
HAL Id: lirmm-02991913
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02991913

Submitted on 6 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Hitting Forbidden Induced Subgraphs on Bounded
Treewidth Graphs

Ignasi Sau, Uéverton dos Santos Souza

To cite this version:
Ignasi Sau, Uéverton dos Santos Souza. Hitting Forbidden Induced Subgraphs on Bounded Treewidth
Graphs. MFCS 2020 - 45th International Symposium on Mathematical Foundations of Computer
Science, Aug 2020, Prague, Czech Republic. pp.82:1-82:15, �10.4230/LIPIcs.MFCS.2020.82�. �lirmm-
02991913�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02991913
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Hitting Forbidden Induced Subgraphs on Bounded
Treewidth Graphs
Ignasi Sau
LIRMM, Université de Montpellier, CNRS, France
ignasi.sau@lirmm.fr

Uéverton dos Santos Souza
Instituto de Computação, Universidade Federal Fluminense, Niterói, Brazil
ueverton@ic.uff.br

Abstract
For a fixed graph H, the H-IS-Deletion problem asks, given a graph G, for the minimum size
of a set S ⊆ V (G) such that G \ S does not contain H as an induced subgraph. Motivated by
previous work about hitting (topological) minors and subgraphs on bounded treewidth graphs, we are
interested in determining, for a fixed graph H, the smallest function fH(t) such that H-IS-Deletion
can be solved in time fH(t) · nO(1) assuming the Exponential Time Hypothesis (ETH), where t and
n denote the treewidth and the number of vertices of the input graph, respectively.

We show that fH(t) = 2O(th−2) for every graph H on h ≥ 3 vertices, and that fH(t) = 2O(t)

if H is a clique or an independent set. We present a number of lower bounds by generalizing a
reduction of Cygan et al. [MFCS 2014] for the subgraph version. In particular, we show that when
H deviates slightly from a clique, the function fH(t) suffers a sharp jump: if H is obtained from
a clique of size h by removing one edge, then fH(t) = 2Θ(th−2). We also show that fH(t) = 2Ω(th)

when H = Kh,h, and this reduction answers an open question of Mi. Pilipczuk [MFCS 2011] about
the function fC4 (t) for the subgraph version.

Motivated by Cygan et al. [MFCS 2014], we also consider the colorful variant of the problem,
where each vertex of G is colored with some color from V (H) and we require to hit only induced
copies of H with matching colors. In this case, we determine, under the ETH, the function fH(t) for
every connected graph H on h vertices: if h ≤ 2 the problem can be solved in polynomial time; if
h ≥ 3, fH(t) = 2Θ(t) if H is a clique, and fH(t) = 2Θ(th−2) otherwise.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Graph algorithms analysis; Theory of computation → Parameterized
complexity and exact algorithms

Keywords and phrases parameterized complexity, induced subgraphs, treewidth, hitting subgraphs,
dynamic programming, lower bound, Exponential Time Hypothesis

Digital Object Identifier 10.4230/LIPIcs.MFCS.2020.82

Related Version A full version of the paper is available at https://arxiv.org/abs/2004.08324.

Funding Ignasi Sau: CAPES-PRINT Institutional Internationalization Program, process 88887.
371209/ 2019-00, and projects DEMOGRAPH (ANR-16-CE40-0028) and ESIGMA (ANR-17-CE23-
0010).
Uéverton dos Santos Souza: Grant E-26/203.272/2017 Rio de Janeiro Research Foundation (FAPERJ)
and Grant 303726/2017-2 National Council for Scientific and Technological Development (CNPq).

1 Introduction

Graph modification problems play a central role in modern algorithmic graph theory. The
most general form of such a problem is determined by a target graph class G and some
prespecified setM of allowed local modifications, and the question is, given an input graph
G and an integer k, whether it is possible to transform G to a graph in G by applying k

© Ignasi Sau and Uéverton dos Santos Souza;
licensed under Creative Commons License CC-BY

45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020).
Editors: Javier Esparza and Daniel Král’; Article No. 82; pp. 82:1–82:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-8981-9287
mailto:ignasi.sau@lirmm.fr
https://orcid.org/0000-0002-5320-9209
mailto:ueverton@ic.uff.br
https://doi.org/10.4230/LIPIcs.MFCS.2020.82
https://arxiv.org/abs/2004.08324
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

82:2 Hitting Forbidden Induced Subgraphs on Bounded Treewidth Graphs

modification operations fromM. A wealth of graph problems can be formulated for different
instantiations of G and M, and applications span diverse topics such as computational
biology, computer vision, machine learning, networking, and sociology [8, 11,19].

Probably, the most studied local modification operation in the literature is vertex deletion
and, among the target graph classes, of particular relevance are the ones defined by excluding
the graphs in a family F according to some natural graph containment relation, such as
minor, topological minor, subgraph, or induced subgraph. By the classical classification
result of Lewis and Yannakakis [24], all interesting cases of these problems are NP-hard.

One of the most popular strategies to cope with NP-hard problems is that of parameterized
complexity [12,17], where the core idea is to identify a parameter k associated with an input
of size n that allows for an algorithm in time f(k) · nO(1), called fixed-parameter tractable (or
FPT for short). A natural goal within parameterized algorithms is the quest for the “best
possible” function f(k) in an FPT algorithm. Usually, the working hypothesis to prove lower
bounds is the Exponential Time Hypothesis (ETH) that states, in a simplified version, that
the 3-Sat problem on n variables cannot be solved in time 2o(n); see [20,21] for more details.

Among graph parameters, definitely one of the most successful ones is treewidth, which
–informally speaking– quantifies the topological resemblance of a graph to a tree. The
celebrated Courcelle’s Theorem [10] states that every graph problem that can be expressed
in Monadic Second Order logic is solvable in time f(t) · n on n-vertex graphs of treewidth
at most t. In particular, it applies to most vertex deletion problems discussed above. A
very active area in parameterized complexity during the last years consists in optimizing,
under the ETH, the function f(t) given by Courcelle’s Theorem for several classes of vertex
deletion problems. As a byproduct, several cutting-edge techniques for obtaining both lower
bounds [25] and algorithms [6, 14, 18] have been obtained, which have become part of the
standard toolbox of parameterized complexity. Obtaining tight bounds under the ETH for
this kind of vertex deletion problems is, in general, a very hard task, as we proceed to discuss.

Let H be a fixed graph and let © be a fixed graph containment relation. In the H-©-
Deletion (meta)problem, given an n-vertex graph G, the objective is to find a set S ⊆ V (G)
of minimum size such that G \ S does not contain H according to containment relation ©.
We parameterize the problem by the treewidth of G, denoted by t, and the objective is to find
the smallest function fH(t) such that H-©-Deletion can be solved in time fH(t) · nO(1).

