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Abstract — Cost reduction is a crucial step in testing AMS/RF 
circuits, and one way of achieving this is to implement an indirect 
test strategy. Although this strategy relaxes the requirements on 
test equipment, it still raises some accuracy concerns, which might 
compromise the test quality. In this work, we explore the benefit 
that can be brought by a two-tier adaptive test flow, in which only 
circuits with a sufficient prediction confidence level are evaluated 
by the indirect test while others are re-evaluated by specification-
based test. A methodology is presented that permits to explore 
different tradeoffs between test quality and test cost and to make 
pertinent choices for the efficient implementation of such a test 
flow. The results are illustrated on a front-end RF circuit designed 
for WLAN applications and show that substantial test cost 
reduction can be achieved without compromising the test quality.  

Keywords: Indirect test, RF integrated circuits, machine-learning 
algorithms, quality metrics, test efficiency, test confidence  

I. INTRODUCTION 

Testing Integrated Circuits (ICs) is a crucial step in the 
production process since it ensures the quality of manufactured 
devices. However, test costs represent a significant part of the 
production costs, especially for RF circuits that require very 
expensive specific test equipment and long test procedures in 
order to measure the RF performances and verify that they 
comply with their specifications. An attractive solution is to 
adopt an indirect test approach, in which the device RF 
performances will be predicted from Indirect Measurements 
(IMs) that do not require specific equipment [1]. Such approach 
could therefore significantly reduce the testing costs, provided 
that sufficient confidence can be placed in the accuracy and 
robustness of the predictions. Many research works have been 
conducted over the past twenty years to investigate the influence 
of different elements on the quality achieved by indirect test: 
composition of the learning population [2], use of embedded 
sensors or multi-Vdd conditions [3,4], selection of relevant 
indirect measurements [5,6] etc. A comprehensive review of 
works related to indirect test can be found in [7]. 

In this paper, we explore on a practical case study how it is 
possible to combine indirect test and standard specification test 
in a two-tier adaptive test flow. The objective is to benefit from 
the test cost reduction offered by indirect test without 
compromising the test quality brought by specification test. A 
complete methodology is presented that permits to guide the test 
engineer in the different choices he has to make for an efficient 
implementation of the test flow. The paper is organized as 
follows. Section II recalls the principle of indirect test and 
introduces the two-tier adaptive test flow together with its 
specific proposed implementation. The methodology for the 

practical elaboration of the test flow is then detailed in Section 
III. Finally, the case study is presented in Section IV, and results 
are presented and analyzed in section V.  

II. BASICS OF INDIRECT TEST  

The indirect test principle relies on the fact that 
manufacturing process variations induce not only variations on 
specification parameters but also variations on some indirect 
parameters. Using measurements of indirect parameters to test 
integrated circuits (ICs) entails to establish the link between both 
parameter spaces. The complexity of the relationship between 
these two spaces makes necessary to use machine-learning. As a 
consequence, the indirect test synopsis combines two distinct 
phases, named training and production testing phases, as 
illustrated in Figure 1. During the training phase, both 
conventional performance measurements and indirect 
measurements (IMs) are performed on a set of training devices 
and a machine-learning algorithm is trained to build regression 
models that map the IM space to the performance space. Then 
during the production testing phase, only the low-cost indirect 
measurements are performed and the performances of every new 
device are predicted using the mapping learned in the initial 
training phase; device is then binned as a good or bad circuit by 
comparing predicted performances with specification limits.  

 
Fig.1. Indirect test synopsis. 

A drawback of this strategy is that machine-learning 
algorithms used to build regression models are perceived as a 
black box and often induce a lack of confidence. A solution to 
increase confidence and guarantee test quality is an extension 
called the two-tier adaptive test flow. The principle is illustrated 
in Figure 2. The idea is that during production testing, every 
device is first processed by the indirect test; if the confidence in 
the decision proposed by this first tier is high enough, the device 
is labeled according to the indirect test decision; otherwise it 
goes to the second tier where it is retested through the standard 
specification test. Assuming that only a small number of circuits 
will be retested through the standard specification test, this 



   

approach remains cost efficient as the majority of devices will 
be sorted using only the low-cost indirect test. 

 
Fig.2. Two-tier adaptive test flow synopsis. 

