
HAL Id: lirmm-02997654
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02997654v1

Submitted on 10 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Sparse-view CBCT reconstruction via weighted Schatten
p-norm minimization

Congcong Xu, Bo Yang, Fupei Guo, Wenfeng Zheng, Philippe Poignet

To cite this version:
Congcong Xu, Bo Yang, Fupei Guo, Wenfeng Zheng, Philippe Poignet. Sparse-view CBCT recon-
struction via weighted Schatten p-norm minimization. Optics Express, 2020, 28 (24), pp.35469-35482.
�10.1364/OE.404471�. �lirmm-02997654�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-02997654v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Research Article Vol. 28, No. 24 / 23 November 2020 / Optics Express 35469

Sparse-view CBCT reconstruction via weighted
Schatten p-norm minimization

CONGCONG XU,1 BO YANG,1,* FUPEI GUO,1 WENFENG
ZHENG,1 AND PHILIPPE POIGNET2

1School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu,
China
2LIRMM, University of Montpellier, CNRS, Montpellier, France
*boyang@uestc.edu.cn

Abstract: A novel iterative algorithm is proposed for sparse-view cone beam computed
tomography (CBCT) reconstruction based on the weighted Schatten p-norm minimization
(WSNM). By using the half quadratic splitting, the sparse-view CBCT reconstruction task is
decomposed into two sub-problems that can be solved through alternating iteration: simple
reconstruction and image denoising. The WSNM that fits well with the low-rank hypothesis
of CBCT data is introduced to improve the denoising sub-problem as a regularization term.
The experimental results based on the digital brain phantom and clinical CT data indicated the
advantages of the proposed algorithm in both structural information preservation and artifacts
suppression, which performs better than the classical algorithms in quantitative and qualitative
evaluations.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Cone beam computed tomography (CBCT) is an important medical imaging technology widely
used in clinical diagnosis and treatment. During a CBCT scanning, the cone-beam X-rays are
emitted at several equal intervals angles when the X-ray source moves in a circular orbit around
the detected object. At the other end of the device, a flat panel detector receives the X-rays that
pass through the detected object and a series of projection data (observations) are captured, from
which a 3D voxel model can be reconstructed for clinical use. The CBCT has the advantages of
fast scanning speed and high spatial resolution. However, since the X-rays are harmful to the
human body, which may induce cancer or genetic diseases [1], both doctors and patients are
looking for techniques to reduce the radiation dose of CBCT. There are two main approaches to
reduce the dose, i.e., decreasing mAs (the product of tube current and exposure time) or reduce
projection views [2]. The former introduces noise in the projection data directly, while the latter
leads to artifacts in the reconstructed model due to insufficient observations [3]. This paper
focuses on the CBCT reconstruction of sparse projection views.
Analytical methods such as the classical FDK [4] and its improved versions [5] have been

developed early for full-viewCBCT reconstruction. However, sparse views lead to serious artifacts
in the analytically reconstructed results due to insufficient projection data. To overcome the
shortcoming of the analytical methods, iterative algorithms which treat the CBCT reconstruction
as an ill-posed linear problem have been investigated, such as the ART [6], SART [7], OS-SART
[8], and EM [9]. Although the reconstruction performance has been improved, it is still very
challenging for very sparse views.
The statistical iterative reconstruction (SIR) framework has been studied to further improve

the sparse-view reconstruction. Generally, the objective function of SIR is composed of two
items. The first item is a data fidelity item, which drives the reconstruction result consistent
with the limited projection data as possible. The second item is a regularization (or prior)
item, which limits the solution to the prior knowledge of statistics. The regularization term
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can be built on various prior models, among which the total variation (TV) [10–12] is the most
commonly used. Based on the TV minimization, several CBCT reconstruction algorithms have
been proposed [13,14]. However, these TV-based methods suffer from the staircase effect due to
the piecewise assumption being used. To overcome this problem, some improved TV terms have
been introduced, such as the ASD-POCS algorithm [15], total p-variation [16], and prior contour
based total variation [17]. Besides the TV, other regularization techniques are also investigated
for sparse-view CBCT reconstruction, such as the dictionary learning [18], compressive sensing
[19], and Hessian Schatten penalties [20]. In addition, deep learning techniques are also used for
the CBCT reconstruction, and good results have been reported [21,22].
Recently, in the field of image and signal denoising, the low-rank matrix approximation

