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Constraint Reasoning ∗

Christian Bessiere

Abstract In this chapter, I briefly present constraint reasoning. Constraint reasoning
has been a subfield of artificial intelligence (AI) that is nowadays more well-known
as constraint programming (CP). The change of name occurred more or less when
CP has started to be widely used for solving combinatorial problems in industrial
applications. This also corresponds to the moment where CP was enriched by the
contributions from logic programming for the aspects related to languages and from
operation research for the propagation of complex constraints. Considering the topic
of this book, I will stay on a AI-oriented presentation of CP.

1 Introduction

The notion of constraint seen as a restriction of the combinations of values that a set
of variables can take is sufficiently natural to have appeared early in the history of
artificial intelligence. We can mention the work of Fikes [1970] on the REF-ART
system, or the work of Waltz [1972] on the interpretation of contours. However, we
usually associate the birth of constraint reasoning to the seminal paper of Montanari
[1974], who formally defines for the first time what a constraint network is. This pa-
per has been followed by other equally important papers by Mackworth [1977a] and
Freuder [1978; 1982; 1985], who will lead research towards local consistencies and
constraint propagation, notions which are specific to constraint reasoning. Laurière
and his system ALICE [1978] can be seen as a pioneer of constraint-based solvers.
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∗ This chapter belongs to the book [Marquis et al., 2020]. It is essentially the English version of
a chapter written in 2010 for the French book [Marquis et al., 2014]. A few references to more
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Fig. 1 Map coloring problem where each country has only a subset of colors allowed (left). Con-
straint network representing the problem (right).

A constraint network consists of variables, each taking value in its respective do-
main, and constraints that restrict the possible combinations of values between vari-
ables. A constraint satisfaction problem (CSP) is the problem of deciding whether
a given constraint network has solutions, that is, an assignment of values to all vari-
ables that satisfies all constraints. For instance, we can represent the map coloring
problem shown in Figure 1 (left) by a constraint network where each country is rep-
resented by a variable whose domain is the set of colors available for that country
(see Figure 1 (right)). Each pair of variables representing two neighboring countries
is connected by a constraint specifying that the values taken by these two variables
must be different. It is easy to be convinced that a solution to this constraint network
corresponds to a satisfying coloring of our map. Constraint programming/reasoning
covers all techniques related to solving CSPs.

A first advantage of CP, as already highlighted by Freuder in 1993 during a tu-
torial at IJCAI, is to provide a stable formalism that serves as input for solving
algorithms. If you can represent your problem as a constraint network, whose solu-
tions are representations of the solutions to your problem, you can use any constraint
satisfaction algorithm to find your solution.

CP has been used in numerous applications. Among the first successes, we can
cite optimization of the route of coal excavators in mines [ILOG, 1997], optimiza-
tion of car assembly lines [Dincbas et al., 1988], search for structures in RNA se-
quences [Gaspin and Westhof, 1994], nurse rostering in hospitals [Cheng et al.,
1997], radio link frequency assignment [Cabon et al., 1999], or assignment of plat-
forms to trains [ILOG, 1997].

There exist other formalisms in which a combinatorial problem can be mod-
eled and then solved. SAT or integer linear programming are such examples. One
advantage of CP compared to these formalisms is its expressiveness. Many real ap-
plications contain patterns, such as the constraint ’all different’, that requires a set
of variables to take different values. These patterns can be encapsulated in a sin-
gle constraint. They allow the user to easily model a whole piece of her problem,
and they allow the algorithms to reason globally on these patterns, which otherwise



Constraint Reasoning 3

would have been broken into subparts. Reasoning from the original pattern allows to
remain close to the problem definition and in some cases to infer more information
than on any combination of subparts.

2 Definitions

In this section, I give the definitions needed to understand the rest of this chapter.
I have as much as possible favored simplicity to rigor when there was no possible
ambiguity on the interpretation.

Definition 1 (Constraint Network). A constraint network N = (X ,D,C) is com-
posed of:

• a finite set X = {x1,x2, . . . ,xn} of integer variables,
• a domain on X , that is a set D = D(x1)× . . .×D(xn), where D(xi) ⊂ Z is finite

and given in extension, and
• a set C = {c1, . . . ,ce} of constraints. A constraint c j ∈ C is a relation (or

equivalently a Boolean function) defined on a sequence of variables X(c j) =

(x j1 , . . . ,x j|X(c j)|
), called the scope of c j. c j is a subset of Z|X(c j)|.

The size of the network N is often approximated through the parameters n = |X |,
d = maxi∈1..n|D(xi)|, e = |C| and r = max j∈1..e|X(c j)|.

Values in D(xi) could be of any type, but it simplifies the presentation to consider
them as integers. It is not a restriction as D(xi) is finite. An element of Z|X(c j)| is
called a tuple. A tuple in Z|X(c j)| is valid if and only if it belongs to DX(c j) =D(x j1)×
. . .×D(x j|X(c j)|

). Tuples belonging to c j satisfy c j, the other tuples of Z|X(c j)| violate
c j.

Example 1 The map coloring example of Figure 1 (left) can be represented by
the constraint network of Figure 1 (right). Variables x1, . . . ,x4 respectively corre-
spond to the countries France, Spain, Switzerland, Italy. The domains are D(x1) =
{B,V},D(x2) = {B,J,R,V}, D(x3) = D(x4) = {B,R}, where B,J,R,V are inte-
gers representing colors blue, jade, rose, violet. The constraint between France and
Spain, say c1, which ensures that France (variable x1) and Spain (variable x2) take
different colors, can be defined by X(c1) = (x1,x2) and c1 = {(B,J),(B,R),(B,V ),
(V,B),(V,J),(V,R)}, or simply by x1 6= x2. ♦

The notion of instantiation is central to the rest of this chapter.

Definition 2 (Instantiation). An instantiation I on a set Y ⊆ X of variables is an
assignment of a value of domain D(xi) to each variable xi in Y .2 If W is a subset
of Y , we denote by I[W ] the restriction (or projection) of I to variables in W . An

2 In the rest of this chapter we will represent an instantiation indifferently as a sequence or as a set
of variable assignments. The assignment of value vi to variable xi is denoted by (xi,vi).
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instantiation satisfies a constraint c j if X(c j) ⊆ Y and I[X(c j)] ∈ c j. If X(c j) ⊆ Y
and I[X(c j)] /∈ c j, I violates c j. An instantiation is locally consistent if and only if
none of the constraints in C is violated.

Example 2 On our map coloring example, {(x1,B);(x2,J);(x4,B)} is an instanti-
ation on {x1,x2,x4} (i.e., on France, Spain and Italy) that is not locally consistent
because it violates the constraint on x1 and x4. {(x1,B);(x2,J);(x4,R)} is a locally
consistent instantiation. ♦

Definition 3 (Solution). A solution S of a constraint network N = (X ,D,C) is an
instantiation on X that does not violate any constraint of C. We denote by Sol(N)
the set of the solutions of N.

Definition 4 (CSP). The constraint satisfaction problem (CSP) is defined by:

Instance : A constraint network N = (X ,D,C)
Question : Sol(N) 6= /0 ?

Theorem 1. CSP is NP-complete.

Proof. Direct consequence of the fact that SAT, the first problem shown NP-
complete, is a particular CSP where variables are Boolean and constraints are
clauses. 2

I have described the formalism and the central question. In the next section I will
present the basic techniques for tackling this question.

3 Chronological Backtracking

Solving a CSP can be done by generating all possible instantiations on X until we
find one which is solution to the constraint network. This technique, called ”generate
and test” is a bit too brute force to deserve being presented. I will directly present
the slightly improved version called chronological backtracking (BT) [Golomb and
Baumert, 1965].