The two-tier approach was first proposed in the context of 
classification-oriented indirect test, where the machine-learning 
algorithm is not used to predict the device performances but is 
trained to define a pass/fail boundary directly in the IM space 
[8,9]. In this case, confidence is established by looking at the 
location of a device with respect to guard-bands allocated around 
the pass/fail boundary in the IM space. The two-tier approach 
has also been explored in the context of prediction-oriented test, 
based on the use of model redundancy [10]. In this case, 
confidence is established by checking the consistency between 
the values predicted by the different redundant models.  

In this work, we investigate a novel implementation of the 
two-tier adaptive test flow in the context of prediction-oriented 
indirect test. The idea is to evaluate confidence based on a 
tolerance zone around test limits. Indeed, previous works have 
shown that almost all of misclassified circuits are circuits with a 
predicted value close to a test limit, while correct decisions are 
taken for circuits with a predicted value far from test limits [11]. 
Therefore, the proposal is to establish confidence by looking at 
the location of the predicted value with respect to a tolerance 
zone defined around a test limit, as illustrated in Figure 3. More 
precisely, any device with a performance prediction that falls 
outside the tolerance zone will be directly classified as a 
good/bad device for this performance according to the indirect 
test tier, while any device with a prediction that falls within the 
tolerance zone will be directed to the second tier in order to be 
evaluated through conventional specification test.  

 
Fig.3. Principle of confidence estimation in the proposed  

two-tier adaptive test flow. 

The size of the tolerance zone is a crucial parameter that will 
determine the tradeoff between test quality and test cost. Indeed, 
with a tolerance zone set to zero, 100% of the devices are 

evaluated with the indirect test tier and the test costs are minimal; 
however, the test quality might not be sufficient to meet the 
industrial constraints. By creating and expanding the tolerance 
zone, we expect an improvement of the test quality but at the 
expense of a number of devices that need to be evaluated with 
the conventional specification test. It is therefore essential to 
have an appropriate setting of this parameter during the initial 
learning phase in order to really benefit from the two-tier 
adaptive test approach.  

III. METHODOLOGY 

In the previous section, we have introduced the principle of 
the indirect test strategy and the two-tier adaptive test approach. 
The practical implementation implies several choices, such as 
the selection of pertinent IMs, the choice of the regression 
algorithm or the size of the tolerance zone. Obviously the 
achieved test quality depends on these choices. In this section, 
we describe the methodology that has been defined in order to 
assist the test engineer in the elaboration of the test flow. The 
general overview of this methodology is depicted in Figure 4.  

 
Fig.4. General overview of the test flow elaboration methodology. 

The first phase concerns data preparation. The initial dataset 
should contain the conventional performance measurements and 
a large variety of indirect measurements on a sufficient number 
of circuits (typically several thousands). This full dataset is first 
partitioned into two datasets, called learning and validation sets. 
The learning set will be used to explore the different possibilities 
regarding the test flow implementation and to identify the best 
options. The second set is dedicated to the validation of the 
retained options using an independent set of devices; it is 
intended to represent the production testing phase. Note that, 
although both sets are independent, it is essential that they 
present similar characteristics to ascertain the validity of results. 
Therefore, the partitioning is realized using Latin-Hypercube 
Sampling (LHS), which is a sampling approach that preserves 
the statistical characteristics of the initial distribution in the 
sampled sub-datasets. The learning set is in turn partitioned into 
two subsets, i.e. the train set and the test set. The first one will 
be used to train the prediction models and the second one to 
evaluate the accuracy of the constructed models. It is important 
to perform this evaluation on different instances than the ones 
used for training in order to verify model generalization ability 
and avoid issues related to overfitting. Finally, note that it is 



   

often recommended in the literature to work with a dataset that 
does not contain outliers. Indeed, data outliers can spoil and 
mislead the training process resulting in longer training times, 
less accurate models and ultimately poorer results. 
Consequently, we have also considered the possibility of 
cleaning the learning set by applying a simple filter. The filter is 
applied on both the RF performances and the indirect 
measurements; it simply removes all instances that have a 

measured value outside k of the regular distribution, where k 

is a positive integer number and  is the standard deviation of 
the population [12].  