(LRMA) has attracted wide attention. In [23] and [24], the nuclear norm minimization (NNM)
and the Schatten p-norm (0<p ≤ 1) minimization (SNM) are used to solve the LRMA respectively.
As a convex relaxation of rank minimization, the NNM is a special case of the SNM when p= 1
and easier to solve, while the SNM performs better for accurate data recovery [25]. However, both
NNM and SNM treat all singular values equally and shrink them with the same threshold, which
causes poor edge/texture preservation, as larger singular values normally carry more structural
information. To overcome this shortcoming, the weighted versions, i.e., WNNM [26] and WSNM
[27] are proposed, which shrink the larger singular values less during rank minimization. As
reported in [27], compared with the WNNM, the WSNM is a better approximation to the LRMA
problem, which can be transformed into a series of independent non-convex lp-normminimization
problem and solved efficiently with a generalized soft-thresholding (GST) algorithm [28].
In this paper, we propose a novel iterative algorithm for sparse-view cone beam computed

tomography (CBCT) reconstruction. The nonlocal self-similarity within the medical CBCT data
is utilized to improve the reconstruction. Inspired by [27], the WSNM is introduced to quantify
this self-similarity and regularize the reconstructed voxels. The main contributions of this work
are as follow: 1) the sparse-view CBCT reconstruction task defined as an ill-posed inverse problem
is decomposed into two sub-problems by using the half quadratic splitting (HQS) technique [29],
i.e., least-square reconstruction and low-rank image denoising; 2) the WSNM originally proposed
for 2D image denoising is extended for CBCT reconstruction, as a regularization term to impose
low-rank constraint on the reconstructed voxels. Experimental results on various datasets show
that the proposed algorithm performs excellently in both qualitative and quantitative evaluations.
It achieves a good balance between noise suppression and structural information preservation.
The proposed method is also better than the WNNM-based method, benefiting from the extended
WSNM which can effectively utilize the correlations between the non-local similar blocks of
reconstructed data to preserve structural information.

2. Reconstruction model and solution framework

2.1. General reconstruction model

Let x =
[

x1 x2 . . . xN

]T
be the vectorized voxels and y =

[
y1 y2 . . . yM

]T
be the

vectorized observations of several views. The CBCT imaging can be described by [30]

y = Ax, (1)

where A is a M ×N system matrix, whose element aij denotes the contribution of the j-th voxel xj
to the i-th observation yi and can be scaled by the length of the intersection of the i-th projection
ray (that generates yi) with xj.

The goal of CBCT reconstruction is to recover the non-negative voxels x from the observations
y with the known system matrix A. To reduce the radiation dose, sparse projection views are
adopted, which results in insufficient observations and thus makes the voxels hard to solve from
Eq. (1). Regularization items are normally used to provide additional constraints to voxels, such
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that the voxels can be estimated by solving the following optimization problem [31]

arg min
x
| |Ax − y| |22 + λR(x), (2)

where the first item is a data fidelity term to ensure that the projections of the estimated voxels
are consistent with the observations captured from the CBCT device, R(x) is the regularization
function that derives from inherent characteristics of voxel data for providing additional constraints
to x, and λ is a factor to balance the weights of the two terms.

