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Abstract. We study the complexity of the problems of finding, given a
graph G, a largest induced subgraph of G' with all degrees odd (called an
odd subgraph), and the smallest number of odd subgraphs that partition
V(G). We call these parameters mos(G) and xodd(G), respectively. We
prove that deciding whether xodd(G) < ¢ is polynomial-time solvable
if ¢ < 2, and NP-complete otherwise. We provide algorithms in time
20(m) . O and 29(@™). M) t6 compute mos(G) and to decide whether
Xodd(G) < q on n-vertex graphs of rank-width at most rw, respectively, and
we prove that the dependency on rank-width is asymptotically optimal
under the ETH. Finally, we give some tight bounds for these parameters
on restricted graph classes or in relation to other parameters.

Keywords: odd subgraph; odd coloring; rank-width; parameterized com-
plexity; single-exponential algorithm; Exponential Time Hypothesis.

1 Introduction

Gallai proved, around 60 years ago, that the vertex set of every graph can be
partitioned (in polynomial time) into two sets, each of them inducing a subgraph
in which all vertices have even degree (cf. |26, Exercise 5.19]). Let us call such a
subgraph an even subgraph, and an odd subgraph is defined similarly. Hence,
every graph G contains an even induced subgraph with at least |V (G)|/2 vertices.
The analogous properties for odd subgraphs seem to be more elusive. For a graph
G, let mos(G) and xodd(G) be the order of a largest odd induced subgraph of G
and the minimum number of odd induced subgraphs of G that partition V(G),
respectively. Note that for xodd(G) to be well-defined, each connected component
of G must have even order.

Concerning the former parameter, the following long-standing —and still open—
conjecture is cited as “part of the graph theory folklore” by Caro [7]: there
exists a positive constant ¢ such that every graph G without isolated vertices

* Work supported by French projects DEMOGRAPH (ANR-16-CE40-0028) and ES-
IGMA (ANR-17-CE23-0010), the program “Exploration Japon 2017” of the French
embassy in Japan, and the JSPS KAKENHI grant number JP18K11157.
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satisfies mos(G) > ¢+ |V (G)|. In the following discussion we only consider graphs
without isolated vertices. Caro [7] proved that mos(G) > (1 — o(1))4/n/6 where
n = [V(G)|, and Scott [33] improved this bound to £t for some ¢ > 0. The
conjecture has been proved for particular graph classes, such as trees |30], graphs
of bounded chromatic number [33|, graphs of maximum degree three |2, and

graphs of tree-width at most two [20], also obtaining best possible constants.

As for the complexity of computing mos(G), Cai and Yang [6] studied, among
other problems, two parameterized versions of this problem, and their reductions
imply that it is NP-hard. They also prove the NP-hardness of computing the
largest size of an even induced subgraph of a graph G, denoted mes(G). As a
follow-up of [6], related problems were studied by Cygan et al. |9] and Goyal et
al. [19].

The parameter Xodd, which we call the odd chromatic number, has attracted
much less interest in the literature. To the best of our knowledge, it has only been
considered by Scott [34], who defined it (using a different notation) and proved
that the necessary condition discussed above for yodd(G) to be well-defined is
also sufficient. He also provided lower and upper bounds on the maximum value
of Xodd(G) over all n-vertex graphs. In particular, there are graphs G for which

Xodd (G) = £2(v/n).

Our contribution. In this article we mostly focus on computational aspects
of the parameters mos and x.q4q. Note that, given a graph G, deciding whether
Xodd(G) < 1 is trivial. We prove that deciding whether xod4d(G) < ¢ is NP-
complete for every ¢ > 3 using a reduction from ¢-COLORING. We obtain
a dichotomy on the complexity of computing xodqq by showing that deciding
whether xo4d(G) < 2 can be solved in polynomial time, through a reduction to
the existence of a feasible solution to a system of linear equations over GF[2].