The second phase of the methodology is the model 
exploration. In this phase, a number of regression models will be 
built using different subsets of IMs. The problem of selecting a 
pertinent subset of IMs within a large set of candidates is a 
recurrent problem in the field of machine-learning, known as 
feature selection. In the context of indirect test, the common 
approach is a wrapper method called Sequential Forward 
Selection (SFS) [5]. For this study, we have implemented such a 
procedure, limiting the number of selected IMs to 15. The next 
step is then to train regression models using the selected IMs. 
Many different algorithms exist to perform this task. Classical 
algorithms include Multiple Linear Regression (MLR), Multi-
Adaptive Regression Splines (MARS), Support Vector Machine 
(SVM), or more elaborated algorithms that combine several 
models in an approach called ensemble learning [11]. For this 
study, we have implemented one of the most commonly used 
algorithms in the context of indirect test, i.e. MARS.  

The third phase of the methodology concerns model 
selection. In this phase, all models learned in the previous phase 
are used to perform prediction of devices of the test set. The 
accuracy of these models is evaluated in terms of Normalized 
Root Mean Square Error (NRMSE), which is a normalized 
measure of the rms prediction error expressed in percentage. 
Models with the lowest NRMSE are then retained as the best 
solutions for each RF performance.  

The following phase is specific to the implementation of a 
two-tier adaptive test flow. It is related to the exploration of the 
tradeoff that can be achieved between test quality expressed in 
terms of Misclassification Rate (MR), and test cost expressed in 
terms of percentage of devices that need to be retested with a 
conventional specification test. Practically for each selected 
model, the misclassification rate is first computed with a 
tolerance zone set to zero (only indirect test). The size of the 
tolerance zone is then progressively enlarged in order to study 
the evolution of the misclassification rate versus the number of 
devices directed to the second tier. The appropriate size of the 
tolerance zone can be chosen for each RF performance with 
respect to a targeted test quality, i.e. the smallest size that does 
not overcome a predefined maximum MR. 

Finally, the last phase of the methodology is dedicated to the 
evaluation of the two-tier adaptive test flow efficiency. All the 
options retained in the learning phase are evaluated on devices 
of the validation set. Indeed, it is important to verify that the 
efficiency established on the test set during the learning phase is 
preserved on the validation set, which is intended to be 
representative of the realistic conditions encountered during the 
industrial testing phase.   

IV. CASE STUDY 

The case study is a front-end integrated circuit designed for 
WLAN applications. The three main specifications to be verified 
are the gain of the receiver chain (Rx-gain), the gain of the 
transmitter chain (Tx-gain) and the Error Vector Magnitude of 
the transmitter chain (Tx-EVM). The low-cost indirect 
measurements investigated for this product include standard DC 
measurements performed on external nodes of the device 
together with internal DC measurements (the device is equipped 
with an internal DC bus and internal probes that give access to 
the voltage at some specific nodes and signatures delivered by 
built-in process monitors). Overall, we have a total of 131 
possible indirect measurements.  

An extensive campaign of measurements has been carried 
out in the production test environment and test data have been 
collected on more than 26,700 circuits coming from different 
wafers fabricated under various extreme process conditions. The 
test data, which include both the conventional measurements of 
the three RF specification performances and the 131 indirect 
measurements, constitute the full dataset. This full dataset has 
been partitioned into two sets of 13,350 devices using Latin 
Hypercube Sampling (LHS), i.e. the learning and validation sets. 
The main characteristics of these two sets are summarized in 
Table I.  