2.2. Solution via half quadratic splitting

To solve Eq. (2), the HQS technique is used to decouple the data fidelity term and the regularization
term. By introducing an auxiliary variable f and replacing the original variable x in the
regularization term, Eq. (2) can be written as

arg min
x
| |Ax − y| |22 + λR(f), s. t. f = x. (3)

By using the penalty function method, Eq. (3) can be rewritten as an unconstrained optimization
problem of two variables x and f

arg min
x,f
| |Ax − y| |22 + β | |f − x| |22 + λR(f), (4)

with a large penalty factor β. By fixing one variable and solving another alternatively, the CBCT
reconstruction problem defined in Eq. (2) is finally transformed into the alternating iterative
optimization of two simple sub-problems

fi+1 = arg min
f
β | |f − xi | |

2
2 + λR(f), (5)

xi+1 = arg min
x
| |Ax − y| |22 + β| |fi+1 − x| |22 , (6)

where β increases with the number of iterations.
The first sub-problem associated with the regularization term can be equivalent to a denoising

task under the assumption of additive noise, i.e., restoring the true data f from the noisy data xi
of a noise variance proportional to λ/β with a denoiser prior R(f). In this work, the weighted
Schatten p-norm of similar voxel blocks is used as the prior to improve the denoising task, and
the solution of Eq. (5) based on the WSNM is given in Section 3.

The second sub-problem associated with the data fidelity term is a linear least-squares problem
in essence. It can be written as

xi+1 = arg min
x
| |A′x − y′ | |22 , (7)

and solved directly by xi+1 = (A′TA′)−1A′Ty′ with the expanded system matrix and observation
vector

A′ = ©«
A
√
βI

ª®¬ , y′ = ©«
y

√
βfi+1

ª®¬ . (8)

The initial voxels x0 can be reconstructed from the observations y by using the SART algorithm,
which continuously reduces the error between the estimated projections and the real observations



Research Article Vol. 28, No. 24 / 23 November 2020 / Optics Express 35472

by looping over all views until a convergence criterion or an upper limit of the iteration is met.
The iteration formula of the SART is given by

x(k+1)j = x(k)j + α

∑
i∈Iϕ

µiaij∑
i∈Iϕ

aij
, µi =

yi −
N∑

j=1
aijxj

(k)

N∑
j=1

aij

, (9)

where xj
(k) represents the j-th voxel in the k-th iteration, Iϕ represents the set of the projection

rays at the view ϕ, α is the step size parameter that controls the degree of correction.
The proposed sparse-view CBCT reconstruction scheme is summarized in Algorithm 1.

Algorithm 1 Sparse-view CBCT reconstruction

Inputs: System matrix A, projection data y

1: Calculate initial reconstruction x0 by using the SART algorithm (see Eq. (9)); i= 0

2: Repeat

3: solving fi+1 from Eq. (5) (Algorithm 2 in Section 3)

4: calculating xi + 1 by using Eq. (7)

5: i← i + 1

6: Until stopping criterion is satisfied

Output: Reconstruction result xi

3. Solving denoising sub-problem

Data and signals derived from real world normally contain structural information that has signifi-
cant associations between their elements. Information redundancy caused by the correlations can
be used to regularize the reconstructed voxels from insufficient observations. To achieve this,
the noisy voxels reconstructed from Eq. (6) are divided into non-overlapping reference blocks
of the same size. For each reference block, similar blocks that may overlap are grouped via a
sliding-window matching as done in [32]. Each group represents a specific type of structure and
forms a 2D matrix by reshaping every block into a column vector, which should be low rank
due to the similarity. By using the LRMA to each grouped matrix, the denoising sub-problem
defined in Eq. (5) can be solved.

As discussed in Introduction, a state-of-the-art LRMA technique, the WSNM, is employed to
solve Eq. (5) in this work. The original WSNM algorithm is designed for 2D image denoising.
Although the voxels can be processed with the 2D WSNM slice by slice, the 3D structure
information between slices cannot be used for reconstruction. Therefore, we extend the WSNM
based on the 3D block grouping.