Given the NP-hardness of computing both parameters, we are interested in
its parameterized complexity [8[11], namely in identifying relevant parameters k
that allow for FPT algorithms, that is, algorithms running in time f(k)-n®®) for
some computable function f. Since the natural parameter, that is, the solution
size, for mos has been studied by Cai and Yang [6] (and its dual as well), and
for Xoddq the problem is para-NP-hard by our hardness results, we rather focus
on structural parameters. Two of the most successful ones are definitely tree-
width and clique-width, or its parametrically equivalent parameter rank-width
introduced by Oum and Seymour [29]. This latter parameter is stronger than tree-
width, in the sense that graph classes of bounded tree-width also have bounded
rank-width. We present algorithms running in time 2°™) . n@M) for computing
mes(G) and mos(G) for an n-vertex graph G given along with a decomposition
tree of width at most rw, and an algorithm in time 2°@™) . nO() for deciding
whether Xodd(G) < ¢. These algorithms are inspired by the ones of Bui-Xuan et
al. [3L{4] to solve MAXIMUM INDEPENDENT SET parameterized by rank-width
and boolean-width, respectively. To the best of our knowledge, our algorithms
are the first ones parameterized by rank-width for an NP-hard problem running
in time 200*) . O [113]117.[18,28].
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We also show that the dependency on rank-width of the above algorithms
is asymptotically optimal under the Exponential Time Hypothesis (ETH) of
Impagliazzo et al. [21}/22]. For this, it suffices to obtain a linear NP-hardness
reduction from a problem for which a subexponential algorithm does not exist
under the ETH. While our reduction to decide whether xod44(G) < ¢ already
satisfies this property, the NP-hardness proof of Cai and Yang [6] for computing
mes(G) and mos(G), which is from the EXxacT ODD SET problem [12], has a
quadratic blow-up, so only a lower bound of 2°(vV) can be deduced from it.
Motivated by this, we present linear NP-hardness reductions from 2IN3-SAT to
the problems of computing mes(G) and mos(G). The reduction itself is not very
complicated, but the correctness proof requires some non-trivial argumentsﬂ

Finally, motivated by the complexity of computing these parameters, we
obtain two tight bounds on their values. We first prove that for every graph G
with all components of even order, xodd(G) < tw(G)+ 1, where tw(G) denotes the
tree-width of G. This result improves the best known lower bound on a parameter
defined by Hou et al. [20] (cf. Section [5| for the details). On the other hand, we
prove that, for every n-vertex graph G such that V(G) can be partitioned into two
non-empty sets that are complete to each other (i.e., a join), mos(G) > 2 - [”T_Q]
In particular, this proves the conjecture about the linear size of an odd induced
subgraph for cographs, which are the graphs of clique-width two. This adds
another graph class to the previous ones for which the conjecture is known to
be true [2,20,[30L[33]. It is interesting to mention that our proof implies that, for
a cograph G, xodd(G) < 3, and this bound is also tight. While for cographs, or
equivalently P,-free graphs, we have proved that the odd chromatic number is
bounded, we also show that it is unbounded for Ps-free graphs.

Organization. We start with some preliminaries in Section [2] In Section [3| we
provide the linear NP-hardness reductions and the polynomial-time algorithm
for deciding whether xodd(G) < 2. The FPT algorithms by rank-width are
presented in Section [4] and the tight bounds in Section [5} We conclude the
article in Section [6] with a number of open problems and research directions.
Additional results for related problems can be found in the full version, available
at https://arxiv.org/abs/2002.06078. Due to space limitations, the proofs
of the results marked with ‘(x)’ can be found in the full version.

2 Preliminaries

Graphs. We use standard graph-theoretic notation, and we refer the reader
to [10] for any undefined notation. Let G = (V, E) be a graph, S C V, and H be
a subgraph of G. We denote an edge between u and v by uv. The order of G is
|V|. The degree (resp. open neighborhood, closed neighborhood) of a vertex v € V
is denoted by deg(v) (resp. N(v), N[v]), and we let degy(v) = |N(v) NV (H)]|.