The case © = “minor” has been object of intense study during the last years [6, 14, 16, 22,
26,28], culminating in a tight dichotomy about the function fH(t) when H is connected [2–5].

The case © = “topological minor” has been also studied recently [3–5], but we are still
far from obtaining a complete characterization of the function fH(t). For both minors and
topological minors, so far there is no graph H such that fH(t) = 2Ω(tc) for some c > 1.

Recently, Cygan et al. [13] started a systematic study of the case © = “subgraph”, which
turns out to exhibit a quite different behavior from the above cases: for every integer c ≥ 1
there is a graph H such that fH(t) = 2Θ(tc). Cygan et al. [13] provided a general upper bound
and some particular lower bounds on the function fH(t), but a complete characterization
seems to be currently out of reach. Previously, Mi. Pilipczuk [27] had studied the cases
where H is a cycle, finding the function fCi

(t) for every i ≥ 3 except for i = 4.
In this article we focus on the case © = “induced subgraph” that, to the best of our

knowledge, had not been studied before in the literature, except for the case K1,3, for which
Bonomo-Braberman et al. [9] showed very recently that fK1,3(t) = 2O(t2).

Our results and techniques. We first show (Theorem 2) that, for every graph H on h ≥ 3
vertices, fH(t) = 2O(th−2). The algorithm uses standard dynamic programming over a nice
tree decomposition of the input graph. However, in order to achieve the claimed running

I. Sau and U. d. S. Souza 82:3

time, we need to use a slightly non-trivial encoding in the tables that generalizes an idea of
Bonomo-Braberman et al. [9], by introducing an object that we call rooted H-folio, inspired
by similar encodings in the context of graph minors [1, 5].

It turns out that whenH is a clique or an independent set (in particular, when |V (H)| ≤ 2),
the problem can be solved in single-exponential time, that is, fH(t) = 2O(t). The case of
cliques (Theorem 5), which coincides with the subgraph version, had been already observed
by Cygan et al. [13], using essentially the folklore fact that every clique is contained in some
bag of a tree decomposition. The case of independent sets (Theorem 8) is more interesting,
as we exploit tree decompositions in a novel way, by showing (Lemma 6) that a chordal
completion of the complement of a solution can be covered by a constant number of cliques,
which implies (Lemma 7) that the complement of a solution is contained in a constant number
of bags of the given tree decomposition.

Our main technical contribution consists of lower bounds. Somehow surprisingly, we show
(Theorem 10) that when H deviates slightly from a clique, the function fH(t) suffers a sharp
jump: if H is obtained from a clique of size h by removing one edge, then fH(t) = 2Ω(th−2),
and this bound is tight by Theorem 2. We also provide lower bounds for other graphs H
that are “close” to cliques (Theorem 10; see also the full version), some of them being tight.
In particular, we show (Theorem 12) that when H = Kh,h, we have that fH(t) = 2Ω(th).
By observing that the proof of the latter lower bound also applies to occurrences of Kh,h

as a subgraph, the particular case h = 2 (Corollary 13) answers the open question of Mi.
Pilipczuk [27] about the function fC4(t). All these reductions are inspired by a reduction of
Cygan et al. [13] for the subgraph version. We first present the general frame of the reduction
together with some properties that the eventual instances constructed for each of the graphs
H have to satisfy, yielding in a unified way (Lemma 9) lower bounds for the corresponding
problems.

Motivated by the work of Cygan et al. [13], we also consider the colorful variant of the
problem, where the input graph G comes equipped with a coloring σ : V (G)→ V (H) and
we are only interested in hitting induced subgraphs of G isomorphic to H such that their
colors match. In this case, we first observe that essentially the same dynamic programming
algorithm of the non-colored version (Theorem 3) yields the upper bound fH(t) = 2O(th−2)

for every graph H on h ≥ 3 vertices. Again, our main contribution concerns lower bounds:
we show (Theorem 14), by modifying appropriately the frame introduced for the non-colored
version, that fH(t) = 2Ω(th−2) for every graph H having a connected component on h

vertices that is not a clique. Since the case where H is a clique can also be easily solved in
single-exponential time (Theorem 5), which can be shown (Theorem 15) to be optimal, it
follows that if H is a connected graph on h ≥ 3 vertices, fH(t) = 2Θ(t) if H is a clique, and
fH(t) = 2Θ(th−2) otherwise. It is easy to see that the cases where |V (H)| ≤ 2 can be solved
in polynomial time by computing a minimum vertex cover in a bipartite graph.

Organization. In Section 2 we provide some basic preliminaries and formally define the
problems. In Section 3 we present the algorithms for both problems, and in Section 4 (resp.
Section 5) we provide the lower bounds for the non-colored (resp. colored) version. Finally,
we conclude the article in Section 6 with some open questions. Due to space limitations,
the proofs of the results marked with “(?)” can be found in the full version of this article,
available at https://arxiv.org/abs/2004.08324.

MFCS 2020

https://arxiv.org/abs/2004.08324

82:4 Hitting Forbidden Induced Subgraphs on Bounded Treewidth Graphs

2 Preliminaries

Graphs and functions. We use standard graph-theoretic notation, and we refer the reader
to [15] for any undefined notation. We will only consider undirected graphs without loops nor
multiple edges, and we denote an edge between two vertices u and v by {u, v}. A subgraph
H of a graph G is induced if H can be obtained from G by deleting vertices. A graph G is
H-free if it does not contain any induced subgraph isomorphic to H. For a graph G and
a set S ⊆ V (G), we use the notation G \ S := G[V (G) \ S]. A vertex v is complete (resp.
anticomplete) to a set S ⊆ V (G) if v is adjacent (resp. not adjacent) to every vertex in S. A
vertex set S of a connected graph G is a separator if G \ S is disconnected.

We denote by ∆(G) (resp. ω(G)) the maximum vertex degree (resp. clique size) of a
graph G. For an integer h ≥ 1, we denote by Ph (resp. Ih, Kh) the path (resp. independent
set, clique) on h vertices, and by Kh − e the graph obtained from Kh by deleting one edge.
For two integers a, b ≥ 1, we denote by Ka,b the bipartite graph with parts of sizes a and b.
We denote the disjoint union of two graphs G1 and G2 by G1 +G2.

A graph property is hereditary if whenever it holds for a graph G, it holds for all its
induced subgraphs as well. The open (resp. closed) neighborhood of a vertex v is denoted
by N(v) (resp. N [v]). A vertex is simplicial if its (open or closed) neighborhood induces
a clique. A graph G is chordal if it does not contain induced cycles of length at least four
or, equivalently, if V (G) can be ordered v1, . . . , vn such that, for every 2 ≤ i ≤ n, vertex vi

is simplicial in the subgraph of G induced by {v1, . . . , vi−1}. Note that being chordal is a
hereditary property.