Since the processing steps for each block group are exactly the same, without loss of generality,
we use X to denote a 2D matrix grouped from the noisy voxels x. Each 2D matrix is denoised
independently with the proposed WSNM algorithm, and a complete 3D voxel model can be
finally obtained by reassembling the denoised blocks back.
With the assumption of additive white Gaussian noise, the noisy matrix X can be written as

X = F + N, where N denotes the noise matrix, and the true matrix F is low rank due to the
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similarity of the grouped blocks. Let | |F| |w, p be the weighted Schatten p-norm of the matrix F

| |F| |w, p =

(
L∑

l=1
wlδ

p
l

) 1
p

, (10)

where L is the rank of F, δl is the l-th singular value of F, and w is a weight vector composed of
the non-negative weights wl. With the WSNM, the true matrix F is recovered from the noisy
matrix X by solving

arg min
F
| |X − F| |2F + | |F| |

p
w, p, (11)

where the penalty factors in Eq. (5) are merged into the weight vector w, which adjusts not only
the weights of various singular values but also the balance between the F-norm fidelity term
and the Schatten p-norm regularization term as a whole. In practice, the noise and artifacts
introduced by the sparse-view reconstruction are very complex, which do not obey the Gaussian
assumption. However, the WSNM can work well, as most of noise and artifacts will increase the
weighted Schatten p-norm of the data matrix.

Let σ2
N denote the variance of the noise, which can be estimated effectively with the filter-based

approaches from the noisy matrix X. The weights in w should be proportional to σ2
N and increase

with the size of the matrix to fit the F-norm of the fidelity term. In addition, since larger singular
values normally correspond to important structural information that should be preserved more in
the denoised voxels, smaller weights should be adopted for larger singular values, i.e. ωl ≤ ωl+1
for δl ≥ δl+1. As suggested in [27], we set the weights as

wl = c
√

Sσ2
N/(δ

1/p
l + ε), (12)

where c is a constant, S is the number of voxels contained in X, and ε is a very small constant to
avoid dividing by zero. Because the true matrix F is unknown, its singular values δl in Eq. (12)
can be estimated by

δ̂l =
√

max{σ2
l − Sσ2

N , 0}, (13)

where σl corresponds to the l-th singular values of the noisy matrix X.
Let X = UΣVT be the SVD of X, where Σ is the diagonal matrix of singular values {σl}

L
l=1

sorted in descending order. As proven in [27], the optimal solution of Eq. (11) can be computed
by F = U∆VT, where the singular values of F contained in ∆ are solved from

arg min
{δl }

L∑
l=1
[(δl − σl)

2 + wlδ
p
l ], s. t. δl ≥ 0 and δl ≥ δl+1. (14)

Equation (14) defines a complex non-convex and non-smooth multi-variable optimization
problem with coupled inequality constraints. Fortunately, with the ascending weights (0<wl ≤

wl+1) and the descending singular values (σl ≥ σl+1>0), as shown in [27], Eq. (14) can be
decoupled into L independent single-variable optimizations without any constraints

argmin
δl

(δl − σl)
2 + wlδ

p
l , (15)

which can be easily solved by using the GST algorithm [28].
Given p and wl, a threshold is defined as

τ = (2wl(1 − p))
1

2−p + wlp(2wl(1 − p))
p−1
2−p . (16)

If σl<τ, δl = 0 is the global optimum of Eq. (15), otherwise, the optimum satisfies

δl − σl + wlpδl
p−1 = 0 (17)

and can be solved iteratively (for more details please refer to [28]).
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Finally, by reassembling all denoised blocks back, the denoised voxels f can be obtained. The
steps of the denoising algorithm is given in Algorithm 2.