3 We would like to mention that another NP-hardness proof for computing mes(G)
has very recently appeared online [32]. The proof uses a chain of reductions from
MaximuM CuUT and, although it also involves a quadratic blow-up, it can be avoided
by starting from MAxiMuM CUT restricted to graphs of bounded degree.


https://arxiv.org/abs/2002.06078
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We use the notation G — S = G[V(G) \ S]. The mazimum and minimum degree
of G are denoted by A(G) and 6(G), respectively. We denote by P; the path on i
vertices. For two graphs G and Ga, with V(G2) C V(G1), the union of Gy and
Gy is the graph (V(G1), E(G1) U E(G2)). The operation of contracting an edge
uv consists in deleting both 4 and v and adding a new vertex w with neighbors
N(u) UN @)\ {u,v}. A graph M is a minor of G if it can be obtained from a
subgraph of G by a sequence of edge contractions. For a positive integer k > 3,
the k-wheel is the graph obtained from a cycle C' on k vertices by adding a new
vertex v adjacent to all the vertices of C'. A join in a graph G is a partition of
V(G) into two non-empty sets V3 and V5 such that every vertex in V; is adjacent
to every vertex in Va. For a positive integer ¢, we denote by [¢] the set containing
every integer j such that 1 < j <.

Parameterized complexity. We refer the reader to [8,/11,/14,127] for basic
background on parameterized complexity, and we recall here only some basic
definitions. A parameterized problem is a decision problem whose instances
are pairs (z,k) € X* x N, where k is called the parameter. A parameterized
problem is fized-parameter tractable (FPT) if there exists an algorithm A, a
computable function f, and a constant ¢ such that given an instance I = (z, k),
A (called an FPT algorithm) correctly decides whether I € L in time f(k)-|I|°. A
parameterized problem is slice-wise polynomial (XP) if there exists an algorithm
A and two computable functions f, g such that given an instance I = (z,k), A
(called an XP algorithm) correctly decides whether I € L in time f(k) - |I|9®).

The Ezponential Time Hypothesis (ETH) of Impagliazzo et al. |211[22] implies
that the 3-SAT problem on n variables cannot be solved in time 2°("). We say
that a polynomial reduction from a problem II; to a problem II5, generating an
input of size ny from an input of size ny, is linear if no = O(ny). Clearly, if ITy
cannot be solved, under the ETH, in time 2°(™ on inputs of size n, and there
exists a linear reduction from II; to I, then II; cannot either.

Width parameters. In this article we mention several width parameters of
graphs, such as tree-width, rank-width, clique-width, or boolean-width. However,
since we only deal with rank-width in our algorithms (cf. Section [4)), we give only
the definition of this parameter here.

A decomposition tree of a graph G is a pair (T,0) where T is a full binary
tree (i.e., T is rooted and every non-leaf node has two children) and § a bijection
between the leaf set of T" and the vertex set of GG. For a node w of T, we denote
by V., the subset of V(G) in bijection —via d— with the leaves of the subtree of
T rooted at w. We say that the decomposition defines the cut (Vw,VTU). The
rank-width of a decomposition tree (T',0) of a graph G, denoted by rw(T’,d), is the
maximum over all w € V(T') of the rank of the adjacency matrix of the bipartite
graph G[V,,, Vi]. The rank-width of G, denoted by rw(G), is the minimum rw(T', §)
over all decomposition trees (T,9) of G.

Definition of the problems. A graph is called odd (resp. even) if every vertex
has odd (resp. even) degree. The MAXIMUM ODD SUBGRAPH (resp. MAXIMUM
EVEN SUBGRAPH problem consists in, given a graph G, determining the maximum
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order of an odd (resp. even) induced subgraph of G, that is, mos(G) (resp. mes(G)).
An odd g-coloring of a graph G = (V, E) is a set of ¢ odd induced subgraphs
Hi,...,H, of G such that V(Hq)W--- W V(H,) is a partition of V. The ODD
q-COLORING problem consists in determining whether an input graph G admits
an odd g-coloring. In the ODD CHROMATIC NUMBER problem, the objective is
to determine the smallest integer ¢ such that an input graph G admits an odd
g-coloring.

3 Linear reductions and a polynomial-time algorithm

We first present the linear reductions for MAXIMUM EVEN SUBGRAPH and
MaxiMuM ODD SUBGRAPH, and then for ODD ¢g-COLORING for ¢ > 3.

Theorem 1 (). The MAXIMUM EVEN SUBGRAPH and MAXIMUM ODD SUB-
GRAPH problems are NP-hard. Moreover, none of them can be solved in time 2°(™)
on n-vertex graphs unless the ETH fails.