The function BT, presented in Algorithm 1, takes as input the constraint network
N and a locally consistent instantiation I. The call BT (N, /0) prints the first solution
found and returns true if N has solutions, false otherwise. BT first checks whether
I is a complete instantiation (line 1). If yes, this means that I is a solution. BT
prints it and returns true. If I is not a complete instantiation, BT selects a not yet
instantiated variable xi (line 2) and tries its values one by one until it finds one that
can be extended into a solution. Once a value vi is chosen, if the instantiation I
extended by the assignment xi ← vi is locally consistent (line 4), the function BT
is recursively called with the new instantiation (line 5). If all values of D(xi) have
been tried without leading to a solution, BT returns false (line 6). We call this step a
backtrack. If a solution is found by BT without any backtrack, we say that the order
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Algorithme 1 : Chronological backtracking
function BT (N: network; I: instantiation): Boolean

begin
1 if |I|= |X | then print I; return true
2 choose a variable xi not yet instantiated
3 foreach vi ∈ D(xi) do
4 if I∪{(xi,vi)} is locally consistent then
5 if BT (N, I∪{(xi,vi)}) then return true

6 return false
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Fig. 2 Search tree of BT on the constraint network of Example 1.

used is backtrack-free for this network. The space explored by BT is called the
search tree. The instantiations are the nodes. They have an incoming edge coming
from the preceding locally consistent instantiation. The root of the tree is the empty
instantiation. Figure 2 displays the search tree explored by BT when called on the
network of Example 1, with variables and values selected in lexicographic order
(lines 2 and 3).

4 Constraint Propagation

There are several ways to reduce the size of the search tree explored by the func-
tion BT. Constraint propagation is the most important one. Constraint propagation
consists in explicitly forbidding values or combinations of values for variables that
cannot be extended to any solution of the constraint network. For instance, given
a network involving two variables x1 and x2 with domains 1..10, and a constraint
specifying that |x1−x2|> 5, propagating the constraint allows us to forbid values 5
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Fig. 3 Constraint network of Example 3 before arc consistency (left) and after (right). Edges rep-
resent the pairs of values allowed by a constraint.

and 6 for x1 and x2. By removing these values from the domains of x1 and x2, we
reduce the size of the search tree that the function BT has to explore.

Constraint propagation can be presented from two points of view: local consis-
tencies and iteration of reduction rules. Local consistencies define a property that
the network must satisfy after the propagation phase. The operational behavior is
not specified. On the contrary, reduction rules describe the propagation mechanism
itself. Rules are conditions on the type of operations of reduction that can be ap-
plied on the network. I will present constraint propagation essentially through local
consistencies.

4.1 Consistency on one constraint at a time

Arc consistency

Arc consistency is the most well-known local consistency. Arc consistency ensures
that for every constraint in the network, for every variable in its scope, each value in
the domain of the variable belongs to a valid tuple satisfying the constraint. Arc con-
sistency has been clearly defined for the first time in the seminal paper of Mackworth
[1977a]. (Even if the idea of arc consistency has been used before, e.g., [Waltz,
1972].)

Example 3 Let N be a network involving three variables x1, x2 and x3 with domains
D(x1) = D(x2) = D(x3) = {1,2,3}, and the constraints x1 = x2 and x2 < x3 (see
Figure 3). N is not arc consistent because there are values that are not compatible
with some constraints. On constraint x2 < x3 we observe that value 3 for x2 must be
deleted because there is no value greater than 3 in D(x3). We can also delete value 1
from D(x3) because of constraint x2 < x3. The deletion of value 3 from D(x2) leads
to the deletion of value 3 from D(x1) because of x1 = x2. All values of all variables
are now compatible with all constraints. ♦

I give the definition of arc consistency in its more general form, that is, for con-
straints of any arity. When arity is greater than 2, arc consistency is often called
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generalized arc consistency —and also sometimes hyper arc consistency in old pa-
pers.

Definition 5 (Arc consistency (AC)). Given a network N = (X ,D, C), a constraint
c ∈C, and a variable xi ∈ X(c),

• A value vi ∈ D(xi) is consistent with c in D if and only if there exists a valid
tuple τ satisfying c and vi = τ[{xi}]. Such a tuple is called a support for (xi,vi)
on c.

• The constraint c is arc consistent on D if and only if all values of all variables in
X(c) have a support on c.

• The network N is arc consistent if and only if all constraints in C are arc consis-
tent on D.

Enforcing arc consistency on the network N = (X ,D,C) is done by computing
the arc consistency closure AC(N) of N. AC(N) is the network (X ,DAC,C), where
DAC = ∪{D′ ⊆ D | (X ,D′,C) is arc consistent}. AC(N) is arc consistent and is
unique. It has the same solutions as N. AC(N) is computed by iteratively removing
the values that do not have a support on a constraint until reaching the fixed point
where all values have support on all constraints.

We will see later that enforcing arc consistency on a constraint network is an
essential task in the search for solutions. Proposing efficient arc consistency algo-
rithms has thus always been a central topic of research in the community. The new
ideas proposed to improve arc consistency algorithms are often used to improve
propagation algorithms for other kinds of local consistency that will be discussed
later.

AC3 is the most well-known and simplest algorithm for enforcing arc consis-
tency. It has been proposed in [Mackworth, 1977a] for binary constraints. Algo-
rithm 2 describes it in its form for constraints of any arity (as proposed in [Mack-
worth, 1977b]).

The main component of AC3 is the revision of an arc, that is, the removal of the
values of a variable that are not consistent on a given constraint. The name ”arc”
comes from the binary case. The function Revise(xi,c) processes each value vi
from D(xi) (line 2), and explores DX(c)\{xi} to find a support on c for vi (line 3). If
such a support is not found, vi is removed from D(xi) and the fact that D(xi) has
been modified is memorized in the Boolean CHANGE (lines 4–5). The function
returns true if the domain D(xi) has been modified, false otherwise (line 6).

The AC3 algorithm is composed of a simple loop revising arcs until no more
value removals occur. The domains are then all arc consistent on all constraints. To
avoid too many useless calls to Revise, AC3 maintains a list Q of all pairs (xi,c)
for which we are not sure that D(xi) is arc consistent on c. At line 7, Q is initialized
with all pairs (xi,c) such that xi ∈ X(c). The main loop (line 8) picks pairs (xi,c)
one by one in Q (line 9) and calls Revise(xi,c) (line 10). If D(xi) becomes empty,
AC3 returns false (line 11). Otherwise, if D(xi) has been changed, it is possible that
a value from another variable x j has lost its supports on a constraint c′ involving
both xi and x j. Thus, all pairs (x j,c′) such that xi,x j ∈ X(c′) must be put again in Q
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Algorithme 2 : AC3 (also denoted by GAC3 on non-binary constraints)
function Revise(in xi: variable; c: constraint): Boolean

begin
1 CHANGE← false
2 foreach vi ∈ D(xi) do
3 if 6 ∃ a valid tuple τ ∈ c with τ[xi] = vi then
4 remove vi from D(xi)
5 CHANGE← true

6 return CHANGE

function AC3(in X : set): Boolean
begin

7 Q←{(xi,c) | c ∈C,xi ∈ X(c)}
8 while Q 6= /0 do
9 pick (xi,c) from Q

10 if Revise(xi,c) then
11 if D(xi) = /0 then return false
12 else Q← Q∪{(x j,c′) | c′ ∈C∧ c′ 6= c∧ j 6= i∧ xi,x j ∈ X(c′)}

13 return true

(line 12). When Q is empty, AC3 returns true (line 13) because all arcs have been
revised and all remaining values of all variables are consistent with all constraints.

AC3 is polynomial in the arity of the constraints It is in O(er3dr+1), where r is
the greatest arity of constraints in C. On networks of binary constraints it gives us
O(ed3). The complexity of AC3 is not optimal because Revise does not store any
information from the computation of supports and must then do and redo the same
tests of constraint at each call.

