A. Given a flap F, we denote by Q(F) the counter-clockwise ordering of the vertices of OF
as they appear in the corresponding cell of C'(T'). Notice that as |0F| < 3, this cyclic ordering
is significant only when |0F| = 3, in the sense that (x1,x2,x3) remains invariant under
shifting, i.e., (v1,ve,v3) = (ve,v3,v1) but not under inversion, i.e., (vi,ve2,v3) Z (vs,v2,v1).
Given a graph G, we say that the pair (4, W) is an (r,a)-apex wall pair of G if A is
a subset of a vertices from G and W is a flat r-wall of G\ A. Let G be a graph and let
(A, W) be an (a,r)-apex wall pair of G. For each cell F € flaps(W) with tp = |0F|, we
fix pp : OF — [a+ 1,a + tp] such that (pp'(a+1),...,p5 (a +tr)) = Q(c). We also fix
a bijection pa : A — [a]. For each flap F' € flaps(W), we define the boundaried graph
F* := (GI[AUF], AUQF,ps U pp) and we denote by F# the underlying graph of F*. We
call F augmented flap of (A, W). Notice that G[V (compass(W)) U A] = Urettaps(n) FA.
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Given some ¢ € N, we say that two flaps Fy, Fy € flaps(W) are (A, ¢)-equivalent, denoted
by Fy ~a Fy, if (-folio(F{') = (-folio(F4'). For each F € flaps(W), we define the (a, £)-color
of F, denoted by (a, £)-color(F), as the equivalence class of ~4 ¢ to which F* belongs.

Let W be the leveling of W in G\ A and let W# be the representation of W in W.
Recall that W is a A-embedded graph. For each cycle C' of W, we define the (a, £)-palette
of C, denoted by (a, £)-palette(C), as the set of all the (a, £)-colors of the flaps that appear
as vertices of W in the closed disk bounded by C® in A (recall that by C* we denote the
representation of C' in ).

Let a,¢,r,q € N, where r > ¢ > 3 and let (4, W) be an (a,r)-apex wall pair of a graph
G. We say that (A, W) is an (¢, ¢)-homogeneous (a,r)-apex wall pair of G if every internal
brick B of W that is not a brick of W(@ has the same (a, £)-palette (seen as a cycle of W).
If we drop the demand that “B is not a brick of W(9” then we simply say that (A, W) is an
£-homogeneous (a,r)-apex wall pair of G.

The following observation is a consequence of the fact that, given a wall W and an internal
subwall W’ of W, every internal brick of a tilt W’ of W’ is also an internal brick of W.

» Observation 7. Let a,r,r’ € N, where r > 1’ > 3. Also, let G be a graph, let (A, W)
be an (a,r)-apex wall pair of G, and let W' be an internal v’-subwall of W. If (A, W) is
(¢, q)-homogeneous for some ,q € N where r > q > 3, then every (a,r’)-apex wall pair
(A, W") generated by W' is (£, q)-homogeneous.

The following result is from [5, Lemma 4.3] and implies that if the wall of an apex wall
pair is polynomially large on 7, then its compass contains a homogeneous flat r-wall.

» Proposition 8. There is a function f1 : N> = N such that if £,7,a € N, where r > 3, G is
a graph, and (A, W) is an (a, f1(¢, r, a))-apex wall pair of G, then W has a r-subwall W' such
that every (a,r)-apex wall pair of G that is generated by W' is £-homogeneous. Moreover, it
holds that f1(€,r,a) = O(rc=t), for some constant c, ¢ depending on a and (.

We refer to the constant c, ¢ of Proposition 8, when ¢ = ar and ¢ = /g as the palette-variety
of F. This constant reflects the price of homogeneity: the degree of the polynomial overhead
that we need to pay in order to force homogeneity in a flat wall.

Treewidth. A tree decomposition of a graph G is a pair (T,x) where T is a tree and
x : V(T) — 2Y(% such that (1) Urev(r x(t) = V(G), (2) for every edge e of G there
is a t € V(T) such that x(¢) contains both endpoints of e, and (3) for every v € V(G),
the subgraph of T induced by {t € V(T) | v € x(t)} is connected. The width of (T, x)
is defined as w(T,x) := max { |x(t)]| =1 |t € V(T)}. The treewidth of G is defined as
tw(G) :=min { w(T, x) | (T, x) is a tree decomposition of G'}.