Given a function f : A→ B between two sets A and B and a subset A′ ⊆ A, we denote
by f |A′ the restriction of f to A′ and by im(f) the image of f , that is, im(f) = {b ∈ B |
∃a ∈ A : f(a) = b}. For an integer k ≥ 1, we let [k] be the set containing all integers i with
1 ≤ i ≤ k.

Tree decompositions. A tree decomposition of a graph G is a pair D = (T,X), where T is
a tree and X = {Xw | w ∈ V (T)} is a collection of subsets of V (G), called bags, such that:⋃

w∈V (T)Xw = V (G),
for every edge {u, v} ∈ E, there is a w ∈ V (T) such that {u, v} ⊆ Xw, and
for each {x, y, z} ⊆ V (T) such that z lies on the unique path between x and y in T ,
Xx ∩Xy ⊆ Xz.

We call the vertices of T nodes of D and the sets in X bags of D. The width of a tree
decomposition D = (T,X) is maxw∈V (T) |Xw| − 1. The treewidth of a graph G, denoted by
tw(G), is the smallest integer t such that there exists a tree decomposition of G of width at
most t. We need to introduce nice tree decompositions, which will make the presentation of
the algorithms much simpler.

Nice tree decompositions. Let D = (T,X) be a tree decomposition of G, r be a vertex of
T , and G = {Gw | w ∈ V (T)} be a collection of subgraphs of G, indexed by the vertices of T .
A triple (D, r,G) is a nice tree decomposition of G if the following conditions hold:

Xr = ∅ and Gr = G,
each node of D has at most two children in T ,
for each leaf ` ∈ V (T), X` = ∅ and G` = (∅, ∅). Such an ` is called a leaf node,
if w ∈ V (T) has exactly one child w′, then either
Xw = Xw′ ∪ {vin} for some vin 6∈ Xw′ and Gw = G[V (Gw′) ∪ {vin}]. The node w is
called an introduce node and the vertex vin is the introduced vertex of Xw,
Xw = Xw′ \ {vout} for some vout ∈ Xw′ and Gw = Gw′ . The node w is called a forget
node node and vout is the forget vertex of Xw.

I. Sau and U. d. S. Souza 82:5

if w ∈ V (T) has exactly two children w1 and w2, then Xw = Xw1 = Xw2 , E(Gw1) ∩
E(Gw2) = E(G[Xw]), and Gw = (V (Gw1) ∪ V (Gw2), E(Gw1) ∪ E(Gw2)). The node w is
called a join node.

For each w ∈ V (T), we denote by Vw the set V (Gw). Given a tree decomposition, it is
possible to transform it in polynomial time to a nice one of the same width [23]. Moreover,
by Bodlaender et al. [7] we can find in time 2O(tw) · n a tree decomposition of width O(tw) of
any graph G. Hence, since the running time of our algorithms dominates this function, we
may assume that a nice tree decomposition of width t = O(tw) is given along with the input.

Definition of the problems. Before formally defining the problems considered in this article,
we introduce some terminology, mostly taken from [13]. Given a graph H, an H-coloring of
a graph G is a function σ : V (G)→ V (H). A homomorphism (resp. induced homomorphism
from a graph H to a graph G is a function π : V (H) → V (G) such that {u, v} ∈ E(H)
implies (resp. if and only if) {π(u), π(v)} ∈ E(G). When G is H-colored by a function σ,
an (induced) σ-homomorphism from H to G is an (induced) homomorphism π from H to
G with the additional property that every vertex is mapped to the appropriate color, that
is, σ(π(a)) = a for every vertex a ∈ V (H). An (induced) H-subgraph of G is an (induced)
injective homomorphism from H to G and, if G is H-colored by a function σ, an (induced)
σ-H-subgraph of G is an (induced) injective σ-homomorphism from H to G. We say that a
vertex set X ⊆ V (G) hits an (induced) σ-H-subgraph π if X ∩ π(V (H)) 6= ∅.

For a fixed graph H, the problems we consider in this article are defined as follows.

H-IS-Deletion
Input: A graph G.
Output: The minimum size of a set X ⊆ V (G) that hits all induced H-subgraphs of G.

Colorful H-IS-Deletion
Input: A graph G and an H-coloring σ of G.
Output: The minimum size of a set X ⊆ V (G) that hits all induced σ-H-subgraphs
of G.

The H-S-Deletion and Colorful H-S-Deletion problems are defined similarly, just
by removing the word “induced” from the above definitions. In the decision version of these
problems, we are given a target budget k, and the objective is to decide whether there exists
a hitting set of size at most k. Unless stated otherwise, we let n denote the number of
vertices of the input graph of problem under consideration. When expressing the running
time of an algorithm, we will sometimes use the O∗(·) notation, which suppresses polynomial
factors in the input size.

Exponential Time Hypothesis. The Exponential Time Hypothesis (ETH) of Impagliazzo
and Paturi [20] implies that the 3-Sat problem on n variables cannot be solved in time 2o(n).
The Sparsification Lemma of Impagliazzo et al. [21] implies that if the ETH holds, then there
is no algorithm solving a 3-Sat formula with n variables and m clauses in time 2o(n+m).
Using the terminology from Cygan et al. [13], a 3-Sat formula ϕ, in conjunctive normal form,
is said to be clean if each variable of ϕ appears exactly three times, at least once positively
and at least once negatively, and each clause of ϕ contains two or three literals and does not
contain twice the same variable. Cygan et al. [13] observed the following useful lemma.

I Lemma 1 (Cygan et al. [13]). The existence of an algorithm in time 2o(n) deciding whether
a clean 3-Sat formula with n variables is satisfiable would violate the ETH.

MFCS 2020

82:6 Hitting Forbidden Induced Subgraphs on Bounded Treewidth Graphs

3 Algorithms

In this section we present algorithms for H-IS-Deletion and Colorful H-IS-Deletion.
We start in Subsection 3.1 with a general dynamic programming algorithm that solves
H-IS-Deletion and Colorful H-IS-Deletion in time O∗(2O(th−2)) for any graph H on
at least h ≥ 3 vertices. In Subsection 3.2 we focus on hitting cliques and independent sets.

3.1 A general dynamic programming algorithm
We present the algorithm for H-IS-Deletion, and then we discuss that essentially the
same algorithm applies to Colorful H-IS-Deletion as well. Our algorithm to solve
H-IS-Deletion in time O∗(2O(th−2)) uses standard dynamic programming over a nice tree
decomposition of the input graph; we refer the reader to [12] for a nice exposition. However,
in order to achieve the claimed running time, we need to use a slightly non-trivial encoding
in the tables, which we proceed to explain.