Many algorithms have been proposed to improve the complexity of AC3. Mohr
et al. [1986; 1988] proposed AC4, the first optimal algorithm for arc consistency
(O(ed2) on binary constraints, and O(erdr) in general), at the cost of an expensive
data structure. Bessiere et al. [2001; 2005] proposed AC2001. It has the advantage to
be based on the same simple schema as AC3 whereas having an optimal complexity
thanks to a light structure of pointers. More recently, Ullmann [2007] has proposed
STR, an algorithm for enforcing arc consistency on constraints represented by a ta-
ble of satisfying tuples. STR uses a data structure of sparse sets that efficiently main-
tains and restores the set of valid tuples in the table during search. Lecoutre et al.
have improved this technique in STR2 [2011] and STR3 [2015]. These improve-
ments for arc consistency on table constraints culminate with the bitwise algorithm
CT (for Compact Table) proposed by Demeulenaere et al. [2016].
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Bounds consistency

When a constraint involves many variables or when the domains of the variables are
large, arc consistency can be too costly. An alternative is to apply bounds consis-
tency (BC), a local consistency weaker than arc consistency that uses the fact that
domains are composed of integers, and thus inherit the total ordering on Z. We de-
fine the smallest and greatest values in a domain D(xi), denoted by minD(xi) and
maxD(xi) respectively, and called the bounds of D(xi).

Definition 6 (Bounds consistency). Given a network N = (X ,D,C) and a constraint
c, a bound support τ on c is a tuple satisfying c such that for all xi ∈ X(c),minD(xi)
≤ τ[xi] ≤ maxD(xi). A constraint c is bounds consistent if and only if for all xi ∈
X(c), (xi,minD(xi)) and (xi,maxD(xi)) belong to a bound support on c. N is bounds
consistent if and only if all its constraints are bounds consistent.

Example 4 Suppose we have the variables x,y,z, the domains D(x)= {0,5}, D(y)=
{0,2,5,12}, D(z) = {4,5}, and the constraint |x− y| = z. BC only removes value
12 from D(y) because it is the only bound without a bound support. Value 2 for y
does not have any bound support but it is not a bound, and value 4 for z is a bound
but it has bound supports, such as ((x,5),(y,1),(z,4)) for instance. AC would have
removed 2 and 12 for y and 4 for z. ♦

Domain reduction rules

A domain reduction rule specifies a sufficient condition for removing values. A
propagation algorithm for reduction rules iterates on the rules until no more domain
is modified, that is, a fixed point has been reached [Apt, 2003]. Domain reduction
rules are useful when we have information on the semantics of the constraint to
propagate. This allows us to specify simple and efficient ways to propagate the con-
straint. It is indeed often inefficient to use a generic algorithm such as AC3 when
we have specific information on the constraint. This approach of domain reduction
rules is used a lot in solvers because solvers usually contain many predefined basic
constraints, especially arithmetic constraints. On these constraints, a change in a do-
main may have a different effect on the other variables of the constraint depending
on whether a removed value is in the middle of the domain, is the minimum value,
the maximum value, or the domain becomes a singleton. Solvers are thus often able
to differentiate these types of changes in a domain, called events. Events recognized
by the majority of solvers are:

• RemValue(xi): when a value v is removed from D(xi)
• IncMin(xi): when the minimum value of D(xi) is removed
• DecMax(xi): when the maximum value of D(xi) is removed
• Instantiate(xi): when D(xi) becomes a singleton

Thanks to these four types of events we can specify domain reduction rules for
many basic constraints. The approach of reduction rules differs from the approach
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of local consistencies in the sense that it has an operational definition of its fixed
point. A set of reduction rules reaches its own fixed point, which is not necessarily
an existing level of local consistency such as bounds consistency or arc consistency.
On the contrary, arc consistency is defined as a property independently of the way
to achieve it.

Example 5 Consider the constraint alldifferent(x,y,z). Instead of calling the
function Revise to propagate this constraint, which would be in O(d3), we can
build the following set of rules:

R1: if Instantiate(x) then D(y)← D(y)\D(x); D(z)← D(z)\D(x)
R2: if Instantiate(y) then D(x)← D(x)\D(y); D(z)← D(z)\D(y)
R3: if Instantiate(z) then D(x)← D(x)\D(z); D(y)← D(y)\D(z)

Applying these rules is very efficient because each rule executes in constant time.
The different types of events allow us to trigger a rule on a constraint only if it has
chances to lead to other value removals. Suppose the domains are D(x) = D(y) =
D(z) = {1,2,3,4}. If 1 and 2 are removed from D(z), then Instantiate(z) is
false and none of the rules of the constraint alldifferent(x,y,z) need to be
triggered. If 1,2 and 4 are removed from D(z), Instantiate(z) is true and rule
R3 is triggered.

The set of rules R1, R2, R3, is not sufficient to ensure arc consistency. Suppose
3 and 4 are removed from D(x) et D(y) while D(z) = {1,2,3,4}. Rules R1, R2, R3
do not remove any value whereas 1 and 2 in D(z) are not arc consistent. ♦

4.2 Strong consistencies

Arc consistency is not the only way to detect inconsistencies in a constraint network.
Since the ’70s, other properties have been proposed to discover more inconsistencies
than arc consistency. Freuder [1978] proposed k-consistencies.

Definition 7 (k-consistency). Given a network N = (X ,D,C) and a set of variables
Y ⊆ X with |Y | = k− 1, a locally consistent instantiation I on Y is k-consistent if
and only if for any kth variable xik ∈ X \Y there exists a value vik ∈D(xik) such that
I∪{(xik ,vik)} is locally consistent. The network N is k-consistent if and only if for
any set Y of k−1 variables, any locally consistent instantiation on Y is k-consistent.

Before Freuder proposed k-consistency, Montanari [1974] had proposed path
consistency. Path consistency was defined for networks of binary constraints in
which each pair of variables is involved in at most one constraint. On such networks,
path consistency is equivalent to 3-consistency.

Example 6 Consider the network N with variables x1,x2,x3, domains D(x1) =
D(x2) = D(x3) = {1,2}, and C = {x1 6= x2,x2 6= x3}. N is not path/3-consistent
because neither ((x1,1),(x3,2)) nor ((x1,2),(x3,1)) can be extended to a value in
the domain of x2 satisfying both c12 and c23. The network N′= (X ,D,C∪{x1 = x3})
is path/3-consistent. ♦
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Freuder [1982] has also defined strong k-consistency.

Definition 8 (Strong k-consistency). A network is strongly k-consistent if and only
if it is j-consistent for all j ≤ k.

When k is large, enforcing k-consistency is far too expensive in practice, both
in time and space. However, the notion of k-consistency is not useless because it
allows us to give an operational understanding of the important notion of global
consistency. A network is globally consistent when all locally consistent instan-
tiations can be extended to solutions. It means that the function BT described in
Algorithm 1 finds a solution or proves that none exists without any backtrack. A
network is globally consistent if and only if it is strongly |X |-consistent.

Freuder [1985] has also proposed (i, j)-consistencies. (i, j)-consistency ensures
that any locally consistent instantiation of size i can be extended to any j additional
variables. k-consistency is (k−1,1)-consistency.

Janssen et al. [1989] proposed the first local consistency based on the number of
constraints involved in the instantiations instead of the number of variables.

Definition 9 (Pairwise consistency). Given a network N = (X ,D,C), the pair of
constraints c1 and c2 in C is pairwise consistent if and only if any instantiation on
X(c1) (resp. X(c2)) satisfying c1 (resp. c2) can be extended to an instantiation on
X(c1)∪X(c2) satisfying c2 (resp. c1). N is pairwise consistent if and only if any
pair of constraints in C is pairwise consistent.