The following is the main result of [8]. We will use it to compute a tree decomposition of
a graph of bounded treewidth.

» Proposition 9. There is an algorithm that, given an graph G on n vertices and an integer
k, it outputs either a report that tw(G) > k, or a tree decomposition of G of width at most
5k 4+ 4. Moreover, this algorithm runs in 2°%) . steps.

The following result is derived from [1]. We will use it in order to find a wall in a bounded
treewidth graph, given a tree decomposition of it.

» Proposition 10. There is an algorithm that, given a graph G on m edges, a graph H
on h edges without isolated vertices, and a tree decomposition of G of width at most k,

it outputs, if it exists, a minor of G isomorphic to H. Moreover, this algorithm runs in
QO(klng) . ho(k) . QO(h) -m StepS.
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3 Auxiliary algorithmic and combinatorial results

3.1 Two algorithmic results

We are now in position to state some results that will support our algorithms.

» Lemma 11. There exist a function fo : N — N and an algorithm as follows:
Find-Wall(G,r, k)
Input: A graph G, an odd r € N>3, and a k € N.
Output: One of the following:
FEither a report that G has treewidth at most fa(sx)-r+k, or
an r-wall W of G, or
a report that (G, k) is a no-instance of F-M-DELETION.
Moreover, this algorithm runs in 207 (" +(k+r)log(k+r) . gpens.

The proof of Lemma 11 combines the algorithm of Perkovi¢ and Reed in [43] for computing
the treewidth of a graph, as well as the excellent analysis of the algorithm provided in [3].
We also use the upper bound for the treewidth of an Kj-minor free graph without an r-wall
by [31], the dynamic programming algorithm of [1] for finding a wall in a graph of bounded
treewidth, and the single-exponential FPT-approximation algorithm for treewidth in [8].

The next result follows from [33, Theorem 1.9] and the proof of [32, Theorem 5.2].

» Proposition 12. There are functions f3: N — N, f; : N — N and an algorithm as follows:

Clique-Or-Flat-Wall(G,r,t, W)

Input: A graph G on n vertices and m edges, an odd integer r > 3, a t € N>1, and an

R-wall W in G, where R = f5(t) - r.

Output: FEither a minor of G isomorphic to Ky, or

(1) a set A C V(G) of size at most 1228824,

(2) a flat r-wall W of G\ A such that V(W)N A =0, and

(3) a separation (X,Y) of G\ A that certifies that W is a flat wall and an Q-rendition of
G[Y] with flaps of treewidth at most fa(t) - r, where Q is a cyclic ordering of X NY
determined by the order on the perimeter of W.

Moreover, this algorithm runs in 2°t(") (m 4+ n) time.

Proposition 12, without the bound on the treewidth of the flaps, has been proven
in [33, Theorem 1.9]. However, in [33, Theorem 1.9] W is a tilt of some r-subwall of W with
a different function f3’ for the relation between R and r and has running time O(t?*(n+m)).

In Proposition 12 the bound on the treewidth of the flaps is obtained if we plug [33,
Theorem 1.9] in the proof of [32, Theorem 5.2], taking into account the linear dependence
between R and r. The parameterized dependence 29¢(") of the algorithm follows because
of the use of the linear FPT-approximation algorithm for treewidth in [8] so as to compute
the tree decompositions of the flaps. Another stronger version of Proposition 12, where no
R-wall W is given in the input, appears in [23, Lemma 3.2], running in 20:(r*) . nlog®n
time. We do not need this stronger version as, for our problem, the R-wall W will be found
by the algorithm of Lemma 11.

3.2 Finding an irrelevant vertex

The irrelevant vertex technique was introduced in [45] for providing an FPT-algorithm for the
DisJoINT PATHS problem. Moreover, this technique has appeared to by quite versatile and is
now a standard tool of parameterized algorithm design (see e.g., [14,49]). The applicability
of this technique for F-M-DELETION is materialized by the algorithm of Lemma 14.
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Given a graph G, a set A C V(G),|A| = a, and an r-wall W of G, we say that (4, W) is
an (a,r)-apex-wall pair if W is a flat r-wall of G \ A.

» Lemma 13. There is a function fs : N* = N such that if a,?,q,k €N, ¢ > 3, G is a graph,
and (A, W) is an £-homogeneous (a, f5(a,?, q, k))-apex wall pair of G, then for every (a,q)-
apex wall pair (A, W) generated by W 9 it holds that (G, k) and (G \ V(Compass(VAV))7 k)
are equivalent instances of F-M-DELETION. Moreover, fs(a,?,q,k) = Oq0,q(k).