Theorem 2. For every integer q > 3, given a graph G on n vertices, determining
whether Xodd(G) < q is NP-complete and, moreover, cannot be solved in time
20(n) ynless the ETH fails.

Proof: Membership in NP is clear. For every integer g > 3, we present a linear
reduction from the ¢-COLORING problem, which is well-known to be NP-hard
and not solvable in time 2°(™) on n-vertex graphs unless the ETH fails [21,22]. We
will use the fact that any graph G = (V, E) such that |V|+ |E| is even admits an
orientation of E such that, in the resulting digraph, all the vertex in-degrees are
odd; we call such an orientation an odd orientation. Moreover, an odd orientation
can be found in polynomial time (for a proof, see for instance [16]).

Given an instance G = (V, F) of ¢-COLORING, we build from G an instance
G* of ODD ¢-COLORING as follows. First, if |[V| 4 |E| is odd, we arbitrarily select
a vertex v € V and add a triangle on three new vertices vy, vo,v3 and the edge
vvy. Note that the resulting graph G’ = (V', E’) is ¢-colorable for ¢ > 3 if and
only if G is, and that |V’| + |E’| is even. Hence, E’ admits an odd orientation ¢.
We let G be the graph obtained from G’ by subdividing every edge once. Note
that the size of G* depends linearly on the size of G, as required. We claim that
X(G) < ¢ if and only if Xoad(G") < ¢.

Assume first that we are given a proper g-coloring ¢ : V' — [q], which can
trivially be extended to a proper g-coloring of G'. We define an odd ¢-coloring ceqq
of G* as follows. If v € V(G") is an original vertex of V', we set coqd(v) = c(v).
Otherwise, if v is a subdivision vertex between two vertices u and w of V', we set
Codd (V) = c(u) if edge uw is oriented toward u in ¢, and coqd(v) = c¢(w) otherwise.
It can be easily verified that coqq is indeed an odd g-coloring of G*.

Conversely, let cogqq : V(G*) — [¢] be an odd g¢-coloring of G*, let uw be an
edge of G’, and let v be the subdivision vertex in G* between u and w. If follows
that cogd (1) # codd(w), as otherwise vertex v would have degree zero or two in
its color class. Therefore, letting ¢(v) = codd(v) for every vertex v € V(G) defines
a proper g-coloring of GG, and the theorem follows. O
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Theorem [2] establishes the NP-hardness of OpD ¢-COLORING for every g >
3. On the other hand, the ODD 1-COLORING is trivial, as for any graph G,
Xodd (G) < 1if and only if G is an odd graph itself. Therefore, the only remaining
case is ODD 2-COLORING. In the next theorem we prove that this problem can
be solved in polynomial time.

Theorem 3. The ODD 2-COLORING problem can be solved in polynomial time.

Proof: We will express the ODD 2-COLORING problem as the existence of a
feasible solution to a system of linear equations over the binary field, which
can be determined in polynomial time using, for instance, Gaussian elimination.
Given an instance G = (V, E) of ODD 2-COLORING, let its vertices be labeled
v1,...,Uy,. For every vertex v; € V we create a binary variable x;, and for every
edge v;v; € I, we create a binary variable z; ;. The interpretation of these two
types of variables is quite different. Namely, for a vertex variable x;, its value
corresponds to the color (either 0 or 1) assigned to vertex v;. On the other
hand, the value of an edge variable corresponds the whether this edge belongs
to a monochromatic subgraph, that is, to whether both its endvertices get the
same color. In this case, its value is 1, and 0 otherwise. We guarantee this latter
property by adding the following set of linear equations:

zi+xj+a,;, =1  for every edge v;v; € E. (1)

To guarantee that the degree of every vertex in each of the two monochromatic
subgraphs is odd, we add the following set of linear equations (for an edge variable
x; j, to simplify the notation we interpret z;; = z; ;):

Z xz; ;=1 for every vertex v; € V. (2)
Jv; EN(v;)

Note that by Equation , only monochromatic edges contribute to the sum
of Equation . Therefore, the above discussion implies that Xodd(G) < 2 if and
only if the system of linear equations given by Equations and admits a
feasible solution, and the theorem follows. O

Note that the EVEN 2-COLORING problem could be formulated in a similar
way, just by replacing Equation (2)) with Zj:vjeN(vi) x; ; = 0. However, this is not
that interesting, since all the instances of EVEN 2-COLORING are positive [26].