Example 7 Consider the network with variables x1, x2, x3, x4, domains D(x1) =
D(x2) = D(x3) = D(x4) = {1,2} and constraints c1(x1,x2,x3) = {(121),(211),
(222)}, and c2(x2,x3,x4) = {(111),(222)}. This network is arc consistent. How-
ever, it is not pairewise consistent because the tuple (121) of c1 is not compatible
with any tuple in c2. ♦

Other authors have proposed local consistencies that are parameterized by the
number of constraints involved in the reasoning. Jégou [1993] proposed hyper k-
consistency, a kind of dual of k-consistency based on constraints. Dechter and van
Beek [1997] proposed (i,m)-relational consistency, a consistency that focuses on
inconsistencies inside the scopes of existing constraints.

Local consistencies cited above have in common a major drawback for an easy
integration in constraint solvers: they add new constraints that were not present in
the original network and/or they modify existing constraints. (See Examples 6 and
7). These added/modified constraints are expensive to store and propagate because
they do not have any particular semantics.

In the ’90s, domain filtering consistencies were introduced. Domain filtering
consistencies can remove more values from the domains than arc consistency but
they keep the constraints unchanged [Berlandier, 1995; Freuder and Elfe, 1996;
Debruyne and Bessiere, 1997; Bennaceur and Affane, 2001]. I will just present
singleton arc consistency (SAC) [Debruyne and Bessiere, 2001]. SAC is the most
well-known of these domain filtering consistencies because it has a very simple def-
inition and it can easily be integrated in the architecture of the current generation of
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solvers. SAC is based on the idea of refuting the selection of a value for a variable
by arc consistency propagation.

Definition 10 (Singleton arc consistency). A network N = (X ,D,C) is singleton
arc consistent if and only if for all xi ∈ X , for all all vi ∈ D(xi), the arc consistency
closure of the subnetwork N|xi=vi does not have any empty domain. N|xi=vi is the
network where the domain of xi in N has been reduced to the singleton {vi},

An approach of the same vein as SAC had been proposed in numerical constraint
networks under the name 3B-consistency [Lhomme, 1993], and in scheduling under
the name shaving [Martin and Shmoys, 1996]. The difference with SAC is that only
the bounds can be selected, and bounds consistency is used instead of arc consis-
tency to refute the selected bound.

5 Polynomial Cases

As the CSP is NP-complete, it is natural to ask the question of the existence of
particular classes of constraint networks on which the CSP is polynomial.

The first results in this direction have been proposed by Freuder. They are based
on the structure of the constraint network. The structure of a network is represented
either by its primal graph or by its associated hypergraph. The primal graph of
a constraint network N = (X ,D,C) is the graph GN = (X ,E) which has a node
per variable in N and an edge {xi,x j} in E if and only if there exists a constraint
c ∈C with {xi,x j} ⊆ X(c). The associated hypergraph of a constraint network N =
(X ,D,C) is the hypergraph HN = (X ,E) which has a node per variable in N and an
hyperedge e in E if and only if there exists a constraint c∈C with e = X(c). Freuder
[1982] defines the width of the primal graph of a constraint network. The width is
the smallest integer k such that a greedy procedure removing a node each time it has
a degree lower than or equal to k will remove all nodes of the graph.3 The reverse
of the order in which nodes have been removed by the greedy procedure is an order
of width k.

Theorem 2 ([Freuder, 1982]). If a constraint network N has a primal graph of
width at most k and is strongly (k + 1)-consistent, then calling BT on a variable
ordering of width at most k is backtrack-free.

In the same paper, Freuder underlines the limitations of this theorem. Enforcing
strong (k+1)-consistency with k > 1 creates new constraints. These new constraints
increase the width of the primal graph, making false the precondition of the theo-
rem. Freuder characterizes the case where the structure is not modified by enforcing
strong k-consistency.

3 The width of Freuder is a lower bound to the tree-width [Arnborg, 1985].
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Corollary 1 ([Freuder, 1982, 1985]). If a constraint network has a primal graph
of width 1 (tree/forest), it can be solved in polynomial time by enforcing arc consis-
tency and then calling BT, which will be backtrack-free on any ordering of width 1.

Corollary 1 only applies to networks of binary constraints because a ternary con-
straint induces a triangle in the primal graph. Janssen and Vilarem [1988] extended
Corollary 1 to networks of non-binary constraints. They proved that if a constraint
network has a Berge-acyclic associated hypergraph then arc consistency decides its
satisfiability. (In other words, arc consistency detects a wipe out if and only if the
network has no solution.) As a result, MAC finds a solution backtrack-free, that
is, in polynomial time if all constraints can be made arc consistent in polynomial
time. Cohen and Jeavons [2017] recently showed that the condition is tight because
Berge-acyclicity is the only structural property that allows arc consistency to decide
satisfiability. Berge-acyclicity is thus the only structural property that allows MAC
to find a solution in polynomial time.

Many contributions have extended the results of Freuder to constraint networks
with a structure more general than trees. Many of them lie on the property that if
the tree-width of the primal graph is bounded, then the network is polynomial to
solve [Freuder, 1990]. Other contributions directly use properties of the associated
hypergraph [Gyssens et al., 1994; Gottlob et al., 2000].

There is an orthogonal approach to characterize polynomial classes. Instead of
restricting the structure of the constraint network, we can restrict the type of rela-
tions of the constraints used in the network. Let us denote by CSP(Γ ) the restriction
of CSP to networks in which the constraints are defined by relations from the lan-
guage Γ . Cooper et al. [1994] have proposed the zero-one-all (ZOA) relations. A
binary relation c with X(c) = (xi,x j) is ZOA if and only if each value vi for xi is
compatible with either zero, or one, or all values of x j.

Theorem 3 ([Cooper et al., 1994]). If all constraints in a binary network are ZOA,
then enforcing path consistency is sufficient to ensure that BT is backtrack-free on
the resulting network, that is CSP(ZOA) is polynomial.

ZOA is one of the first examples of tractable language of relations. There ex-
ist many other languages of relations such that networks composed of constraints
defined by these relations are polynomial to solve. Another early example is con-
nected row convex relations [van Beek and Dechter, 1995; Deville et al., 1999].
Polymorphisms have been used to better understand the properties of languages.
A relation c is closed for a polymorphism f of arity k if for any set of k tuples
in c, the tuple obtained by applying f component-wise produces a tuple in c. For
instance, in order to be max-closed (i.e., closed for function f = max), a relation c
containing the tuples (2,1,2,3) and (1,2,1,1) must also contain the tuple (2,2,2,3).
Jeavons and Cooper [1995] have shown that CSP(Γ ) is polynomial if Γ is the lan-
guage of max-closed relations. More general properties of polymorphisms leading
to tractability have been extensively studied. Jeavons et al. [1998] have linked near-
unanimity polymorphisms to the level of k-consistency sufficient to ensure global
consistency. Bulatov and Dalmau [2006] have shown that if f is a Mal’tsev polymor-
phism then CSP(Γ ) is polynomial for any language of relations closed for f . Chen
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et al. [2013] extended this result to majority polymorphisms. Feder and Vardi [1998]
conjectured that for any finite constraint language Γ , CSP(Γ ) is either polynomial
or NP-complete. This fundamental dichotomy conjecture has recently been proved
independently by Bulatov [2017] and Zhuk [2017]. It has also recently been proved
that given a language Γ , we can recognize in polynomial time whether CSP(Γ ) is
polynomial or NP-complete [Carbonnel, 2016].