Sketch of the proof. The proof considers k + 1 subwalls of W which, in turn, generate k + 1
flat walls (by taking their tilts) whose compasses are all disjoint except at some territory T
of constant size containing the center of W that is common for all these walls. If now §' is
a solution to F-M-DELETION for the instance (G, k) then one, say W;, of these k + 1 flat
walls will have a compass that does not intersect S (except from some constant size territory
T;around the center of W; that contains T'). We then claim that S’ = S\ T} is a new solution
of F-M-DELETION that avoids the center of W. To prove that this is the case, we assume to
the contrary that some graph L in F appears as a minor in G’ = G \ S’. But this means
that part of the realization of H in G’ meets some vertex in the center of W and therefore it
traverses compass(W;). We arrive to a contradiction by providing an alternative realization
of L that is routed away from 7;. For this rerouting we use the main combinatorial result
of [5] that guarantees that there is a function fg : N® — N such that, for every a,f,q € N
and every graph G, if (4, W) is an (¢, ¢)-homogeneous (a, fs(a, ¥, q))-apex wall pair of G,
there is an (a, ¢)-apex wall pair of G generated by W@ whose compass is irrelevant. For
this it is enough to pick f5(a,?,q,k) = Ok - fe(a,?,q) + q). <

» Lemma 14. There exist a function f; : N* — N and an algorithm with the following
specifications:

Find-Irrelevant-Wall(G,q,k,b, A, W)

Input: A graph G on n vertices, two integers k,q € N, a b € N>3, and an (a, fr(a,lr,b,k))-
apex wall pair (A, W) of G whose all flaps have treewidth at most q.

Output: A flat b-wall W of G\ A such that (G, k) and (G\V (compass(W)), k) are equivalent
instances of F-M-DELETION.

Moreover, fr(a,lr,b,k) = Onu,((k+b)°t7) for some constant c, s, depending on a and
(r. This algorithm runs in 20 ¢x (@logat(k+b)log(k+b) L time.

Proof. We set fr(a,lr,b, k) := f1({x,r,a), where r = f5(a,¢,b, k). The algorithm considers
each one of the (f7(a’£f’b’k)) internal r-subwalls W’ of W and constructs an (a, r)-wall pair
(A, W") generated by W’. This can be done in O(n) time because of Lemma 5.

From Proposition 8 there is a choice of W’ such that (A, W) is £x-homogeneous. To
check whether (A, W) is £z-homogeneous we do the following. Let B be the set of all
flaps of W that, when seen as flap vertices of W, appear in the closed disk bounded by
the representation of B in W, where B is an internal brick of W” that is not a brick of
W"®) For every flap F' € B, we consider the boundaried graph F4. Using the fact that
tw(F4) < g+ a, we apply the algorithm of Proposition 9 which outputs a tree decomposition
of F'4 of width at most 5(¢q + a) + 4. Then by applying the algorithm of Proposition 10, we
compute ff—folio(FA) in 20a.¢#(41989) time. Then, it is easy to check in linear time whether
(A, W") is £x-homogeneous.

After we find W', we again use Lemma 5 in order to construct a flat b-wall W of G\ A
generated by W), The algorithm outputs W, and this is correct because of Lemma 13. <
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3.3 Combinatorial results for branching

We now give a combinatorial result that will justify a branching step of our algorithm, i.e.,
its recursive application on a set of O4(k) vertices. Given a graph G and a set A C V(G),
we say that a graph H is an A-fized minor of G if H can be obtained from a subgraph G’ of

Figure 4 A 9-grid and its central 5-subgrid.

G where A C V(G'), after contracting edges without endpoints in A (see Figure 4 for the
definition of an r-grid and its central subgrids that we will need later). A graph H is an
A-apex r-grid if it can be obtained by an r-grid I' after adding a set A of new vertices and
some edges between the vertices of A and V(I"). We call T underlying grid of H.

Next we identify a combinatorial structure that guarantees the existence of a set of
q = O4(k) vertices that intersects every solution S of F-M-DELETION on imput (G, k).
This will permit branching on ¢ simpler instances of the form (G, k — 1).