Let |V (H)| = h and assume that we are given a nice tree decomposition of the input
graph G such that its bags contain at most t vertices (in a tree decomposition of width t,
the bags have size at most t+ 1, but to simplify the exposition we assume that they have
size at most t, which does not change the asymptotic complexity of the algorithm).

Intuitively, our algorithm proceeds as follows. At each bag Xw of the nice tree decompos-
ition of G, a state is indexed by the intersection of the desired hitting set constructed so far
with the bag, and the collection of proper subgraphs of H that occur as induced subgraphs
in the graph obtained from Gw after removing the current solution. In order to be able
to proceed with the dynamic programming routine while keeping the complement of the
hitting set H-free, we need to remember how these proper subgraphs of H intersect with Xw,
and this is the most expensive part of the algorithm in terms of running time. We encode
this collection of rooted subgraphs of H (where the “roots” correspond to the vertices in
Xw) with an object Hw that we call a rooted H-folio, inspired by similar encodings in the
context of graph minors [1,5]. Since we need to remember proper subgraphs of H on at most
h− 1 vertices, and we have up to t choices to root each of their vertices in the bag Xw, the
number of rooted proper subgraphs of H is at most th−1. Therefore, the number of rooted
H-folios, each corresponding to a collection of rooted proper subgraphs of H, is bounded
above by 2th−1 . This encoding naturally leads to a dynamic programming algorithm to solve
H-IS-Deletion in time O∗(2O(th−1)), where the hidden constants may depend on H.

In order to further reduce the exponent to h−2, we use the following trick inspired by the
dynamic programming algorithm of Bonomo-Braberman et al. [9] to solve K1,3-IS-Deletion
in time O∗(2O(t2)). The crucial observation is the following: the existence of proper induced
subgraphs of H that are fully contained in the current bag Xw can be checked locally
within that bag, without needing to root their vertices. That is, we distinguish these local
occurrences of proper induced subgraphs of H, and we encode them separately in Hw, without
rooting their vertices in Xw. Note that the number of choices for those local occurrences
depends only on H. In particular, since the proper subgraphs of H have at most h − 1
vertices, the previous observation implies that we never need to root exactly h− 1 vertices
of an induced subgraph of H, since such occurrences would be fully contained in Xw. This
permits to improve the running time to O∗(2O(th−2)). The details can be found in the full
version.

Note that we may assume that H has at least three vertices, as otherwise it is a clique or
an independent set, and then H-IS-Deletion can be solved in single-exponential time by
the algorithms in Subsection 3.2.

I. Sau and U. d. S. Souza 82:7

I Theorem 2 (?). For every graph H on h ≥ 3 vertices, the H-IS-Deletion problem can
be solved in time 2O(th−2) · n, where n and t are the number of vertices and the treewidth of
the input graph, respectively.

A dynamic programming algorithm similar to the one provided in Theorem 2 can also
solve the Colorful H-IS-Deletion problem in time 2O(th−2) · n for every graph H on
h ≥ 3 vertices. Indeed, the algorithm remains basically the same, except that we have to
keep track only of colorful copies of proper subgraphs of H, and to discard only the states in
which a colorful occurrence of H appears. In order to do that, in the tables of the dynamic
programming algorithm we just need to replace rooted H-folios by rooted σ-H-folios, defined
in the natural way. Since the number of further computations at each node in order to verify
that the colors match in the obtained rooted subgraphs of H is a function dominated by
2O(th−2), we obtain the same asymptotic running time. We omit the details.

I Theorem 3. For every graph H on h ≥ 3 vertices, the Colorful H-IS-Deletion
problem can be solved in time 2O(th−2) · n, where n and t are the number of vertices and the
treewidth of the input graph, respectively.

3.2 Hitting cliques and independent sets
The following folklore lemma follows easily from the definition of tree decomposition.

I Lemma 4. Let G be a graph and let D be a tree decomposition of G. Then every clique of
G is contained in some bag of D.

Note that if H is a clique, then the (Colorful) H-IS-Deletion problem is the same
as the (Colorful) H-S-Deletion problem. Cygan et al. [13] observed that, by Lemma 4,
in order to solve (Colorful) Kh-IS-Deletion it is enough to store, for every bag of a
(nice) tree decomposition of the input graph, the subset of vertices of the bag that belongs
to the partial hitting set, and to check locally within the bag that the remaining vertices do
not induce a Kh. A typical dynamic programming routine yields the following result1.

I Theorem 5 (Cygan et al. [13]). For every integer h ≥ 1, Kh-IS-Deletion and Colorful
Kh-IS-Deletion can be solved in time 2O(t) · n, where n and t are the number of vertices
and the treewidth of the input graph, respectively.

The case where H is an independent set, which is NP-hard by [24], turns out to be more
interesting. We proceed to present a single-exponential algorithm for Ih-IS-Deletion, and
we remark that this algorithm does not apply to the colorful version.

Note that I2-IS-Deletion is dual to Maximum Clique, since a minimum I2-hitting
set is the complement of a maximum clique. This duality together with Lemma 4 yield the
following key insight: in any graph G, after the removal of an optimal solution of I2-IS-
Deletion, all the remaining vertices are contained in a single bag of any tree decomposition
of G. Our algorithm is based on a generalization of this property to any h ≥ 1, stated in
Lemma 7, which gives an alternative way to exploit tree decompositions in order to solve the
H-IS-Deletion problem. We first need a technical lemma. A clique cover of a graph G is a
collection of cliques of G that cover V (G), and its size is the number of cliques in the cover.

I Lemma 6. Every Ih-free chordal graph G admits a clique cover of size at most h− 1.

1 In fact, Cygan et al. [13] presented an algorithm only for Colorful Kh-S-Deletion, but the algorithm
for Kh-S-Deletion is just a simplified version of the colorful version, just by forgetting the colors.

MFCS 2020

82:8 Hitting Forbidden Induced Subgraphs on Bounded Treewidth Graphs

Proof. We prove the lemma by induction on h. For h = 2, G itself is a clique and the claim
is trivial. Suppose inductively that any Ih−1-free chordal graph admits a clique cover of size
at most h− 2, let G be an Ih-free chordal graph, and let v be a simplicial vertex of G. Since
N [v] is a clique and G is Ih-free, it follows that G \N [v] is Ih−1-free. Since being chordal
is a hereditary property, G \N [v] is an Ih−1-free chordal graph, so by induction G \N [v]
admits a clique cover of size at most h− 2. These h− 2 cliques together with N [v] define a
clique cover of G of size at most h− 1. J

I Lemma 7. Let h ≥ 2 be an integer, let G be a graph, let D be a tree decomposition of
G, and let S be any solution for Ih-IS-Deletion on G. Then there are at most h− 1 bags
X1, X2, . . . , Xh−1 of D such that V (G) \ S ⊆

⋃
i∈[h−1]Xi.