6 Solution Synthesis and Decompositions

Dechter and Pearl [1988] have proposed Adaptive consistency (AdC). AdC uses
Theorem 2 while taking into account the limitations raised by Freuder (see above).
Instead of applying uniformly k-consistency everywhere in the network, AdC ap-
plies a limited form of consistency, unidirectional, and adapted to the number of
neighbors preceding the processed variable. Let <o be a total ordering on the vari-
ables. parents(xi) denotes the set of parents of xi in the primal graph GN . Variables
are made AdC one by one from the last to the first according to <o. A variable xi is
made AdC by creating a constraint of scope parents(xi) which forbids any locally
consistent instantiation of parents(xi) that cannot be extended to a locally consistent
instantiation on parents(xi)∪{xi}. All possible edges in parents(xi) are then added
to GN . If none of the constraints created by AdC is the empty constraint, the func-
tion BT applied according to the ordering <o finds a solution in a backtrack-free
way. The complexity of AdC is O(ndw+1), where w is the induced width of the <o
ordering, that is, the width of <o after having applied AdC. AdC requires a given
variable ordering before the local consistency step. If the order is bad (i.e., it has a
large induced width), AdC is expensive. With the best order, AdC is polynomial in
the tree-width of the original primal graph. AdC has a dynamic programming flavor,
and as such, it has strong similarities with results presented in [Bertelé and Brioshi,
1972].

Dechter and Pearl [1989] proposed tree clustering, a decomposition technique
that transforms any network into a tree-structured network. Variables are clustered
in baskets. Each basket is considered as a meta-variable. Two baskets containing
variables involved in the same constraint are linked by a meta-constraint. Baskets
are built in such a way that the network of meta-variables has the structure of a tree.
All the local solutions on a basket are generated and become the values in the do-
main of the meta-variable representing this basket. As opposed to AdC, no variable
ordering is required. However, generating all solutions of a basket can be very space
consuming, especially when large baskets are required. Many other decomposition
techniques have been proposed [Gottlob et al., 2000; Jégou and Terrioux, 2003].

We can also use the structure of the solutions instead of the structure of the net-
work. Amilhastre et al. [2002] associate each constraint with a finite state automaton
and combine these automata to obtain an automaton representing all solutions of the
network. If the solutions are not too scattered, the automaton can be of reasonable
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size, and many kind of queries (e.g., counting solutions), usually expensive (expo-
nential time), become linear or constant time.

Finite state automata have also been used in the form of multivalued decision dia-
grams (MDDs) to store the domains of the variables [Andersen et al., 2007]. Storing
the domains as an MDD allows us to capture the space of possible assignments for
variables more precisely than the brute-force Cartesian product of the individual
domains of variables. However, with an MDD, the way constraints are propagated
differs from the standard case of individual domains. For each type of constraint, a
new propagation algorithm has to be written as a combination of MDD operations
[Hoda et al., 2010; Bergman et al., 2014].

7 Improving Chronological Backtracking

Solution synthesis and decomposition techniques are only practicable in the partic-
ular case where the network has the right structure (for instance close to a tree for
tree clustering). The standard technique to solve CSPs is thus function BT. Many
researchers have proposed techniques to make BT less inefficient. Adapting from
Dechter and Pearl [1988], we can classify the types of improvements of BT in dif-
ferent categories that can be combined. Look back techniques use implicit informa-
tion contained in a failure to avoid latter inconsistent branches in the search tree.
Look ahead techniques apply some level of constraint propagation at each node of
the search tree to eliminate as early as possible inconsistent branches. Finally, vari-
able and value ordering heuristics change the order in which variables and values
are instantiated to decrease the size of the search space.

7.1 Look back

The most well-known look back technique is backjumping. There are several ver-
sions of backjumping. The first one was proposed by Gaschnig [1978; 1979], then
improved by Dechter [1990], then by Prosser [1993]. The idea in backjumping is
that when all the values for a variable xi have led to a failure, instead of backtrack-
ing to the previous variable in the order, we try to jump back as high as possible in
the search tree while ensuring that we do not lose solutions. The way to do this is
to jump back to the lowest variable involved in the failure of the values of xi. Fig-
ure 4 presents the search tree explored by confilct-directed backjumping (CBJ), the
backjumping of Prosser, when called on the network of Example 1, if we select the
variables and values in lexicographic order. We observe that CBJ behaves exactly
like BT (see Figure 2) until we meet a variable whose values are all inconsistent with
the current branch, that is, x4. For each value v for x4, CBJ looks for the highest vari-
able assignment that caused the inconsistency of v: x1 = B for value B and x3 = R for
R. CBJ then backtracks to the lowest variable (x3) and stores x1 as another possible
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Fig. 4 Search tree of CBJ on the constraint network of Example 1.

cause of failure. As x3 has already tried all its values, it cannot change value and
then applies the same process: Its value B is inconsistent because of x1, and accord-
ing to x4, its value R cannot lead to a solution because of x1. Thus, x3 backjumps to
the lowest possible culprit, that is, x1. x1 changes its value and CBJ behaves again
like BT, going to solution without any extra backtrack. Backjumping algorithms are
usually not implemented in solvers. The improvement they provide becomes minor
when they are combined with other types of improvement of BT, such as look ahead
(see Section 7.2) and variable ordering heuristics (see Section 7.3).

Another type of look back technique is nogood learning. The idea is to store
explanations of failure (nogoods) and then use them as new constraints to avoid
exploring subtrees that subsume a nogood already met. This direction of research
dates back to the ’70s [Gaschnig, 1974; Dechter, 1986; Schiex and Verfaillie, 1993],
where a nogood was essentially an instantiation that has led to a failure. Nogoods
were more or less abandoned by the constraint reasoning community while the SAT
community took the idea, improved it, and showed that nogoods can be useful to
significantly decrease search effort (see Chapter 5 of this volume). Motivated by
this success in SAT, the idea of nogood came back to the constraint reasoning com-
munity. Nogoods have been generalized to explanations of failure more expressive
than simple assignments, and techniques from SAT have been used to process the
nogoods [Katsirelos and Bacchus, 2003; Lecoutre et al., 2007]. Ohrimenko et al.
[2009] have introduced lazy clause generation, a technique in which the Boolean
variables of the clauses representing explanations of value removals are generated
on the fly each time a domain is reduced by constraint propagation. This lazy gener-
ation prevents the solver from creating huge formulas with many variables that will
never be used. For instance, consider the propagation of the constraint x+ y = z,
where x,y ∈ {0..5} and z ∈ {0..20}. The domain of z is reduced to {0..10} by con-
straint propagation, and a clause ¬Jx≤ 5K∨¬Jy≤ 5K∨Jz≤ 10K is added to the SAT
formula handling explanations. Jx≤ 5K, Jy≤ 5K, and Jz≤ 10K are Boolean variables
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Fig. 5 Search tree of forward-checking on the constraint network of Example 1. The new domains
of non instantiated variables are given after each instantiation.

created on the fly the first time they appear in an explanation. Siala [2015] has used
lazy clause generation in global constraints.

7.2 Look ahead

Look ahead techniques apply constraint propagation at each node of the search tree
explored by BT. The motivation is that it is better to detect an inconsistency once at
the top of the search tree than an exponential number of times at the bottom of the
tree. The levels of propagation that are used with BT are generally restricted to the
removal of values in the domains. Higher levels of consistency are considered too
expensive to be maintained at each node of the tree.