» Lemma 15. There exist three functions fg, fo, fio : N> — N, such that if F is a finite set
of graphs, G is a graph, k € N, and A C V(G), |A| = ar, such that G contains as an A-fixed
minor an A-apex fs(sr,k)-grid H where each vertex v € A has at least fo(sr, k) neighbors
in the central (fs(sr,k) — fio(sx,k))-grid of H \ A, then for every solution S of F-M-
DELETION for the instance (G, k), it holds that S N A # (. Moreover, fs(sr,k) = O, (k%/?),
fo(sx, k) = Os.(K?), and fio(sx, k) = Os,. (k).

We conjecture that Lemma 15 is tight, in the sense that it cannot be proved for some
fo(sr. k) = 052 (K°~€).

Notice that in the special case where ar = 1, then Lemma 15 can be improved by using
the main combinatorial result of [16]. In particular [16, Lemma 3.1] easily implies that, in
this case, fs(sz,k) = O, (k), fo(sr, k) = Osr(k?), and fio(sr, k) = O, (VE). In [47], we
prove that these bounds can be improved to fs(sz,k) = Os,(VE), fo(sx, k) = Os,(k), and
fro(sr, k) = Os-(1). We will use these improved bounds for the proof of Theorem 2.

We conclude this subsection with one additional definition that will be useful for the
application of Lemma 15 in our main algorithm.

Canonical partitions. We define the canonical partition of an r-wall W to be a collection
Q = {Qext, Q1 - -, Qq} of (r—2)? +1 connected subgraphs of W such that their vertex sets
form a partition of V(W) as indicated in Figure 5.

Figure 5 A 5-wall and its canonical partition Q. The orange bag is the external bag Qext.
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Let (A, W) be an (a,r)-apex wall pair of a graph G and let W be the A-embedded
graph that is the leveling W of W in G \ A. Let also W be the representation of W in
W. Consider a canonical partltlon Q of WE. We enhance the graphs of Q so to include in
them all the vertices of W by applylng the following procedure. We set Q := Q and, as
long as there is a vertex z € V(W) \ V UQ that is adjacent to a vertex of a graph Q € Q,
update Q := 9\ {Q} U{Q}, where Q = W[{z} UV (Q)]. We just defined a partition of the
vertices of W into subsets inducing connected graphs. We call such a partition canonical
partition of W. Notice that a canonical partition of W is not unique (since the sets in Q can
be “expanded” arbitrarily when introducing the vertex x).

4  The algorithms
4.1 The general algorithm

» Lemma 16. Let F be a finite collection of graphs. There is an algorithm solving F-M-
DELETION-COMPRESSION in 20:(K* 7 ¥ logk) . 2 i

Proof. For simplicity, in this proof, we use c instead of cz, s instead of sz, £ instead of £,
a instead of ar, and remember that £ = Os(1) and a = Os(1). We set

b= fr(k,a,l) = O(k%), x = fo(s, k), 1= (12288 +k+1) -z
m:f8(sak)7 p:flO(S,k')a h = maX{m_p7[Vl+1'b1},
r=h+p+2, R = f3(s)-r, and notice that R = O4(k°+?).

Recall that, in the definition of R, the constant c is the palette-variety of F. We present
the algorithm Solve-Compression, whose input is a quadruple (G, k', k,S) where G is a
graph, k¥’ and k are non-negative integers where k¥’ < k, and S is a subset of V(G) such that
|S| = k and F £m G\ S. The algorithm returns, if it exists, a solution for F-M-DELETION

n (G, k). Certainly, we may assume that k' < k, otherwise S is already a solution and we
are done. The steps of the algorithm are the following:

Step 1. Run the algorithm Find-Wall of Lemma 11 with input (G\ S, R, 0). This outputs, in
20:(K*“*?) .y time, either a report that tw(G\S) < fa(s)- R, or an R-wall W, of G\ S. Notice
that Find-Wall(G \ S, R, s) never outputs the third case, since (G \ 5,0) is a yes-instance of
F-M-DELETION. In the first possible output, we know that tw(G) < fa(s)- R+k = Og(k°+?),
and we call the algorithm of Proposition 3 with input (G, fa(s) - R + k, k') and return a
correct answer in 20:(“"*1ogk) . gteps. In the second possible output, the algorithm moves
to the second step.