4 Dynamic programming algorithms

In this section, we present FPT algorithms for MAXiMUM ODD/EVEN SUBGRAPH
and ODD ¢-COLORING, parameterized by the rank-width of the input graph.
The algorithms are similar to those of Bui-Xuan et al. [3}/4] for MAXIMUM
INDEPENDENT SET parameterized by rank-width and boolean-width, respectively,
and also to the one by Bui-Xuan et al. [5] for so-called locally checkable vertex
partitioning problems. There are however two key differences with our algorithms.
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First, while partial solutions for MAXIMUM INDEPENDENT SET are, themselves,
independent sets, this is not true in general for odd subgraphs, where partial
solutions may consist in a subgraph some vertices of which have even degree.
Those vertices will impose some extra constraints on the remainder of the solution.
The second difference is that, while the equivalence classes of 3] and [4] are
based on neighborhoods of vertex sets, those for MAXiIMUM ODD SUBGRAPH
only require “neighborhoods modulo 2”. This will allow us to consider only
20(w) equivalence classes, compared to 20(w?) classes used in [3] for MaxiMuM
INDEPENDENT SET.

Throughout this section, we will rely on the notion of “neighborhood modulo
27 of a set of vertices, defined as follows. Given a graph G and X C V(G), the
neighborhood of X modulo 2, denoted by No(X), is the set Ayex (N (u)), where
the operator A denotes the symmetric difference. Note that Na(X) is exactly
the set of vertices in V(G) \ X that have an odd number of neighbors in X. The
results in this section are stated using the O* notation, which hides polynomial
factors in the input size.

Theorem 4. Given a graph G along with a decomposition tree of rank-width rw,
the MAXIMUM ODD SUBGRAPH problem can be solved in time O*(23™).

Proof: We give a dynamic programming over the given decomposition tree
(T, L). Recall that there is a bijection between the leaves of T' and V(G), and
that each edge of T corresponds to a cut (A4, A) of G. We begin by defining the
equivalence relation over subsets of A, given a cut (4, A): two sets X,Y C V(G)
are odd neighborhood equivalent with regard to A, denoted by X =3 Y, if
No(X)\ A= Ny(Y)\ A. Then, given a row basis B of the adjacency matrix of
(A, A) over GF[2], where we interpret a vertex set as the vector corresponding to
its vertices, we define the representative of a set X C A as the the unique set
of vertices Ra(X) C A such that Ra(X) C B and X =4 R4(X). Observe that
since (A, A) is a cut of (T, L), its adjacency matrix has rank at most rw(G), and
therefore |R4(X)| < rw(G). This implies, in particular, that there are at most
2(G) distinct representatives for subsets of a given set A.

We are now ready to define the tables of our algorithm. Given an edge e of
(T, L) and its associated cut (A4, A) of G, we store in table Ty, for every pair
R, R’ of representatives of subsets of A and A, respectively, a largest set S C A
such that S is odd neighborhood equivalent to R, and all the vertices that have
even degree in G[S] is exactly the set Nao(R') N.S. More formally:

() TA[R,R'] = mgéciet{S = RA{veS:|Nw)nS|iseven} = No(R')N S},

where the notation ‘maxset’ indicates a largest set that satisfies the conditions.
In cases where edge e is incident with a leaf, the cut associated with e is of the
form ({u}, V/(G)\ {u}). We set Tyuy[0,0] = Ty [0, {v}] = 0, and Ty [{uu}, {0}] =
{u}, where v is the unique vertex of a basis of the adjacency matrix of the
cut (V(G) \ {u},{u}), which is the only non-empty choice for R’. The entry
Ty [{u}, 0] is left empty, due to there being no subgraph of G[{u}] with the
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same neighborhood as {u} in G — {u}, all vertices of which that have even degree
lying in No(0).