The first algorithm in this category is forward-checking, informally proposed by
Golomb and Baumert [1965] and explicitly described and analyzed by Haralick and
Elliott [1980] for binary constraints. Forward-checking is a search procedure in the
same vein as BT. The difference with BT is that after every assignment of a variable
xi, forward-checking traverses the domain of all variables xk not yet instantiated
and sharing a constraint c with xi, and removes values that violate constraint c.
As soon as one of these variables xk has an empty domain, the current branch is
abandoned and all domains are restored as before xi’s assignment. With such an
algorithm it is no longer necessary to check the compatibility of xi’s values with
already instantiated variables (see line 4 in Algorithm 1) because we have removed
values of xi incompatible with already instantiated variables when xi was a future
variable. Figure 5 displays the search tree traversed by forward-checking on the
network of Example 1.
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Algorithme 3 : Maintaining arc consistency (MAC)
function MAC (in N: network): Boolean

begin
1 enforce AC on N
2 if a domain has been wiped out in N then return false
3 if all variables in N are ground then print D and return true
4 choose a variable xi with |D(xi)|> 1 and choose a value vi in D(xi)
5 if MAC(N|xi=vi ) then return true
6 return MAC(N|xi 6=vi )

Deciding which level of propagation to apply at each node of the search tree has
always been a concern in the CP community. More propagation means more work
at each node but a smaller search tree to explore. Forward-checking has long been
regarded as applying the right level of propagation. This can be explained by the
fact that the problems on which we were testing the algorithms in the ’80s/early
’90s were often small and not very difficult. Since the mid-’90s, it is understood
that the standard level of propagation to apply at each node is arc consistency. The
idea of applying arc consistency after each variable assignment, though, dates back
to Gaschnig [1974] and his algorithm CS-2, renamed DEEB in [Gaschnig, 1978],
and later presented as Really Full Look-ahead (RFL) by Nadel [1988]. These algo-
rithms perform what is called d-way branching. They behave like a BT procedure
(see Algorithm 1) where each variable assignment is followed by enforcing arc con-
sistency. Sabin and Freuder [1994] proposed MAC (Maintaining Arc Consistency).
MAC is an algorithm that not only enforces arc consistency after each assignment,
but also after refuting the choice of a value which has led to a failure. In addition,
MAC has the freedom to select another variable after the refutation step, even if the
domain of the previously chosen variable has not yet been exhausted. This behavior
is called 2-way branching. Most solvers are based on MAC.

MAC is presented in Algorithm 3. MAC first applies arc consistency on the con-
straint network (line 1). If none of the domains has been wiped out (line 2) and if
we have not yet reached a solution (line 3), MAC selects a variable xi and a value vi
for this variable, (line 4). The recursive call of line 5 enforces arc consistency on the
network N|xi=vi , where xi has been assigned value vi, and continues the search on
this subnetwork. If this branch leads to a failure (no solution in the subtree), the re-
cursive call of line 6 propagates the refutation of xi = vi by enforcing arc consistency
on the network N|xi 6=vi and then continues the search in this new subtree. Figure 6
displays the search tree traversed by MAC on the network of Example 1. As we can
see on the figure, MAC is backtrack-free. As soon as x1 is assigned value B, a failure
is detected when enforcing arc consistency. MAC branches on the refutation x1 6= B
and goes down directly to the solution in a single branch.

Lecoutre and Hemery [2007] have proposed AC3rm, an efficient algorithm for
maintaining arc consistency during search. This algorithm stores supports like
AC2001, uses multi-directionality of supports like AC7 [Bessiere et al., 1999], but
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does not restore supports when backtracking. It loses the optimality of AC2001, but
it saves the cost of restoring supports.

7.3 Variable and value ordering heuristics

Up to now, I have considered that the search procedure selects variables to instantiate
and values to assign to them in lexicographic ordering. However, nothing prevents
us from changing this arbitrary exploration ordering. In practice, it appears that the
order in which we explore the search space can have a tremendous effect on the cpu
time needed to find a solution.

Variable ordering

Variable ordering heuristics can be classified as static or dynamic. Static variable or-
derings are computed before the search for solutions starts, and are kept unchanged
during the whole search. They are generally based on criteria using the structure
of the network. For instance, maxdegree selects variables in decreasing order of the
number of constraints involving them. This promotes the detection of failures high
in the search tree, which is less costly than detecting failures deep in the search tree.

Dynamic variable orderings take into account changes performed on the network
at the current node, that is, in general, deletions of values from domains. Haralick
and Elliott [1980] proposed the mindom heuristic, which selects as next variable the
one that has the smallest number of values remaining in its domain. The motivation
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is to minimize the branching degree in the tree. Bessiere and Régin [1996] proposed
dom/deg, which combines information on the size of the domains with information
on the structure of the network. dom/deg selects the variable with the smallest ratio
size of the current domain over the number of constraints involving the variable.

Boussemart et al. [2004] proposed dom/wdeg, an adaptive variable ordering
heuristic. In addition to the state of the network in the current node, dom/wdeg takes
into account the weighted degree of variables. The weighted degree, inspired by
SAT solvers, stores information about the failures that occurred in branches already
explored by the search procedure. A counter w j stores the number of times a con-
straint c j has caused a failure, that is, the number of times the propagation of c j has
caused an empty domain. The weighted degree of variable xi is the sum of the w j’s
for which c j involves xi. At the beginning, w j = 1 for all constraints. During search,
each time Revise(−,c j) wipes out a domain, w j is incremented by 1. The heuris-
tic dom/wdeg chooses the variable xi which minimizes the ratio size of the current
domain over weighted degree. This heuristic starts like dom/deg, but during search,
it focuses more and more on the variables involved in constraints that are difficult
to satisfy. dom/wdeg is a very good variable ordering heuristic on many kinds of
problems.

Lecoutre et al. [2006] have also proposed the last conflict reasoning technique.
This is not exactly a variable ordering heuristic. This is a technique that is com-
bined with a variable ordering heuristic to mimic backjumping by simply forcing
the choice of the next variable to instantiate after a dead-end.

Value ordering

Value ordering heuristics have led to many less contributions than variable ordering
heuristics because the impact on the performance of the solver is much lower. One
reason is that as soon as a problem is difficult to solve, it is very likely that the solver
will spend the greater part of the time exploring large inconsistent subproblems.
On inconsistent subproblems, the order in which we select values in a domain has
little effect because we must try them all. Recently, Mehta et al. [2011] have shown
that value ordering could have an effect when using an adaptive variable ordering
heuristic. As adaptive variable ordering heuristics are affected by past operations of
the search procedure, selecting a value instead of another can have an effect on the
next choice of variable.

Search heuristics

There also exist heuristics that guide the exploration of the search tree by select-
ing at the same time the variable and the value to assign. Refalo [2004] proposed
impact-based heuristic, a heuristic that selects the variable and value with the high-
est impact, where impact measures the importance of an assignment in reducing
the search space. Michel and Van Hentenryck [2012] have proposed activity-based
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search, a heuristic that selects the variable and value with the highest activity, where
activity measures by the number of times the domains of variables are reduced by
constraint propagation.

8 Other Techniques to Improve Search

8.1 Non-standard backtracking search

On some kinds of CSPs it may happen that backtracking search takes enormous
amount of time to find a solution despite the problem has many solutions and most
other orders for selecting values for variables would have led to a solution very
quickly. The reason for this unexpected behavior is that the value ordering heuris-
tic has told the search procedure to perform a variable assignment that has led the
search into a huge inconsistent subtree. This phenomenon is called heavy-tailed be-
havior [Gomes et al., 1997, 2005].

Harvey and Ginsberg [1995] have made the twofold observation that heuristics
have more chances to take wrong decisions (i.e., variable assignments leading to
an inconsistent subtree) early in the search when little is known about the prob-
lem, and that wrong decisions high in the tree are critical because they can lead to
huge inconsistent subtrees. To address these two issues, Harvey and Ginsberg have
proposed limited discrepancy search (LDS). A discrepancy is a node at which the
search procedure does not select the value proposed by the heuristic. When reaching
a non-solution leaf (that is, a failure or inconsistent node), instead of just undoing the
last assignment, LDS tries to make a discrepancy as high as possible in the search
tree. LDS iteratively explores the (unique) branch with zero discrepancies, then all
branches with at most one discrepancy –starting from discrepancies higher in the
tree–, then all branches with at most two discrepancies, and so on until a solution is
found or the whole tree has been explored. Figure 7 displays the shape of a search
tree explored by a backtracking search procedure (it could be BT, forward-checking,
etc.). We take the usual convention that backtracking search visits the leaves from
left to right. The order in which leaves are visited by LDS on the same search tree
is given for each leaf visited until finding a solution. We observe that the solution
found by LDS (at its 8th leaf visited) is not the same as the solution found by a stan-
dard backtracking search. Backtracking search would find first the leftmost solution
of the tree (at the 12th leaf visited).