Proof. Let D be a tree decomposition of G, let S be a solution for Ih-IS-Deletion on G,
and let G? be the graph obtained from G by adding an edge between any pair of vertices
contained in the same bag of D. Note that G? is a chordal graph, and that D is also a tree
decomposition of G?. Since being a chordal graph is a hereditary property, it follows that
G? \ S is chordal. Since G \ S is Ih-free, and the property of being Ih-free is closed under
edge addition, we have that G? \ S is also Ih-free. Thus, G? \ S is an Ih-free chordal graph,
and Lemma 6 implies that G? \ S admits a clique cover of size at most h − 1. Since any
clique in G? \S is also a clique in G?, and D is a tree decomposition of G?, Lemma 4 implies
that every clique of G? \ S is contained in some bag of D, and therefore there are at most
h− 1 bags of D that cover all vertices in V (G?) \ S = V (G) \ S. J

Recall that Ih-IS-Deletion is NP-hard even for h = 2, thus the problem cannot be
solved in time nf(h) for any function f , unless P = NP.

I Theorem 8. For every integer h ≥ 1, Ih-IS-Deletion can be solved in time 2O(t) · nh,
where n and t are the number of vertices and the treewidth of the input graph, respectively.

Proof. For h = 1 the problem can be trivially solved in linear time, so assume h ≥ 2. Let
D be a tree decomposition of G with width t, and let S be an (unknown) optimal solution
for Ih-IS-Deletion on G. By Lemma 7, there are at most h − 1 bags X1, X2, . . . , Xh−1
of D such that V (G) \ S ⊆

⋃
i∈[h−1]Xi. Since we may assume that D has O(n) nodes [23],

we can enumerate the candidate sets of bags X1, X2, . . . , Xh−1 in time O(nh−1). For
each such fixed set X1, X2, . . . , Xh−1, we generate all subsets S̄ ⊆

⋃
i∈[h−1]Xi, which are

at most 2(h−1)(t+1) many, and for each S̄ we check whether the graph G[S̄] is Ih-free,
in time 2t · tO(1) · n, by computing a maximum independent set of G[S̄] using dynamic
programming based on treewidth [12] (note that having treewidth at most t is a hereditary
property). Note that, by Lemma 7, there exists some of the considered sets S̄ such that
V (G) \ S̄ = S, and therefore an optimal solution S of Ih-IS-Deletion on G can be found
in time O(nh−1 · 2(h−1)(t+1) · 2t · tO(1) · n) = 2O(t) · nh , as claimed. J

We would like to mention that the approach used in the algorithm of Theorem 8 does not
seem to be easily applicable to the colorful version of the problem. Indeed, the colored version
of Lemma 6 fails: removing a clique from a σ-Ih-free chordal graph does not necessarily yield
a σ-Ih−1-free chordal graph, and the inductive argument does not apply.

Note that, as for any graphH and any instance (G, σ) of Colorful H-IS-Deletion, any
edge between two vertices u, v with σ(u) = σ(v) can be safely deleted without affecting the
instance, the Colorful K2-IS-Deletion problem is equivalent to computing a minimum
vertex cover in a bipartite graph, which can be done in polynomial time. Similarly, the
Colorful I2-IS-Deletion problem can also be solved in polynomial time, by computing
a minimum vertex cover in the bipartite complement of the input graph. This is in sharp
contrast to the uncolored version, where both problems are NP-hard [24].

I. Sau and U. d. S. Souza 82:9

4 Lower bounds for H-IS-Deletion

In this section we present lower bounds for the H-IS-Deletion problem. Our reductions
will be from the 3-Sat problem restricted to clean formulas, and are strongly inspired by a
reduction of Cygan et al. [13] for the H-S-Deletion problem when H is the graph obtained
from K2,h by attaching a triangle to each of the two vertices of degree h. We start by
presenting the general frame of the reductions together with some generic properties that
our eventual instances of H-IS-Deletion will satisfy, which allow to prove in a unified way
(cf. Lemma 9) the equivalence of the instances. Variations of this general frame will yield
the concrete reductions for distinct graphs H (cf. Theorems 10 and 12).

General frame of the reductions. Given a clean 3-Sat formula ϕ with n variables and m
clauses, we proceed to build a so-called frame graph FH,ϕ. For each graph H considered in
the reductions, FH,ϕ will be enhanced with additional vertices and edges, obtaining a graph
GH,ϕ that will be the constructed instance of the H-IS-Deletion problem.

Let h be an integer depending on H, to be specified in each particular reduction, and let s
be the smallest positive integer such that sh ≥ 3n, and note that s = O(n1/h). We introduce
a set of vertices M = {wi,j | i ∈ [s], j ∈ [h]}, which we call the central part of the frame. One
may think of this set M as a matrix with s rows and h columns. We will sometimes add an
extra set T of vertices to the central part, with |T | depending on H, obtaining an enhanced
central part M ′ = M ∪ T .

Let L be a graph depending on each particular graph H. By attaching a copy of L
between two vertices u, v ∈ V (FH,ϕ) we mean adding a new copy of L, choosing two arbitrary
distinct vertices of L, and identifying them with u and v respectively.

For each variable x of ϕ and for each clause C containing x in a literal ` ∈ {x, x̄}, we add
to Fϕ a new vertex ax,C,`. We also introduce another “dummy” vertex ax. Since ϕ is clean,
we have introduced four vertices in FH,ϕ for each variable x. Let ax,C1,`, ax,C2,¯̀, ax,C3,`, ax

be the four introduced vertices (recall that x appears at least once positively and negatively
in ϕ). We attach a copy of L between the following four pairs of vertices: (ax,C1,`, ax,C2,¯̀),
(ax,C2,¯̀, ax,C3,`), (ax,C3,`, ax), and (ax, ax,C1,`). We denote by A the union of all the vertices
in these variable gadgets.

For each clause C of ϕ and for each literal ` in C, we add to Fϕ a new vertex bC,`. Since
ϕ is clean, we have introduced two or three vertices in FH,ϕ for each clause C. We attach a
copy of L between every pair of these vertices. We denote by B the union of all the vertices
in these clause gadgets. This concludes the construction of the frame FH,ϕ; cf. Figure 1.
In all our reductions, the graph GH,ϕ will satisfy the following property:

P1: All the connected components of GH,ϕ \M ′ are of size bounded by a function of H.