Given an edge e of (T, L) such that the tables of both edges incident with
one endvertex of e, say f, f’, have been computed, we compute the table of ¢
as follows. Let us denote by (4, A), (X, X), and (Y,Y) the cuts associated with
e, f, and f’, respectively. For each pair of representatives R4, Ry of the cut
(A, A), the value of T4[Ra, R] is the largest Tx[Rx, R%] U Ty [Ry, Ry, such
that Ry, R+, Ry, and Ry satisfy the following conditions with regard to R4
and R:

(i) Ra =4 RxARy, (ii) Rx =5 RzARy, and (ii’) Ry =Y R7ARx.

We proceed with this computation, starting from the leaves, in a bottom-up
manner, having previously rooted T' by choosing an arbitrary edge, subdividing
it, and making the newly created vertex the root of T. Observe that in the final
stage of the algorithm, when the tables of both edges f, f’ incident with the root
have been computed, we compute the table for the root node as described above,
with A = ), since X UY = V(G) in this case. Of the three conditions described
above, condition (i) becomes trivial, since R4 = ), and conditions (ii) and (ii’)
simplify to R+ =5 Ry, and Ry =Y Ry, respectively.

We first observe that since, as noted above, there are at most 2™ represen-
tatives on each side of each cut, and the choices of Rx, Ry and Ry uniquely
determines R+, Ry and R, through equations (i), (ii), and (ii’), and computing
new tables can be carried out in time O*(23™), as desired. It now remains to
prove that the algorithm correctly computes an optimal solution. The correctness
of the tables for the leaves of T follows from their description. We now prove
by induction that the tables are correct for internal edges of T as well. Let
us assume Tx and Ty have been fully and correctly computed for all possible
representatives Ry, R+, Ry, and Ry as per the description above. We first argue
that the tables’ description is correct, i.e., given an optimal solution OPT (that
is, an induced subgraph of G’ achieving mos(G)) and a cut (A, A), S = OPTN A
is a largest set that satisfies ("H) for some pair R, R’ of representatives. In-
deed, assume for contradiction that there exists S* C A such that S* 5‘2“ S,
{v € 8* :|N(w) N S*|iseven} = S* N Na(OPT N A), and |S| < |S*|. Then,
OPT* = (OPT \ S) U S* induces an odd subgraph of G and |[OPT*| > |OPT]|,
contradicting the optimality of OPT.

Finally, we argue that if T'x and Ty are computed correctly, then so is T4,
i.e., given any two representatives R4 and R of A and A, respectively, there
exist representatives Rx, R, Ry, and Ry of X, XY, and Y, respectively, that
satisfy conditions (i), (ii), and (ii’), and such that Tx[Rx, R+] U Ty [Ry, Ry is
a largest set that satisfies (") with respect to (R4, Ry). Let Rx, R, Ry, and
Ry be representatives such that T4[Ra, Rz] = Tx[Rx, Rx]UTy Ry, Ry| = S,
and let Sx and Sy denote SN X and SNY, respectively. Note that, since X
and Y form a partition of A, Sx and Sy form a partition of S, which implies
S = SxUSy = SxASy. We first show that .S indeed satisfies ("H) with respect to
(A, A),ie., S=4 Raand {veS:|Nw)NS|is even} = Nao(R5)NS. For the first
of those two conditions, combining it with the fact that S = Sx USy = SxASy,
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we only need to prove that SxASy 55‘ RxARy. Observe first that, since X
and Y form a partition of A, we have that for every vertex v € A,|N(v) N A| =
|N(v) N X|+|N(v) NY]. Therefore, for every sets X/, X" C X and Y'Y C Y,
it holds that if X’ =X X" and Y’ =) Y”, then X'AY’ =4 X"AY". From
the definition of representative we obtain that S =4' SxASy 5’2“ Rx ARy, as
desired.

Let us now consider the second condition, i.e., {v € S: |[N(v)NS|is even} =
N3(Rz)N'S. Let us assume first that v € Sx. If [N(v) N S| is even, then at least
one of the following cases holds:

e |[N(v) N Sx|is even and v € N2(Sy). Since |N(v) N Sx| is even, we obtain
from () in Tx that v € Na(Rx), which when combined with (ii) implies

v € No(A)ANy(Sy). Since v & Na(Sy), it follows that v € Na(A), as desired.
e |[N(v)NSx|is odd and v € Na(Sy). Symmetrically to the case above, we have

that v ¢ No(Rx), hence v & No(A)ANo(Sy) from (ii), and since v € No(Sy),
it follows that v € No(A), as desired.