The main weakness of LDS is that it can visit several times the same leaf, lead-
ing to high redundancy in search. See for instance the first leaf on the left of the
search tree in Figure 7. It is visited twice before finding a solution: once during the
pass with zero discrepancies and once during the pass with at most one discrep-
ancy. Korf [1996] has proposed improved limited discrepancy search (ILDS) to fix
this drawback. Unfortunately, this improvement is done at the price of performing
discrepancies low in the tree before discrepancies high in the tree. Now, value or-
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Fig. 7 Order of visit of the leaves of a search tree explored by LDS. Squares denote the nodes. ”x”
denotes failure nodes and ”S” denotes solution nodes.

dering heuristics tend to be less informed and make more mistakes early in the tree
than later, when they are more informed. Walsh [1997] has proposed depth-bounded
discrepancy search (DDS). Like ILDS, DDS explores the branch with zero discrep-
ancies, then the branches with exactly one discrepancy, and so on, and thus DDS
visits at most once each leaf. However, like LDS and ILDS, DDS can expand many
times non-leaf nodes. A non-leaf node is expanded by DDS as often as there are
leaves under it that DDS needs to reach with different numbers of discrepancies.
For a CSP solving procedure, expanding several times a non-leaf node means as-
signing several times the same variables with the same values and redoing several
times the same constraint propagation. In parallel to DDS, Meseguer [1997] has
proposed interleaved depth-first search (IDFS). IDFS does not have the drawback
of redundancy of expanding non-leaf nodes because each time it expands a node,
it stores the current state of the search for later visits. As this causes exponential
space, Meseguer proposed a limited version that stores the current state only for a
limited number of levels in the tree, making sequential search in the lower levels.

Restart strategy is another technique that allows backtracking search to escape
from early wrong decisions and it is much simpler to implement. Adding the restart
strategy to a backtracking search procedure is done by counting the number of nodes
visited or the number of failures reached, and when this number is equal to a given
threshold θ , we restart the search, that is, the backtracking search is reset. Of course,
in order not to re-explore exactly the same (inconsistent) subtree, we need to put
some randomness in the value ordering heuristic. If the threshold θ at which we
reset is constant, the risk is that it could be too small compared to the inherent
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difficulty of the problem, and none of the runs has chances to find a solution before
θ nodes/failures. This issue is easily fixed by initializing θ to a very small value,
and at each restart, we change its value. The most common strategy for updating
θ is to follow a geometric progression, that is, multiplying θ by a given constant –
usually 1.5– each time we restart search. Another updating strategy, more popular in
SAT than in CSPs, is to make θ follow a Luby sequence [Luby et al., 1993]. Luby’s
sequences grow very slowly. They have shown very good performance.

8.2 Large neighborhood search

Some CSPs, whereas not being inherently difficult to solve, are so large in size that
they cannot be solved in reasonable time by backtracking search, even when com-
bined with improvements that we have seen in Sections 7 or 8.1. An alternative
that is often used (especially when the goal is to find a good solution, i.e., an assign-
ment maximizing an objective criterion) is to relax the completeness of backtracking
search and to go for a more local-search style algorithm. However, pure local search
is known to have poor performance on CSPs encoding real problems. Shaw [1998]
has proposed large neighborhood search (LNS) to combine the best of local search
and of backtracking search with constraint propagation. Like standard local search,
LNS starts with a complete assignment of the variables. If this assignment is not so-
lution (or not a good enough assignment), LNS selects a set S of variables to ”relax”,
that is, to be reset to their initial domain. The variables not in S remain assigned to
their value in the current assignment. The set S defines the neighborhood to be ex-
plored. Then, LNS uses backtracking search and constraint propagation to ”repair”
the partial assignment, that is, to assign a new value to the variables in S. The loop
relax/repair is repeated until a solution is found or a time limit has been reached.
An essential component of the success of LNS is how to select the set S of variables
to relax. If S is too large, finding a new assignment depends more on backtracking
search and constraint propagation than on the neighborhood and we fall in the same
drawback as backtracking search. If S is too small, backtracking search may not
have enough space to explore and may not be able to find good assignments. Shaw
proposes to increase the size of S when several executions of the loop relax/repair do
not improve the assignment. If the size of S grows until the number of variables in
the CSP, completeness of the search process is guaranteed. Concerning the choice
of which variables to put in S, good strategies are usually specific to the type of
problem been solved.

8.3 Symmetries

When modeling a problem as a CSP, it is often the case that several variables are
defined to represent several occurrences of the same object. For instance, two vari-
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ables xi and x j can represent the two history courses that a class must have in the
week. If variable xi takes value Monday-8am and x j value Thursday-9am, or the
reverse, it will not change the fact that this instantiation is solution or not. We then
say that xi and x j are symmetrical. The same can happen for values. The purpose
of symmetry detection techniques is to prevent the search procedure from exploring
two subtrees that are symmetrical. These techniques may cut branches of the search
tree that contain solutions but only if these solutions have a symmetrical solution
in another part of the search tree. Freuder [1991] raised the problem of symmetry
of values by defining interchangeability of values. Cooper [1997] extended this no-
tion to substitutability of values. Since then, many works have studied many sorts
of symmetries [Benhamou, 1994; Gent et al., 2006].

Another approach to reduce the symmetries generated when modeling a problem
is to use set variables instead of integer variables. A set variable is a variable that
will be assigned a set of values instead of one single value. In our example above, xi
and x j could be replaced by a single set variable s representing the history courses.
A constraint |s| = 2 should be added to ensure that s will be assigned two values
—the two history courses in the week. Letting variables taking sets of values in-
stead of single values gives rise to a number of possible assignments exponential in
the number of possible values. Thus, domains of set variables are not represented
in extension. They are represented by two bounds. Gervet [1994] represents the do-
main of a set variable s by a lower bound lb(s) (the mandatory values) and an upper
bound ub(s) (the possible values). If lb(s) = {1,3} and ub(s) = {1,2,3,4}, s has a
domain of possible assignments equal to {(1,3),(1,2,3),(1,3,4),(1,2,3,4)}. Other
representations of the domains of set variables have been proposed, such as length-
lex, which stores as bounds the smallest possible set and the greatest possible set of
the set variable, where sets are ordered by increasing cardinality, ties being broken
lexicographically [Gervet and Van Hentenryck, 2006].

9 Global Constraints

When modeling real problems into constraint networks, we observe that some types
of requirements (aka patterns) on the combinations of values that sets of variables
can take occur in various problems. For instance, it is often necessary to express
the fact that a set of variables must all take different values. The size of the set of
variables is not the same in all problems. The constraint alldifferent, which
expresses this pattern, can involve any number of variables. This kind of constraints,
defined by a Boolean function that can take any number of variables as parameter,
are called global constraints. Beldiceanu et al. [2005b] have built a catalog of more
than 400 global constraints.

Example 8 The global constraint atleastp,v(x1, . . . ,xn) is defined on any se-
quence of n variables, n ≥ 1, such that at least p variables in x1, . . . ,xn are equal
to v. ♦
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Example 9 The global constraint alldifferent(x1, . . . ,xn) is defined on any
sequence of n variables, n≥ 2, such that xi 6= x j for all i, j,1≤ i, j ≤ n, i 6= j. ♦

Example 10 The global constraint NValue(y,x1, . . . ,xn) is defined on any se-
quence of n+1 variables, n≥ 1, such that |{xi | 1≤ i≤ n}|= y. ♦

If a global constraint is available in a solver, the user can easily express the asso-
ciated pattern, which could otherwise be complex to express. These constraints may
involve a large number of variables. It is thus important to have a way to propagate
them other than a generic arc consistency algorithm such as the function Revise
of AC3 or AC2001. Bear in mind that the optimal generic algorithms for enforcing
arc consistency are in O(erdr) for constraint networks with constraints involving r
variables (see Section 4.1).