Step 2. Call Clique-Or-Flat-Wall of Proposition 12 on (G\ S, r, s, Wp). Since F £m G\ S
and F <., K,, the algorithm outputs, in time 2°(") . (m 4+ n) = 20:(k7) n, the following:
Aset ACV(G)\ S of size at most 12288524,
a flat r-wall W of G\ (S U A) such that V(W) N A = 0, and
a separation (X,Y") of G\ A that certifies that W is a flat wall, and an Q-rendition of
G[Y] with flaps of treewidth at most ¢ = f4(s) - r, where € is a cyclic ordering of X NY
determined by the order on the outer cycle of W.
Let W be the leveling of W and let W% be the representation of W in the A-embedded graph
W (W and W1 can straighforwardly be constructed in O(n) steps using the Q-rendition of
G[Y]). Let also W = (W) ("=P) i W is the central (r — p)-subwall of WF.

5 If S is a collection of objects where the operation U is defined, then we denote US = UXeS X.
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Consider a family W = {W7i,..., Wi} of [ + 1 internal b-subwalls of W, such that if D;
is the closed disk in A bounded by the perimeter, denoted by P;, of W;, then D; N D; =0,
for i # j. We are allowed to do this since r —p — 2 > [v/[ + 1 - b]. By flaps(D;) we denote
all the flaps corresponding to flap-vertices of W that are inside D; in the embedding of
W in A. For every i € [l + 1], we compute, in O(n) time, the set A; = {v € SUA |
v is adjacent in G to a vertex of (Jflaps(D;)} and we proceed to the last step.

Step 3. The algorithm examines two cases:

Case A: For every i € [l + 1], it holds that |4;| > a. In this case the algorithm recursively
calls Solve-Compression with input (G \ z, k" — 1,|S\ z|, S\ z), for every z € SU A, and
if one of these new instances is a yes-instance, certified by a set S, then return S U {z},
otherwise return that (G, k') is a no-instance.

We now prove that the above branching step of the algorithm is correct. Let W be the
leveling of W in G \ (S U A). We define G as the graph obtained from G \ (S U A) if we
remove all the vertices of the compass of W and take the union of the resulting graph with
W. Notice that G is partially A-embedded in the sense that the part of G that is embedded
in A is W. Notice that G is not necessarily a contraction of G\ (S U A), and this is because
the trivial flaps appear in W as induced paths of length two instead of edges. Therefore, if
G is the graph obtained from G after dissolving each flap-vertex corresponding to a trivial
flap, then

G is a contraction of G\ (S U A),

Gisa partially A-embedded graph whose compass is a dissolution of W, and

G contains an r-wall W that is a dissolution of W and W is embedded in A so that its

perimeter is a dissolution of the perimeter of W,

Consider a canonical partition Q of W. Let Q be the collection of connected subgraphs of
G that are obtained if we apply to the graphs in Q the same dissolutions that we used to
transform G to G (we just take care that the edge contracted during each dissolution has both
endpoints in some bag). Moreover, we enhance o) by adding in its external bag all the vertices
of G that are not points of A. Notice that the vertex sets of the graphs in this new O define a
partition of V(G’) Let now G be the graph obtained if we apply in G the same contractions
that transform G\ (S U A) to its contraction G. Let a* = |S U A| < 1228854 + k + 1. We
now construct a minor of G by contracting all edges of each member of Qdtoa single
vertex and removing the vertex to which the external bag was contracted. We denote the
resulting graph by G and we observe that G contains as a spanning subgraph an S U A-apex
(r — 2)-grid T'. Recall that T is a S U A-fixed minor of G. Let T be the underlying grid of
I' and let T'q,..., T4 be the “packing” of the h-central grid T’ of T, corresponding to the
walls in W, where each T; is a b-grid. We can assume the existence of this packing because
h > [V 4 1-b]. The initial assumption that |A;| > a, for ¢ € [l + 1], implies that Vi € [l + 1],
there are more than a apices of ' that are adjacent to vertices of T;.

For every v € SU A4, let N, be the set of neighbors of v in I and let N = Uvesua No-
Let A* be the set of vertices of S U A with |N,| > x. We claim that |A*| > a. Suppose to
the contrary that |A*| < a. This implies that the vertices in (S U A) \ A* are adjacent to at
most x - |(S U A) \ A*| <1 vertices in N. This, in turn implies that there is an i € [l + 1]
such that there are no vertices in (S U A) \ A* adjacent to vertices of T;. Thus, for this i,
there are at most a apex vertices of G that are adjacent to vertices of I';, a contradiction to
the conclusion of the previous paragraph. We arbitrarily remove vertices from A* so that
|A*| = a.