Also, in all our reductions the budget that we set for the solution of H-IS-Deletion on
GH,ϕ is k := 2n +

∑
C∈ϕ(|C| − 1) = 5n −m, where |C| denotes the number of literals in

clause C. For each fixed graph H, the choice of k, the edges within M ′, and the edges
between M ′ and the sets A,B will force the following behavior in GH,ϕ:

P2: For each gadget corresponding to a variable x, at least one of the pairs (ax,C1,`, ax,C3,`)
and (ax, ax,C2,¯̀) needs to be in the solution and, for each gadget corresponding to a clause
C, at least |C| − 1 vertices in the set {bC,` | ` ∈ C} need to be in the solution.

The above property together with the choice of k imply that the budget is tight: exactly
one of the pairs (ax,C1,`, ax,C3,`) and (ax, ax,C2,¯̀) is in the solution, thereby defining the

MFCS 2020

82:10 Hitting Forbidden Induced Subgraphs on Bounded Treewidth Graphs

w1,1

w2,1

ws,1

wi,j

ws,h

w1,hw1,2

M

h

s

BA

L

L

L

bC,`1

bC,`2

bC,`3ax,C3,`

M ′T

ax,C2,¯̀

L

L

L

ax,C1,`

ax ax,C2,¯̀

L

ax,C1,`

ax

Figure 1 Illustration of the general frame graph FH,ϕ.

true/false assignment of variable x; and exactly one of the vertices in {bC,` | ` ∈ C} is not in
the solution, corresponding to a satisfied literal in C. More precisely, our graph GH,ϕ will
satisfy the following key property:

P3: Let X ⊆ V (GH,ϕ) contain exactly one of (ax,C1,`, ax,C3,`) and (ax, ax,C2,¯̀) for each
variable x, and exactly |C| − 1 vertices in {bC,` | ` ∈ C} for each clause C. Then
all occurrences of H in GH,ϕ \ X as an induced subgraph contain exactly one vertex
ax,C,` ∈ A and exactly one vertex bC′,`′ ∈ B, with (C, `) = (C ′, `′). Moreover, each such
a pair of vertices gives rise to an occurrence of H in GH,ϕ \X.

We now show that the above three properties are enough to construct the desired reductions.

I Lemma 9 (?). Let H be fixed graph and, given a clean 3-Sat formula ϕ, let GH,ϕ be a
graph constructed starting from the frame graph FH,ϕ described above, where the central part
M has h columns for some constant h ≥ 1 depending on H. If GH,ϕ satisfies properties P1,
P2, and P3, then the H-IS-Deletion problem cannot be solved in time O∗(2o(th)) unless
the ETH fails, where t is the width of a given tree decomposition of the input graph.

We now proceed to describe concrete reductions for several instantiations of H. In order
to add edges between the enhanced central part M ′ and the sets A,B, we use the following
nice trick introduced in [13]. To each pair (C, `), where C is a clause of ϕ and ` is a literal
in C, we assign a function fC,` : [h] → [s]. We assign these functions in such a way that
fC,` 6= fC′,`′ whenever (C, `) 6= (C ′, `′); note that this is possible by the choice of s and the
fact that, since ϕ is clean, each clause contains at most three literals. We assume henceforth
that these functions are fixed. We start with the following result that provides tight lower
bounds for two graphs that are “close” to a clique.

I Theorem 10. Let h ≥ 1 be a fixed integer and let H ∈ {Kh+2 − e,Kh + I2}. Then, unless
the ETH fails, the H-IS-Deletion problem cannot be solved in time O∗(2o(th)), where t is
the width of a given tree decomposition of the input graph.

Proof. For each graph H ∈ {Kh+2− e,Kh + I2}, we will present a reduction from the 3-Sat
problem restricted to clean formulas. Given such a formula ϕ, let FH,ϕ be the frame graph
described above, where the constant h, the graph L, and the set T will be specified below for
each H. In each case, we will build, starting from FH,ϕ, an instance GH,ϕ of H-IS-Deletion
with budget k = 5n−m satisfying properties P1, P2, and P3, and then Lemma 9 will imply
the claimed lower bound.

I. Sau and U. d. S. Souza 82:11

We focus here on the case H = Kh′+2 − e for some h′ ≥ 1, and the case H = Kh + I2
can be found in the full version. Let FH,ϕ be the frame graph with h = h′, L = Kh+2 − e,
and T = ∅. We add an edge between any two vertices wi,j , wi′,j′ ∈ M with j 6= j′. That
is, we turn GH,ϕ[M] into a complete h-partite graph, where each part has size s. For each
clause C and each literal ` in C, where ` ∈ {x, x̄} for some variable x, we add the edges
{aC,x,`, wfC,`(j),j} and {bC,`, wfC,`(j),j} for every j ∈ [h]. This concludes the construction of
GH,ϕ, which clearly satisfies property P1. By the choice of k and the fact that there is a copy
of H between the corresponding vertices of A and B (cf. Figure 1), property P2 holds as well.
Let X ⊆ V (GH,ϕ) be a set as in property P3, and let H̃ be an induced subgraph of GH,ϕ \X
isomorphic to H. Since ω(GH,ϕ[M]) = h, ω(GH,ϕ[(A ∪B) \X]) ≤ h, and ω(H) = h+ 1, H̃
intersects both M and A ∪B. Moreover, since no two adjacent vertices in (A ∪B) \X have
neighbors in M , necessarily |V (H̃) ∩ (A ∪ B)| = 2 and V (H̃) ∩M induces a clique of size
h, which implies that H̃ contains a vertex in each column of M . By the definition of the
functions fC,` and the construction of GH,ϕ, the two vertices in V (H̃) ∩ (A ∪ B) must be
ax,C,` ∈ A and bC′,`′ ∈ B with (C, `) = (C ′, `′), and therefore property P3 follows and we
are done by Lemma 9. J

Note that, in the proof of Theorem 2 for H = Kh+2 − e, all the occurrences of H in
GH,ϕ are induced, and therefore the lower bound also applies to the (Kh+2− e)-S-Deletion
problem. On the other hand, for H = Kh + I2 the proof of Theorem 2 strongly uses the fact
that H cannot occur as an induced subgraph. The following lemma explains why the proof
does not work for the subgraph version: it can be easily solved in single-exponential time.
This points out an interesting difference between both problems.

I Lemma 11 (?). For every two fixed integers h ≥ 1 and ` ≥ 0, the (Kh + I`)-S-Deletion
problem can be solved in time O∗(2O(t)), where t is the width of a given tree decomposition
of the input graph.

