N. Wen, H. Guan, R. Hammoud, D. Pradhan, T. Nurushev et al., Dose delivered from Varian's CBCT to patients receiving IMRT for prostate cancer, Physics in Medicine and Biology, vol.52, issue.8, pp.2267-2276, 2007.

Y. Gao, Z. Bian, J. Huang, Y. Zhang, S. Niu et al., Low-dose X-ray computed tomography image reconstruction with a combined low-mAs and sparse-view protocol, Optics Express, vol.22, issue.12, p.15190, 2014.

M. Kachelrieß, O. Watzke, and W. A. Kalender, Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT, Medical Physics, vol.28, issue.4, pp.475-490, 2001.

L. A. Feldkamp, L. C. Davis, and J. W. Kress, Practical cone-beam algorithm, Journal of the Optical Society of America A, vol.1, issue.6, p.612, 1984.

S. Tang, K. Huang, Y. Cheng, T. Niu, and X. Tang, Three-Dimensional Weighting in Cone Beam FBP Reconstruction and Its Transformation Over Geometries, IEEE Transactions on Biomedical Engineering, vol.65, issue.6, pp.1235-1244, 2018.

R. Gordon, R. Bender, and G. T. Herman, Algebraic Reconstruction Techniques (ART) for three-dimensional electron microscopy and X-ray photography, Journal of Theoretical Biology, vol.29, issue.3, pp.471-481, 1970.

A. H. Andersen and A. C. Kak, Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of the Art Algorithm, Ultrasonic Imaging, vol.6, issue.1, pp.81-94, 1984.

G. Wang and M. Jiang, Ordered-subset simultaneous algebraic reconstruction techniques (OS-SART), J. X-Ray Sci. Technol, vol.12, issue.3, pp.169-177, 2004.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum Likelihood from Incomplete Data Via theEMAlgorithm, Journal of the Royal Statistical Society: Series B (Methodological), vol.39, issue.1, pp.1-22, 1977.

L. I. Rudin and S. Osher, Total variation based image restoration with free local constraints, Proceedings of 1st International Conference on Image Processing, pp.31-35

H. Bai, W. Zhang, J. Zhao, Y. Wang, and J. Sun, New reconstruction method for few-view grating-based phase-contrast imaging via dictionary learning, Optics Express, vol.26, issue.20, p.26566, 2018.

N. Viganò, P. M. Gil, C. Herzog, O. De-la-rochefoucauld, R. Van-liere et al., Advanced light-field refocusing through tomographic modeling of the photographed scene, Optics Express, vol.27, issue.6, p.7834, 2019.

H. M. Huang and I. Hsiao, Accelerating an Ordered-Subset Low-Dose X-Ray Cone Beam Computed Tomography Image Reconstruction with a Power Factor and Total Variation Minimization, PLOS ONE, vol.11, issue.4, p.e0153421, 2016.

T. Li, S. Tang, Z. Qiao, J. Yang, F. Yu et al., 3-D weighted CBCT iterative reconstruction with TV minimization from angularly under-sampled projection data, Optik, vol.172, pp.161-176, 2018.

E. Y. Sidky and X. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Physics in Medicine and Biology, vol.53, issue.17, pp.4777-4807, 2008.

A. Cai, L. Wang, B. Yan, L. Li, H. Zhang et al., Efficient TpV minimization for circular, cone-beam computed tomography reconstruction via non-convex optimization, Computerized Medical Imaging and Graphics, vol.45, pp.1-10, 2015.

Y. Chen, F. F. Yin, Y. Zhang, Y. Zhang, and L. Ren, Low dose CBCT reconstruction via prior contour based total variation (PCTV) regularization: a feasibility study, Physics in Medicine & Biology, vol.63, issue.8, p.085014, 2018.

J. Liu, Y. Chen, Y. Hu, and L. Luo, Low-dose CBCT reconstruction via 3D dictionary learning, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp.735-738, 2016.

K. Choi, J. Wang, L. Zhu, T. Suh, S. Boyd et al., Compressed sensing based cone-beam computed tomography reconstruction with a first-order methoda), Medical Physics, vol.37, issue.9, pp.5113-5125, 2010.

L. Liu, X. Li, K. Xiang, J. Wang, and S. Tan, Low-Dose CBCT Reconstruction Using Hessian Schatten Penalties, IEEE Transactions on Medical Imaging, vol.36, issue.12, pp.2588-2599, 2017.

G. Wang, J. C. Ye, K. Mueller, and J. A. Fessler, Image Reconstruction is a New Frontier of Machine Learning, IEEE Transactions on Medical Imaging, vol.37, issue.6, pp.1289-1296, 2018.

H. H. Chen, Y. Zhang, W. Zhang, P. Liao, K. Li et al., aLow-dose CT via convolutional neural network, Biomedical Optics Express, vol.8, issue.2, p.679, 2017.

A. Cuadros, X. Ma, and G. R. Arce, Compressive spectral X-ray tomography based on spatial and spectral coded illumination, Optics Express, vol.27, issue.8, p.10745, 2019.

L. Liu, W. Huang, and D. R. Chen, Exact minimum rank approximation via Schattenp-norm minimization, Journal of Computational and Applied Mathematics, vol.267, pp.218-227, 2014.

W. Dong, Z. Li, and D. Xiang, Prior image constrained low-rank matrix decomposition method in limited-angle reverse helical cone-beam CT, Journal of X-Ray Science and Technology, vol.23, issue.6, pp.759-772, 2015.

S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng et al., Weighted Nuclear Norm Minimization and Its Applications to Low Level Vision, International Journal of Computer Vision, vol.121, issue.2, pp.183-208, 2016.

Y. Xie, S. Gu, Y. Liu, W. Zuo, W. Zhang et al., Weighted Schatten <inline-formula> <tex-math notation="LaTeX">$p$ </tex-math> </inline-formula>-Norm Minimization for Image Denoising and Background Subtraction, IEEE Transactions on Image Processing, vol.25, issue.10, pp.4842-4857, 2016.

W. Zuo, D. Meng, L. Zhang, X. Feng, and D. Zhang, A Generalized Iterated Shrinkage Algorithm for Non-convex Sparse Coding, 2013 IEEE International Conference on Computer Vision, pp.217-224, 2013.

K. Zhang, W. Zuo, S. Gu, and L. Zhang, Learning Deep CNN Denoiser Prior for Image Restoration, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.2808-2817, 2017.

K. Sauer and C. Bouman, A local update strategy for iterative reconstruction from projections, IEEE Transactions on Signal Processing, vol.41, issue.2, pp.534-548, 1993.

C. Han and J. Baek, Multi-pass approach to reduce cone-beam artifacts in a circular orbit cone-beam CT system, Optics Express, vol.27, issue.7, p.10108, 2019.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering, IEEE Transactions on Image Processing, vol.16, issue.8, pp.2080-2095, 2007.

A. Aichert, M. T. Manhart, B. K. Navalpakkam, and R. Grimm, A realistic digital phantom for perfusion C-arm CT based on MRI data, 2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC), pp.1-2, 2013.

R. I. Siddon, Fast calculation of the exact radiological path for a three-dimensional CT array, Medical Physics, vol.12, issue.2, pp.252-255, 1985.

Y. Zhang, K. Yang, Y. Zhu, W. Xia, P. Bao et al., NOWNUNM: Nonlocal Weighted Nuclear Norm Minimization for Sparse-Sampling CT Reconstruction, IEEE Access, vol.6, pp.73370-73379, 2018.