The case where v € Sy is proved similarly, replacing condition (ii) with (ii’).
Therefore, {v € S : [N(v) N S|is even} C SN Ny(Ry). Let us now assume
that v € Sx N Na(Ry). From (ii), we obtain that v € N»(S N X) if and only
if v & Na(Sy). Since Tx satisfies (%), it holds that v € N3(S N X) if and only
it [N(v) N Sx]| is even, and therefore v ¢ No(Sy) if and only if |[N(v) N Sx]| is
even. Therefore, |N(v) NS| = |N(v) N Sx|+ |N(v) N Sy]| is even, as desired. As
above, the case where v € Sy is proved similarly, replacing condition (ii) with
(ii’). Therefore, {v € S : [N(v) N S| is even} = S N Na(Ry).

Finally, we prove the maximality of S among all those sets that satisfy ("K)
with respect to (R4, Rz). Let us assume for a contradiction that there exists S*
that satisfies () with respect to (R4, Ry) and such that [S*| > |S|. Let S% and
Sy denote S* N X and S*NY, respectively. Observe that S% and S satisfy ()
with respect to some pairs of representatives (Rx, Ry ) and (Ry, Ry), respectively.
In addition, observe that since S satisfies (*X() with respect to (Ra, Ry), it follows
that S, Sx, and Sy satisfy conditions (i), (ii), and (ii’) with respect to (Ra, Ry),
contradicting the assumption that Tx and Ty were computed correctly. O

Small variations of Theorem [ allow us to prove the following two theorems.

Theorem 5 (x). Given a graph G along with a decomposition tree of rank-width
rw, the MAXIMUM EVEN SUBGRAPH problem can be solved in time O*(23™).

Theorem 6 (x). Given a graph G along with a decomposition tree of rank-width
w, the ODD ¢-COLORING problem can be solved in time O*(2°0(4™)),

5 Tight bounds

In this section we provide two tight bounds concerning odd induced subgraphs
and odd colorings. Namely, we first provide in Theorem [7] a tight upper bound
on the odd chromatic number in terms of tree-width, and then we provide in
Theorem [§] a tight lower bound on the size of a maximum odd induced subgraph
for graphs that admit a join.
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Theorem 7. For every graph G with all components of even order we have that
Xodd (G) < tw(G) + 1, and this bound is tight.

Proof: Scott proved |34, Corollary 3] that every graph G with all components
of even order admits a vertex partition such that every vertex class induces a
tree with all degrees odd. Consider such a vertex partition, and let G’ be the
graph obtained from G by contracting each of the trees to a single vertex. Since
G’ is a minor of G, we have that tw(G’) < tw(G). Now note that every proper
vertex coloring of G’ using ¢ colors can be lifted to a partition of V(G) into ¢
odd induced subgraphs (in fact, odd induced forests). Indeed, with every color i
of a proper g-coloring of V(G') we associate an induced forest of G defined by
the union of the trees whose corresponding vertex in G’ is colored i. Therefore,

Xodd (@) < x(G") <tw(G') +1 <tw(G) + 1,

where we have used the well-known fact that the chromatic number of a graph is
at most its tree-width plus one [23].

To see that this bound it tight, consider a subdivided clique K, that is, the
graph obtained from a clique on n vertices, with n = 0,3 (mod 4), by subdividing
every edge once. Since no pair of original vertices of the clique can get the same
color, we have that xodd(K,) = n =tw(K,) + 1. O

Let us mention some consequences of Theorem [} Hou et al. [20] define the
following parameter. Let Gy, be the set of all graphs of treewidth at most k& without

rln‘;)z(GG) In [20] the authors prove that

isolated vertices, and let ¢y = mingeg,
¢ = 2/5 and say that the best general lower bound is ¢ > which follows
from a result of Scott [33]. As an immediate corollary of Theoremi 7|it follows that
Ck > T +1, which improves the lower bound by a factor two. As it is known [20]
that, for k € [4], ¢, < 2=, our lower bound implies that 1/4 < ¢3 < 1/3 and

E+3°
1/5 < ¢y < 2/7.