Consider now the A*-apex (r —2)-grid H =T\ ((SU A) \ A*), and as each vertex in A*
has at least 2 neighbors in V(I') and r — 2 > m, Lemma 15 can be applied for k', A*, H.
This implies that (G, k") is a yes-instance of F-M-DELETION if and only if there is some

95:15

ICALP 2020



95:16

An FPT-Algorithm for Recognizing k-Apices of Minor-Closed Graph Classes

v € A* such that (G \ v,k — 1) is a yes-instance of F-M-DELETION. This completes the
correctness of the branching step in Case A.

Case B: there is an i € [l + 1] such that |4;| < a. Since Wj is an internal b-subwall of W%,
there is a subgraph of compass(W) that is a flat b-wall W/’ of G'\ (SU A) such that the set of
vertices of the compass of W/ is a subset of Jflaps(D;) (as we argued in Subsection 3.2, W/’
is a tilt of the subwall of W represented by W; and can be found in O(n) time). This implies
that if A7 is the set of vertices from S U A that are adjacent with vertices of the compass of
W!"in G\ (SUA), then A7 C A,. Thus (A", W) is an (|AY|, b)-apex wall pair in G.

We now apply Find-Irrelevant-Wall of Lemma 14 for (G, k,q,3, A7, W/) and pick
a vertex v in the center of the obtained 3-wall. According to Lemma 14, it holds that
(G, k) and (G \ v, k) are equivalent instances of F-M-DELETION, v can be detected in
20a.c(klogk) .y time, and the algorithm correctly calls recursively Solve-Compression with
input (G \ v,k k,S).

Recall that [SU A| < k + 1 + 12288s?* = O, (k). Therefore, if T'(n, k', k) is the running
time of the above algorithm, then T'(n, k', k) < 20: (R 4 max{T(n — 1,k k), Os(k) -
T(n,k —1,k)} which, given that k' < k, implies that T'(n, k', k) = 90 (k*F2) 2.

Notice now that the output of Solve-Compression on (G, k,k + 1,S5) gives a solution
for F-M-DELETION-COMPRESSION on this instance. <

4.2 The apex-minor free case

In this subsection we prove that, in the case where ar = 1, there is an algorithm that
solves F-M-DELETION in time 29s7 (*“"") -n?, where ¢ = ¢, ¢, and a = 12288(sx)?*. The
existence of such an algorithm implies Theorem 2.

Let G be graph and let W be an r-wall in G. The drop, denoted by Dy, of a g-subwall
W' of W, where ¢ < r, is defined as follows: Contract in G the perimeter of W to a single
vertex v. Dy is the unique biconnected component of the resulting graph that contains the
interior of W’. We call the vertex v the pole of the drop Dyy-.

The algorithm. Our algorithm avoids iterative compression in the fashion that this is done
by Marx and Schlotter in [41] for the PLANARIZATION problem. The algorithm has three
main steps. We first set s = sz, a = 12288s%*, b/ = fr(a, k,l7) = Os(k*7), and we define

b:f3(5)2b/+2 l:f9(57k)k p:f10(57k)
h=max{fs(s,k) —p,b-VI+1} r=h+p+2 R= f3'(s)-7+k=0(k).

Step 1. Run the algorithm Find-Wall of Lemma 11 with input (G, R, k) and, in 20 (K*H)
time, either report a no-answer, or conclude that tw(G) < fao(s) - R + k and solve F-M-
DELETION in (9(205(kc+1) logk . n) time using the algorithm of Proposition 3, or obtain an
R-wall W* of GG. In the third case, consider all the (Ib%) = 20:(k%logk) b subwalls of W
and for each one of them, say W', construct its drop Dy, consider in Dy the central
(b — 2)-subwall W of W', and run the algorithm Clique-Or-Flat-Wall of Proposition 12
with input Dy, 2V, s, and W. This takes time 29:(%) . . If for some of these drops the
result is an (]A’|, 2b")-apex wall pair (W”| A’) where |A’| < a and its flaps have treewidth at
most g = f4(2b') - r, then apply Step 2, otherwise apply Step 3.