By Theorem 2, the lower bounds presented in Theorem 10 for H ∈ {Kh+2 − e,Kh + I2}
are tight under the ETH. These two graphs are very symmetric, in the sense that each
of them contains two non-adjacent vertices that are either complete or anticomplete to a
“central” clique Kh (cf. Figure 2). Unfortunately, for graphs without two such non-adjacent
symmetric vertices, our framework described above is not capable of obtaining tight lower
bounds. Nevertheless, in the full version we show how to obtain lower bounds for other
graphs, namely for the graph Kh+1 + vx for 0 ≤ x ≤ h− 1, defined as the graph obtained
from Kh+1 by adding a vertex v adjacent to x vertices in the clique (cf. Figure 2).

Kh + I2

Kh
a b

Kh+1 + vx

Kh
a b

x

Kh+2 − e

Kh
a b

Figure 2 Graphs H considered in Theorem 10 and in the lower bounds presented in the full
version.

Another direction for generalizing the lower bound of Theorem 10 to other graphs H is
to consider complete bipartite graphs.

I Theorem 12 (?). For any integer h ≥ 2, the Kh,h-IS-Deletion problem cannot be solved
in time O∗(2o(th)) unless the ETH fails, where t is the width of a given tree decomposition of
the input graph.

MFCS 2020

82:12 Hitting Forbidden Induced Subgraphs on Bounded Treewidth Graphs

It can be easily verified that the proof of Theorem 12 works for both Kh,h-IS-Deletion
and Kh,h-S-Deletion, since all the occurrences of Kh,h in the constructed graph GH,ϕ

are induced. Hence, as the particular case of Theorem 12 for h = 2 we get the following
corollary, which answers a question of Mi. Pilipczuk [27] about the asymptotic complexity of
C4-S-Deletion parameterized by treewidth.

I Corollary 13. Neither C4-IS-Deletion nor C4-S-Deletion can be solved in time
O∗(2o(t2)) unless the ETH fails, where t is the width of a given tree decomposition of the
input graph.

As mentioned in [27], C4-S-Deletion can be easily solved in time O∗(2O(t2)). This fact
together with Theorem 2 imply that both lower bounds of Corollary 13 are tight.

We can obtain lower bounds for other graphs H that are “close” to a complete bipartite
graph. Indeed, note that the lower bound of Theorem 12 also applies to the graph H obtained
from Kh,h by turning one of the two parts into a clique: the same reduction works similarly,
and the only change in the construction is to turn the whole central part M into a clique.
We can also consider complete bipartite graphs Ka,b with parts of different sizes, by letting
the number of columns of the central part M be equal to max{a, b}, hence obtaining a lower
bound of O∗(2o(tmax{a,b})). Similarly, we can also turn one of the two parts of Ka,b into a
clique, and obtain the same lower bound. In particular, in this way we can obtain a lower
bound of O∗(2o(th)) for the graph H obtained from Kh+3 by removing the edges in a triangle.

5 Lower bounds for Colorful H-IS-Deletion

Our main reduction for the colored version is again strongly inspired by the corresponding
reduction of Cygan et al. [13] for the non-induced version. The main difference with respect
to their reduction is that in the non-induced version, the graph H is required to contain a
connected component that is neither a clique nor a path, while for the induced version we
only require a component that is not a clique, and therefore we need extra arguments to deal
with the case where all the connected components of H are paths.

I Theorem 14 (?). Let H be a graph having a connected component on h vertices that is
not a clique. Then Colorful H-IS-Deletion cannot be solved in time O∗(2o(th−2)) unless
the ETH fails, where t is the width of a given tree decomposition of the input graph.

When H is a connected graph, the lower bound of Theorem 14 together with the
algorithms given by Proposition 5 and Theorem 3 completely settle, under the ETH, the
asymptotic complexity of Colorful H-IS-Deletion parameterized by treewidth. Note
that, in particular, Theorem 14 applies when H is path, in contrast to the subgraph version
that can be solved in polynomial time [13].

Therefore, what remains is to obtain tight lower bounds when H is disconnected. In
particular, Theorem 14 cannot be applied at all when all the connected components of H
are cliques, since the machinery that we developed (inspired by Cygan et al. [13]) using
the framework graph FH,ϕ crucially needs two non-adjacent vertices in the same connected
component. Let us now focus on those graphs, sometimes called cluster graphs in the
literature.

As mentioned in Section 3, both Colorful K2-IS-Deletion and Colorful I2-IS-
Deletion can be solved in polynomial time. In our next result we show that if H is slightly
larger than these two graphs (namely, K2 or I2), then Colorful H-IS-Deletion becomes
hard. Namely, we provide a single-exponential lower bound for the following three graphs
H on three vertices that are not covered by Theorem 14: K3, I3, and K2 +K1. Note that
these lower bounds are tight by the algorithm of Theorem 3.

I. Sau and U. d. S. Souza 82:13

I Theorem 15 (?). Let H ∈ {K3, I3,K2 +K1}. Then, unless the ETH fails, the Colorful
H-IS-Deletion problem cannot be solved in time O∗(2o(t)), where t is the width of a given
tree decomposition of the input graph.

The proof of Theorem 15 can be easily adapted to H = P3 by complementing the
appropriate neighborhoods, hence obtaining a lower bound of O∗(2o(t)) for P3-IS-Deletion.
Note, however, that this lower for P3 bound already follows from Theorem 14.

It is also easy to adapt the proof of Theorem 15 to larger graphs, but then the lower
bound of O∗(2o(t)) is not tight anymore. For example, for H = 2K2 (the disjoint union
of two edges), with V (H) = {z1, z2, z3, z4} such that the edges are {z1, z2} and {z3, z4}, it
suffices to take the instance (GK2+K1 , σ) of (K2 +K1)-IS-Deletion defined above and to
add a private neighbor colored z4 for every vertex of GK2+K1 colored z3. Also, for H = Kh

with h ≥ 4, in the gadget L we just replace the triangles by cliques of size h, and for H = Ih

with h ≥ 4, we take the h-partite complement of the previous instance of Kh-IS-Deletion.

6 Further research

Concerning H-IS-Deletion, the complexity gap is still quite large for most graphs H, as
our lower bounds (Theorems 10 and 12) only apply to graphs H that are “close” to cliques
or complete bipartite graphs. In particular, Theorem 10 provides tight bounds for P3 or
K4 − e (the diamond), but we do not know the tight function fH(t) for other small graphs
H on four vertices such as P4, K1,3 (the claw), or 2K2.

We think that for most graphs H on h vertices, the upper bound fH(t) = 2O(th−2) given
by Theorem 2 is the asymptotically tight function, and that the single-exponential algorithms
for cliques and independent sets are isolated exceptions. The reason is that, in contrast to the
subgraph version, when hitting induced subgraphs, edges and non-edges behave essentially
in the same way when performing dynamic programming, as one has to keep track of both
the existence and the non-existence of edges in order to construct the tables, and storing
this information seems to be unavoidable.