Algorithm 2 Denoising voxels by WSNM

Input: Noisy voxels x

1: Divide x into non-overlapping reference blocks

2: for each reference block, do

3: Search similar blocks to form a 2D matrix X

4: Singular value decomposition: X = UΣVT

5: Estimate weight vector w by using Eq. (12) and (13)

6: Calculate ∆ = diag(δ1, δ2, · · · , δL) from Eq. (15) by using the GST algorithm [28]

7: Get denoised matrix F = U∆VT

8: end for

9: Reassemble denoised blocks to form f

Output: Denoised voxels f

4. Experiments and results

In order to evaluate the reconstruction results, three qualitative indices, the root mean square
error (RMSE), peak signal to noise ratio (PSNR), and structural similarity index (SSIM) are used.
The RMSE is defined as

RMSE =

√√√
1
N

N∑
i=1
(x̂i − xi)

2, (18)

where x̂i and xi are the voxels of the reconstruction model and ground truth, respectively, and N
is the total number of voxels. The PSNR is defined as

PSNR = 20log10

(
2b − 1
RMSE

)
, (19)

where b is the bit number of the voxel value. Both RMSE and PSNR are based on the deviation
of voxels and do not consider the structural information in the CBCT data, which may lead to
inconsistent with the human perception. The SSIM measures the structural similarity of two
signal, which is defined as

SSIM =
(2µx̂µx + C1)(2σx̂x + C2)

(µ2x̂ + µ
2
x + C1)(σ

2
x̂ + σ

2
x + C2)

, (20)

where µx̂ and σx̂ are the mean value and variance of N reconstructed voxels {x̂i} respectively,
µx and σx are those of the true voxels {xi}, σx̂x is the covariance between {x̂i} and {xi}, and C1
and C2 are constants to avoid instability, which are set to 0.0001 (2b − 1)2 and 0.0009 (2b − 1)2,
respectively.
The power p in the WSNM is set to 0.9 in the experiments. As indicated in [27], the best

power p is proportional to the noise level of the data being processed. In terms of the CBCT
reconstruction, the power p can be chosen according to the number of projection views used for
reconstruction, which means that a smaller p is preferred for more sparse views. The size of
blocks is 4 × 4 × 4 and the number of similar blocks is 70.
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Fig. 1. Brain phantom reconstruction (slice 66): (a) ground truth, (b) FDK, (c) SART, (d)
ASD-POCS, (e) WNNM-3D, (f) WSNM-3D

4.1. Reconstruction of digital brain phantom

The digital brain phantom is used for validation, which is generated based on the real MRI data
of human brain and widely used for evaluating the CBCT reconstruction [33]. The phantom has
256 × 256 × 256 voxels with the resolution of 1 × 1 × 1 mm3. The Siddon’s ray-driven algorithm
[34] is used to simulate the projection data from 32 sparse views. The WNNM, proposed for
conventional CT slice reconstruction in [35], is extended to 3D (labeled as WNNM-3D) as a
benchmark for CBCT reconstruction. Besides, three classical methods discussed in Introduction,
the FDK, SART, and ASD-POCS, are also used for comparison.
The reconstruction results are shown in Fig. 1, where the 66th slice in horizontal direction is

selected for comparison due to containing rich structural information. The FDK proposed for
full-view reconstruction cannot restore a clinically acceptable image from insufficient projection
data. The reconstructed slice in Fig. 1(b) is seriously damaged by the streak artifacts. The SART
is much better than the FDK, however, as shown in Fig. 1(c) the streak artifacts is still obvious
within the tissue region. The ASD-POCS can remove the artifacts and suppress the noise very
well, however, meanwhile the edges are blurred and some critical structural details are ignored in
Fig. 1(d). The WNNM-3D and the proposed WSNM-3D methods perform excellently in the
preservation of structure information. In terms of noise suppression, the proposed method (see
Fig. 1(f)) is better than the WNNM-3D (see Fig. 1(e)) and much better than the SART. For a
clearer comparison, the region of interest (ROI) marked by the box in Fig. 1(a) are zoomed in
and shown in Fig. 2. As indicated by the red arrow, nearly perfect edges are restored by the
WNNM-3D and the WSNM-3D methods, while the edges reconstructed by the ASD-POCS are
too smooth and compared with the ground truth in Fig. 2(a) some structural details (indicated by
the yellow arrow) are obviously lost in Fig. 2(d).