Step 2. Consider the leveling W of W” and, in the representation W% of W” in W,
pick a b’-wall W whose flap vertices do not correspond to a flap containing the pole of
Dyyr. Then use W in order to find an (|A’|,b')-apex wall pair (W', A”) of Dy whose



. Sau, G. Stamoulis, and D. M. Thilikos

compass does not contain the pole of Dy. Notice that (A", W) is also an (|4’|,b')-apex
wall pair of G, therefore the algorithm can apply Find-Irrelevant-Vertex of Lemma 14 for
(G,k,q,3, A, W") and obtain, in 29:(F198k) .y time, an “irrelevant” flat 3-wall and a vertex
v in its center such that (G, k) and (G \ v, k) are equivalent instances of F-M-DELETION.
Then the algorithm runs recursively on the equivalent instance (G \ v, k).

Step 3. Consider all the (f) = 20:(K%logk) r_subwalls of W*, and for each one W’ of them,
consider its central h-subwall W and compute the canonical partition Q of W. Then for
each internal bag @ of Q add a new vertex vg and make it adjacent with all vertices in @),
then add a new vertex x,; and make it adjacent with all zg’s, and in the resulting graph,
for every vertex y of G that is not in the union of the internal bags of Q, check, in time
O(k -m) = Os(k - n) (using standard flow techniques), if there there are fy(s, k) internally
vertex-disjoint paths from z, to y. If this is indeed the case for some g, then y should
belong to every solution of F-M-DELETION for the instance (G, k) and the algorithm runs
recursively on the equivalent instance (G \ y,k — 1). If no such y exists, then report that
(G, k) is a no-instance of F-M-DELETION.

Notice that the third step of the algorithm, when applied takes time 29:(:“logk) . p2
However, it cannot be applied more than k times during the course of the algorithm. As the

(K2t D) 1og k

first step runs in time 29+ -n , and the second step runs in time 29 (F1ogk) .

they may be applied at most n times, and the claimed time complexity follows.

5 Concluding remarks

Limitations of the irrelevant vertex technique. An intriguing open question is whether
VERTEX DELETION TO G admits an algorithm in time 297 () . n©M for some universal
constant ¢ (i.e., not depending on the class G). Clearly, this is not the case of the algorithms
of Theorem 1 and Theorem 2, running in time 90: 7 (KT logk) . p3 g 90:7 (K" log k) -n?,
respectively, where c is the the palette-variety of the minor-obstruction set F of G which,
from the corresponding proofs, is estimated to be ¢ = 90(s7*logsx) anq ¢ = 20(s7*"log 7).,
respectively (recall that sz is the maximum size of a minor-obstruction of G). We tend to

believe that this dependence is unavoidable if we want to use the irrelevant vertex technique,

as it reflects the price of homogeneity, as we mentioned in the end of Subsection 2.2.

Having homogeneous walls is critical for the application of this technique when G is more
general than surface embeddable graphs (in the bounded genus case, all subwalls are already
homogeneous). Is there a way to prove that this behavior is unavoidable subject to some
complexity assumption? An interesting result of this flavor concerning the existence of
polynomial kernels for VERTEX DELETION TO G was given by Giannopoulou et al. [26] who
proved that, even for minor-closed families G that exclude a planar graph, the dependence
on G on the degree of the polynomial kernel, which exists because of [22], is unavoidable
subject to reasonable complexity assumptions.

Variants. Our approach can be easily modified so to deal with several variants of the
VERTEX DELETION TO G problem such as the annotated version of the problem where the
input comes with a set of vertices that we are permitted to remove, the weighted version
where the vertices carry positive weights, the counting version where we are asked to count
the number of (minimal) solutions, or the colored version where the vertices of the input

graph are partitioned into k parts and we are requested to pick one vertex from each part.

The details can be found in the full version of the paper [47].
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Other modification operations. Another direction is to consider graph modification to a
minor-closed graph class for different modification operations. Our approach becomes just
simpler in the case where the modification operation is edge removal or edge contraction.
In these two cases, we immediately get rid of the branching part of our algorithms, and
only the irrelevant vertex part needs to be applied. Another challenge is to combine all
aforementioned modifications. This is more complicated (and tedious) but not more complex.
What is really more complex is to additionally consider edge additions. We leave it as an
open research challenge (a first step was done for the case of planar graphs [21]).

Lower bounds. Concerning lower bounds for VERTEX DELETION TO G under the Expo-
nential Time Hypothesis [27], we are not aware of any lower bound stronger than 2°() . @)
for any minor-closed class G. This lower bound already applies when F = {K5}, i.e., for the
VERTEX COVER problem [7,27].
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