As for Colorful H-IS-Deletion, in view of Theorems 3, 5, 14, and 15, only the cases
where H is a disjoint union of at least two cliques and |V (H)| ≥ 4 remain open. In particular,
when H is an independent set or a matching with |V (H)| ≥ 4.

References
1 Isolde Adler, Frederic Dorn, Fedor V. Fomin, Ignasi Sau, and Dimitrios M. Thilikos. Faster

parameterized algorithms for minor containment. Theoretical Computer Science, 412(50):7018–
7028, 2011. doi:10.1016/j.tcs.2011.09.015.

2 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for hitting
connected minors on bounded treewidth graphs: the chair and the banner draw the boundary.
In Proc. of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
951–970, 2020. doi:10.1137/1.9781611975994.57.

3 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth
graphs. II. Single-exponential algorithms. Theoretical Computer Science, 814:135–152, 2020.
doi:10.1016/j.tcs.2020.01.026.

4 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth
graphs. III. Lower bounds. Journal of Computer and System Sciences, 109:56–77, 2020.
doi:10.1016/j.jcss.2019.11.002.

5 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth
graphs. I. General upper bounds. Corresponding to Section 3 here, to appear in SIAM Journal
on Discrete Mathematics.

MFCS 2020

https://doi.org/10.1016/j.tcs.2011.09.015
https://doi.org/10.1137/1.9781611975994.57
https://doi.org/10.1016/j.tcs.2020.01.026
https://doi.org/10.1016/j.jcss.2019.11.002
https://arxiv.org/abs/1704.07284

82:14 Hitting Forbidden Induced Subgraphs on Bounded Treewidth Graphs

6 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth.
Information and Computation, 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.

7 Hans L. Bodlaender, Pål Grønås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michal Pilipczuk. A ckn 5-Approximation Algorithm for Treewidth. SIAM Journal on
Computing, 45(2):317–378, 2016. doi:10.1137/130947374.

8 Hans L. Bodlaender, Pinar Heggernes, and Daniel Lokshtanov. Graph modification problems
(dagstuhl seminar 14071). Dagstuhl Reports, 4(2):38–59, 2014. doi:10.4230/DagRep.4.2.38.

9 Flavia Bonomo-Braberman, Julliano R. Nascimento, Fabiano S. Oliveira, Uéverton S. Souza,
and Jayme L. Szwarcfiter. Linear-time algorithms for eliminating claws in graphs. CoRR,
abs/2004.05672, 2020. URL: http://arxiv.org/abs/2004.05672.

10 Bruno Courcelle. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite
Graphs. Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)
90043-H.

11 Christophe Crespelle, Pål Grønås, Drange, Fedor V. Fomin, and Petr A. Golovach. A survey
of parameterized algorithms and the complexity of edge modification. CoRR, abs/2001.06867,
2013. URL: https://arxiv.org/abs/2001.06867.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

13 Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. Hitting forbidden
subgraphs in graphs of bounded treewidth. Information and Computation, 256:62–82, 2017.
doi:10.1016/j.ic.2017.04.009.

14 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in
single exponential time. In Proc. of the 52nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 150–159, 2011. doi:10.1109/FOCS.2011.23.

15 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012. URL: https://dblp.org/rec/books/daglib/0030488.bib.

16 Frederic Dorn, Eelko Penninkx, Hans L. Bodlaender, and Fedor V. Fomin. Efficient Exact
Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions. Algorithmica, 58(3):790–
810, 2010. doi:10.1007/s00453-009-9296-1.

17 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

18 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. Journal of
the ACM, 63(4):29:1–29:60, 2016. doi:10.1145/2886094.

19 Fedor V. Fomin, Saket Saurabh, and Neeldhara Misra. Graph modification problems: A
modern perspective. In Proc. of the 9th International Frontiers in Algorithmics Workshop
(FAW), volume 9130 of LNCS, pages 3–6, 2015. doi:10.1007/978-3-319-19647-3_1.

20 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

21 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which Problems Have Strongly
Exponential Complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

22 Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A Near-Optimal Planarization
Algorithm. In Proc. of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1802–1811, 2014. doi:10.1137/1.9781611973402.130.

23 Ton Kloks. Treewidth. Computations and Approximations. Springer-Verlag LNCS, 1994.
doi:10.1007/BFb0045375.

https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1137/130947374
https://doi.org/10.4230/DagRep.4.2.38
http://arxiv.org/abs/2004.05672
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1016/0890-5401(90)90043-H
https://arxiv.org/abs/2001.06867
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.ic.2017.04.009
https://doi.org/10.1109/FOCS.2011.23
https://dblp.org/rec/books/daglib/0030488.bib
https://doi.org/10.1007/s00453-009-9296-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1145/2886094
https://doi.org/10.1007/978-3-319-19647-3_1
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1137/1.9781611973402.130
https://doi.org/10.1007/BFb0045375

I. Sau and U. d. S. Souza 82:15

24 John M. Lewis and Mihalis Yannakakis. The Node-Deletion Problem for Hereditary Properties
is NP-Complete. Journal of Computer and System Sciences, 20(2):219–230, 1980. doi:
10.1016/0022-0000(80)90060-4.

25 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the Exponential
Time Hypothesis. Bulletin of the EATCS, 105:41–72, 2011. URL: http://eatcs.org/beatcs/
index.php/beatcs/article/view/92.

26 Marcin Pilipczuk. A tight lower bound for Vertex Planarization on graphs of bounded treewidth.
Discrete Applied Mathematics, 231:211–216, 2017. doi:10.1016/j.dam.2016.05.019.

27 Michal Pilipczuk. Problems parameterized by treewidth tractable in single exponential
time: A logical approach. In Proc. of the 36th International Symposium on Mathematical
Foundations of Computer Science (MFCS), volume 6907 of LNCS, pages 520–531, 2011.
doi:10.1007/978-3-642-22993-0_47.

28 Juanjo Rué, Ignasi Sau, and Dimitrios M. Thilikos. Dynamic programming for graphs on
surfaces. ACM Transactions on Algorithms, 10(2):8:1–8:26, 2014. doi:10.1145/2556952.

MFCS 2020

https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
https://doi.org/10.1016/j.dam.2016.05.019
https://doi.org/10.1007/978-3-642-22993-0_47
https://doi.org/10.1145/2556952

	Introduction
	Preliminaries
	Algorithms
	A general dynamic programming algorithm
	Hitting cliques and independent sets

	Lower bounds for H-IS-Deletion
	Lower bounds for Colorful H-IS-Deletion
	Further research