To show the difference between voxels intuitively, Fig. 3 shows the voxel curves and their local
magnifications along the coronal axis (128th row, 66 slice) and the vertical axis (128th row, 128th
column). As shown in Fig. 3(b) and (e), for the segments where the voxel values change greatly,
the curves yielded by the proposed algorithm are the most consistent with the reference curves
(ground truth), which means a better edge preservation ability, by contrast, the ASD-POCS is
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Fig. 2. Zoom in on ROI in Fig. 1: (a) ground truth, (b) FDK, (c) SART, (d) ASD-POCS, (e)
WNNM-3D, (f) WSNM-3D

the worst performer, whose curves are too smooth. While for the smooth segments shown in
Fig. 3(c) and (f), the ASD-POCS, WNNM-3D, WSNM-3D performs much better than the SART,
whose curves are polluted seriously by the noise.

Fig. 3. Voxel curves reconstructed by various algorithms: (a) voxel curve along coronal axis
at 128th row, 66th slice, (b)-(c) local magnifications of (a); (d) voxel curve along vertical
axis at 128th row, 128th column; (e)-(f) local magnifications of (d).
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The results of the quantitative evaluation are given in the Table 1. Consistent with the visual
inspection, the proposed algorithm achieves the best scores in all three indices.

Table 1. Quantitative evaluation for brain phantom reconstruction from
32 views

RMSE PSNR SSIM

FDK 0.0766 22.3154 0.9295

SART 0.0219 33.1911 0.9855

ASD-POCS 0.0227 32.8795 0.9846

WNNM-3D 0.0137 37.2656 0.9890

WSNM-3D 0.0112 39.0156 0.9898

4.2. Reconstruction of real clinical data

Clinical voxel data captured from an abdomen routine scan with a Neusoft NeuViz 128 CT system
are also used for validation. The X-ray tube voltage is 120kVp, the tube current is 375mA, and
the exposure time is 20ms/slice. The original voxels is 512× 512× 266, which are down-sampled
to 256 × 256 × 266 with a resolution of 1.6367 × 1.6367 × 1 mm3 as the ground truth. The
projection data simulated at 32 views are used for reconstruction.
Figures 4 and 5 show the reconstruction results at the slices 60 and 200, respectively, which

are compared with the ground truth. The ROIs marked by the boxes are zoomed in and shown in
Fig. 6. The results are consistent with those on the digital brain phantom. As marked by the
arrows, the SART preserves edges well but introduces serious artifacts, while the ASD-POCS can
suppress artifacts but also blur the edges. The WSNM-3D, slightly better than the WNNM-3D,
yields more balanced results.

Fig. 4. Clinical data reconstruction (slice 60): (a) ground truth, (b) FDK, (c) SART, (d)
ASD-POCS, (e) WNNM-3D, (f) WSNM-3D

Figure 7 shows the absolute difference images between the reconstruction slices and the ground
truth. The WSNM-3D achieves the smallest differences at both slices, which further confirms the
advantages of the proposed method.
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Fig. 5. Clinical data reconstruction (slice 200): (a) ground truth, (b) FDK, (c) SART, (d)
ASD-POCS, (e) WNNM-3D, (f) WSNM-3D

Fig. 6. Zoom in on the ROIs in Figs. 4 and 5. The three rows from top to bottom are ROIs
I, II, and III, respectively. The columns from left to right correspond to the ground truth,
SART, ASD-POCS, WNNM-3D and WSNM-3D.

For further validation, the reconstruction results in the sagittal and coronal planes are shown
in Figs. 8 and 9, respectively. The results are consistent with those in the horizontal plane (see
Figs. 4 and 5), the proposed algorithm achieves a good balance between the artifacts suppression
and the structural information preservation.