It is not always possible to design an efficient arc consistency propagator (i.e.,
algorithm enforcing arc consistency) for a global constraint. Bessiere et al. [2007]
have shown that if the problem of the existence of a valid tuple satisfying the global
constraint is NP-complete, then there does not exist any polynomial time arc con-
sistency propagator for this global constraint, unless P = NP. This is the case of the
global constraint NValue, for which it is thus useless to look for an arc consistency
propagator. On such global constraints, we usually enforce bounds consistency.

Even if we do not consider the constraints for which arc consistency is NP-hard,
designing arc consistency propagators for all the remaining constraints in the catalog
is by far too cumbersome.

A solution to propagate a global constraint without designing a propagator is
to decompose it into simpler constraints. Decomposing a global constraint means
replacing each of its instances by a subnetwork of bounded-arity constraints (and
new variables if necessary). The subnetwork has to be polynomial in the size of the
original variables and domains and it has to preserve the set of allowed tuples on
the variables of the original constraint. More formally, a decomposition of a global
constraint G is a polynomial transformation δk (k being an integer), which for any
network N = (X(c),D,{c}) where c is an instance of G of arity |X(c)|, returns a
network δk(N)= (Xδk(N),Dδk(N),Cδk(N)) such that X(c)⊆Xδk(N), D(xi)=Dδk(N)(xi)
for all xi ∈ X(c), |X(c j)| ≤ k for all c j ∈Cδk(N), and sol(N) is equal to the projection
of sol(δk(N)) on X(c).

Example 11 atleastp,v(x1, . . . ,xn) can be decomposed with n + 1 additional
variables y0, . . . ,yn. The transformation contains the ternary constraint (xi = v ∧
yi = yi−1 + 1)∨ (xi 6= v ∧ yi = yi−1) for all i,1 ≤ i ≤ n, and domains D(y0) =
{0},D(yn) = {p, . . . ,n} and D(yi) = {0, . . . ,n} for all i,1≤ i < n. ♦

The central issue is of course to find decompositions that preserve arc consistency
on the original constraint. That is, for any instance c of the global constraint G on any
initial domain D on X(c), we want that for every domain D′ included in D, enforcing
arc consistency on the decomposition removes from D′ the same values as arc con-
sistency on c. The decomposition of atleastp,v given in Example 11 preserves
arc consistency because it has a Berge-acyclic structure. Many constraints among
the 400 of the catalog allow a decomposition that preserves arc consistency. Global
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constraints as important as Regular [Pesant, 2004] allow such a decomposition
[Beldiceanu et al., 2005a; Bessiere et al., 2008]. However, Bessiere et al. [2009]
have shown that if a constraint subsumes a Boolean function non representable by
a monotone Boolean circuit of polynomial size then it does not admit any decom-
position preserving arc consistency, even if computing arc consistency on this con-
straint is polynomial time. For such constraints, the only option is to implement a
specific propagator. A famous example is the constraint alldifferent. Régin
[1994] used the problem of maximum matching in a bipartite graph to produce an
arc consistency propagator for the constraint alldifferent. Another popular
constraint that cannot be decomposed and thus requires a specific propagator is the
global-cardinality constraint [Régin, 1996]. The non-decomposability re-
sult of [Bessiere et al., 2009] has a corollary that goes beyond the CP world. It
implies that there does not exist any SAT model of polynomial size that mimics arc
consistency for non decomposable global constraints. An illustration is the pigeon-
hole problem,4 solved in milliseconds by a CP solver with an alldifferent
constraint on the pigeons, and not solved in hours by the best SAT solvers as soon
as the number of pigeons is above 20.

When modeling a problem, finding the right global constraint among more than
400 in the catalog can be difficult. Beldiceanu and Simonis [2011] have proposed
ConstraintSeeker, a system that takes as input a few tuples satisfying (or violating)
the pattern we want to express and returns an ordered set of candidate constraints.

10 Conclusion and New Trends

In this chapter, I have presented various techniques for solving the CSP. When solv-
ing real problems with constraint reasoning, we quickly realize that answering yes
or no, or just giving a solution to the specified network is often not sufficient to
satisfy the user. The user may have forgotten to express some constraints that will
come to her mind when she will see a solution that is not satisfactory (e.g., a sched-
ule with four hours of math course in a row). On the contrary, the user may have
put too many constraints to express her preferences and she will have to relax some
to make the network satisfiable (e.g., relax the constraint on the end of the courses
at 4pm). A first approach to deal with this issue was the dynamic CSP [Dechter
and Dechter, 1988], where the user interacts with the solver by adding or removing
constraints according to the solution provided (or not) by the solver. The maxCSP
[Freuder and Wallace, 1992] and the valued CSP [Schiex et al., 1995] can also han-
dle this issue because they look for solutions that are optimal according to a given
criterion (e.g., maximum number of satisfied constraints for maxCSP). They will
be presented in Chapter 7 of this volume. The problem to be solved may also con-
tain uncertainties about the values of some of the variables that the user does not
decide. (For instance, variables related to the weather.) In such a context, a solu-

4 The pigeon-hole problem is to assign n pigeons to n−1 holes in such a way that no hole contains
more than one pigeon.
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tion must satisfy the constraints, whatever the values taken by these variables, or it
should maximize a probability of satisfaction. The mixed [Fargier et al., 1996] or
stochastic CSPs [Walsh, 2002] deal with this case. The problem can be distributed
on several remote places, communicating by messages and requiring that some data
are kept private. In such cases, we use distributed CSPs [Yokoo et al., 1998]. In
some problems, we may need to represent information that is not easy to discretize.
In this case, we use numerical CSPs, in which variables take their values in domains
composed of intervals on the reals [Benhamou and Granvilliers, 2006]. Finally, on
some problems, it can happen that we do not have all the values of the domains at
the beginning of the solving process, or the scope of a constraint will depend on the
value of other variables. Open CSPs allow such missing information [Faltings and
Macho-Gonzalez, 2005]. There are many other extensions of the CSP framework
that are not yet central but could become important if their interest is confirmed.

CP is now a mature field. It is thus simultaneously increasingly difficult to make
fundamental contributions at the core of CP, and increasingly easy to show the prac-
tical usefulness of CP in other areas of science and industry. Data science is an
example of the use of CP in other areas. The international conference on constraint
programming organizes a special track on CP and data science, and the Artificial In-
telligence journal has recently published a special issue on ”Combining Constraint
Solving with Mining and Learning”. In these two venues, we find papers using CP
for data analysis. For instance, CP can be used for solving pattern mining, sequence
mining, clustering, and other data mining problems [Ugarte et al., 2017; Dao et al.,
2017; Schaus et al., 2017]. (The first CP model for pattern mining had been proposed
by Guns et al. [2011].) If CP can be used for data analysis, data analysis can itself
be used to help building CP models. When building a CP model for a combinatorial
problem, it can happen that the domain expert is not able to accurately describe her
problem. When data from the problem are available, Lombardi et al. [2017] have
proposed to extract missing or incomplete parts of the CP model by learning deci-
sion trees or artificial neural networks from these data. They embed these learned
decision trees or artificial neural networks into the CP model either as constraints
or as objective functions. This technique was applied to thermal-aware workload
dispatching. In the same vein, Bessiere et al. [2017] have proposed the inductive
constraint programming loop. Solutions of a combinatorial problem (e.g., schedul-
ing external visits in an hospital, energy-aware data center) are executed, and their
behavior is observed. Depending on the efficiency of this execution (e.g., waiting
time for patients, actual price paid for electricity), a machine learning component
learns new constraints to revise the model. New solutions are computed, executed,
observed, and so on.
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