We now provide a lower bound on mos(G) for every graph that admits a join.
Theorem 8 (x). For every n-vertex graph G that admits a join we have

n —

2
mos(G) > 2 - [ -‘ , and this bound is tight even for cographs.

Determining a tight lower bound for cographs that are not necessarily con-
nected remains open. The proof of Cases 1 and 2 of Theorem [7] together with the
fact that xodd(K2,2,2) = 3 (since mos(Kz 29) = 2) yield the following corollary.

Corollary 1. Let G be a cograph with every connected component of even order.
Then Xodd(G) < 3. Moreover, this bound is tight.

Note that cographs can be equivalently defined as Py-free graphs. It is inter-
esting to note that, in contrast to Corollary |1} Ps-free graphs have unbounded
odd chromatic number. Indeed, let H,, be the graph obtained from the subdivided
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clique K, withn = 0,3 (mod 4), by adding an edge between each pair of original
vertices of the clique. It can be checked that Xodd(Hy) > n and, in fact, the proof
of Theorem [2| implies that xodd(H,) = n. Note that H,, is a split graph, hence
split graphs have unbounded odd chromatic number.

6 Further research

We considered computational aspects of the MAaxXxiMuM ODD SUBGRAPH and
ODD ¢-COLORING problems. A number of interesting questions remain open.

We gave in Theorem [6] an algorithm that solves ODD ¢-COLORING in time
O*(2°(@™) Is the ODD CHROMATIC NUMBER problem FPT or W([1]-hard param-
eterized by rank-width? A strongly related question is how the odd chromatic num-
ber depends on rank-width. We proved in Theorem (7| that xodd(G) < tw(G) + 1,
but we do not know whether xo4d4(G) < f(rw(G)) for some function f. Note that
this would not only yield an FPT algorithm for ObbD CHROMATIC NUMBER by
rank-width, but would also prove the conjecture about the linear size of a largest
odd induced subgraph [7] for all graphs of bounded rank-width. As a first step in
this direction, we proved in Corollary [I| that cographs, which have rank-width at
most one, have odd chromatic number at most three. It would be interesting to
prove an upper bound for distance-hereditary graphs, which can be equivalently
defined as graphs of rank-width one.

In fact, we do not even know whether ODD CHROMATIC NUMBER by rank-
width is in XP. In view of the algorithm of Theorem[6] a sufficient condition for this
would be that there exists a function f such that xodd(G) < f(rw(G)) -log |V (G)]
for every graph G with all components of even order. Another promising strategy
would be to generalize the XP algorithms of Rao [31] to counting monadic second-
odder logic. Toward an eventual W[1]-hardness proof, a natural strategy is to
try to adapt the reduction given by Fomin et al. |15] to prove that CHROMATIC
NUMBER is W[1]-hard by clique-width (hence, rank-width). This reduction is from
EQUITABLE COLORING parameterized by the number of colors plus tree-width,
proved to be W[1]-hard by Fellows et al. [13]. By appropriately modifying the
chain of reductions given in [13], we have only managed to prove that the naturally
defined ODD EQUITABLE COLORING problem is W[1]-hard by tree-width, but
not if we add the number of colors as a parameter.

Concerning ODD ¢-COLORING parameterized by tree-width, a straightforward
dynamic programming algorithm that guesses, for every vertex, its color class
and the parity of its degree within that class, runs in time O*((2¢)™). Note that
this algorithm together with Theorem [7] yield an algorithm for ODD CHROMATIC
NUMBER in time O*((2tw + 2)™). By the lower bound under the ETH of Loksh-
tanov et al. [25] for CHROMATIC NUMBER by tree-width and the fact that our
reduction of Theorem [2] preserves tree-width, it follows that the dependency on
tree-width of this algorithm is asymptotically optimal under the ETH. It would be
interesting to prove lower bounds under the Strong FEzponential Time Hypothesis
(SETH). Note that our reduction of Theorem [2| together with the lower bound
under the SETH of Lokshtanov et al. [24] for ¢-COLORING by tree-width yield a
lower bound for ODD ¢-COLORING of O*((q — €)™) under the SETH.
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