Table 2 shows the quantitative evaluation of the reconstruction results for the clinical data. The
best results are also achieved by the proposed algorithm.

Discussion on computational complexity: The most time-consuming step of the proposed
algorithm is step 3 in Algorithm 1, i.e., the WSNM for denoising voxels (Algorithm 2), and
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Fig. 7. Absolute difference images between the reconstruction slices and ground truth.
The first row shows difference images of slice 60 and the second shows those of slice 200.
The columns from left to right are obtained by FDK, SART, ASD-POCS, WNNM-3D, and
WSNM-3D.

Fig. 8. Reconstruction results in sagittal plane: (a) ground truth, (b) FDK, (c) SART, (d)
ASD-POCS, (e) WNNM-3D, (f) WSNM-3D

Table 2. Quantitative evaluation for clinical data reconstruction from
32 views

RMSE PSNR SSIM

FDK 0.1350 17.3933 0.8345

SART 0.0354 29.0199 0.9743

ASD-POCS 0.0404 27.8724 0.9684

WNNM-3D 0.0261 31.6672 0.9800

WSNM-3D 0.0242 32.3237 0.9811
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Fig. 9. Reconstruction results in coronal plane: (a) ground truth, (b) FDK, (c) SART, (d)
ASD-POCS, (e) WNNM-3D, (f) WSNM-3D

the calculation of SVD (step 4) and GST (step 6) dominate the main computation in Algorithm
2. Assume that the size of blocks is b × b × b, and N similar blocks are searched for each
reference block, corresponding to a b3 × N noisy matrix X. The computation complexity of SVD
is O(min(b6N, b3N2)) and the GST is O(MN) [27], where M denotes the number of iterations in
the GST algorithm. Letting K denote the total number of reference blocks in a reconstructed
model, therefore, O(K(min(b6N, b3N2) +MN)) is required for each WSNM iteration.

In our experiments, reconstructing a 256 × 256 × 266 clinical voxel data with the WSNM-3D
algorithm takes about 4 hours by using Matlab 2016a on a PC with 3.3GHz CPU and 12GB
RAM. The WNNM-3D takes about the same amount of time. The FDK is the most efficient
algorithm, taking about 3 minutes. The ASD-POCS and SART take about 20 and 30 minutes
respectively. The WSNM-3D is the most time consuming methods in the tests. However, since
the WSNM for each reference block is exactly the same, which can be computed in parallel and
independently, the reconstruction speed of the WSNM-3D algorithm can be improved greatly by
using GPU acceleration and more efficient programming languages (e.g., C/C++).

5. Conclusion

This paper proposes a novel iterative algorithm for sparse-view CBCT reconstruction based on
the weighted Schatten p-norm minimization. By using the half quadratic splitting, the spare-view
CBCT reconstruction problem is decomposed into two sub-problems: simple reconstruction
sub-problem and denoising sub-problem, which can be solved alternately. The weighted Schatten
p-norm minimization proposed in the field of image denoising is extended to 3D to regularize the
denoising sub-problem. Benefiting from the extended WSNM, the structural similarity in the 3D
voxel can be used effectively to improve the reconstruction results. The digital brain phantom
and clinical CT data are used to verify the proposed method. Experimental results show that the
proposed algorithm can effectively eliminate the staircase effect, remove artifacts and suppress
noise. In terms of edge/structure information preservation, the proposed algorithm performs
better than the classical algorithms. The results measured by the three quantitative indicators
also confirm the advantage of the proposed algorithm.
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In future work, noise models that are more consistent with the CBCT reconstruction than the
additive white Gaussian noise will be considered during the voxel denoising. Complex low-dose
problem caused by both reducing projection views and decreasing mAs (the product of tube
current and exposure time) levels (that introduces noises directly in the projection images) will
also be considered based on the proposed reconstruction scheme.
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