TABLE I.  CHARACTERICTICS OF LEARNING AND VALIDATION SETS  
FOR THE 3 RF PERFORMANCES 

  
RF Performance 

Tx-EVM Tx-gain Rx-gain 

Learning Set 
13,354 instances 

 Coef. of Variation 11.0% 3.0% 3.7% 

 % of good circuits 77.2% 97.9% 100% 

 % of bad circuits 22.8% 2.1% 0% 

Validation Set 
13,352 instances 

 Coef. of Variation 11.3% 3.0% 3.7% 

 % of good circuits 75.5% 97.6% 100% 

 % of bad circuits 24.5% 2.4% 0% 
 
From this table, it clearly appears that the learning and 

validation sets exhibit similar characteristics in terms of 
distribution dispersion and proportion of good or bad circuits for 
each RF performance, confirming that the use of Latin-
hypercube sampling permits to obtain several sets with the same 
distribution characteristics as the initial population. However, it 
can be noticed that the characteristics of the population 
significantly differ depending on the considered RF 
performance. For the Tx-EVM, we observe a quite large 
distribution with a dispersion around 11%; a bit more than 75% 
of circuits satisfy the targeted EVM requirement. For the 
Tx-gain, the distribution is tighter with a dispersion of only 3%; 
more than 97% of circuits satisfy the targeted gain requirement. 
Finally, for the Rx-gain, we also observe a tight distribution with 
a dispersion around 3.7%; in this case the targeted requirement 
is sufficiently far away from the distribution so that 100% of 
circuits satisfy the requirement. At this point, it is important to 
underline that circuits coming from wafers fabricated with 
corner process conditions have been included in the population 
on purpose. Therefore, the proportion of bad circuits is not 
representative of what would be the actual production yield 
under normal process conditions. 

The influence of the use of a filter during the learning phase 
has also been examined. Two different filters have been 



   

investigated, i.e. a relaxed filter with a limit at 10 and a stricter 

one with a limit at 6. The relaxed filter eliminates about 10% 
of the learning population, whereas the strict filter eliminates 
more than 35% of the learning population. The main 
characteristics of the filtered learning sets are summarized in 
Table II. It can be observed that the use of the filter does not 
significantly modify the characteristics of the learning 
population. Indeed, for each RF performance, the filtered 
learning sets exhibit a similar dispersion than the original 
learning set (maximum difference of 0.4%) and proportion of 
good or bad circuits is globally preserved (maximum difference 
of 1.2%). Although this might seem unexpected, it can be 
explained by analyzing which circuits are eliminated by the 
filter. Actually, there is no circuit with an RF performance value 
outside the regular distribution but only circuits that have 
outlying values for indirect measurements. Moreover, there is no 
direct relation between the fact that a circuit exhibits outlying 
values for indirect measurements and the fact that it is a good or 
bad circuit with respect to its RF performances. Indeed, the set 
of eliminated circuits contains good and bad circuits in the same 
proportion than the original learning set.  

TABLE II.  CHARACTERICTICS OF THE FILTERED LEARNING SETS  
FOR THE 3 RF PERFORMANCES 

  
RF Performance 

Tx-EVM Tx-gain Rx-gain 

10-filtered 
Learning Set 

12,067 instances 

 Coef. of Variation 11.0% 2.9% 3.7% 

 % of good circuits 77.4% 98.5% 100% 

 % of bad circuits 22.6% 1.5% 0% 

6-filtered 

Learning Set 
8,295 instances 

 Coef. of Variation 11.1% 2.6% 3.7% 

 % of good circuits 77.8% 99.1% 100% 

 % of bad circuits 22.2% 1.5% 0% 
 
From these observations, it is consistent that the use of the 

filter does not affect the main characteristics of the learning 
population with respect to the RF performances, but only modify 
the composition of the population with respect to the indirect 
measurements. This remark is noteworthy because it indicates 
that the use of such filter would be totally ineffective during 
production testing since it does not help to discriminate between 
good and bad circuits.  

V. RESULTS 

The methodology presented in Section III has been applied 
on our case study. Results are commented in this section, first 
regarding the selection of pertinent models, then regarding the 
efficiency of a classical indirect test implementation, and finally 
regarding the efficiency of a two-tier adaptive test flow solution.   

A. Model selection 

Results regarding the accuracy that can be achieved in the 
prediction of the three RF performances are summarized in 
Figure 5. This figure reports, for each RF performance, the 
evolution of the NRMSE score with respect to the number of 
IMs used in the construction of the model, considering either the 
original learning set or the filtered learning sets.  

Several comments arise from the analysis of these graphs. A 
first general comment is that there is no phenomenon of 
overfitting since there is no discrepancy between the NRMSE 
scores evaluated on train and test sets. Then, it can be observed 
that the level of accuracy significantly differs over the different 

performances, with an NRMSE score that can be below 1% for 
the Tx-gain and Rx-gain performances but that remains between 
2.5% and 3% for the Tx-EVM in the best cases of the different 
scenarios. Finally, regarding the influence of the learning 
population, the impact is mostly visible on the prediction of the 
Tx performances. We observe that the use of a filter leads to an 
improvement in the accuracy of the constructed models, 
especially with the strict filter.  

  
(a) Tx-EVM                                       (b) Tx-gain 

 
(c) Rx-gain  

Fig.5. NRMSE score achieved on train and test sets for  
the different scenarios of learning population 

From this exploratory phase, the best model (i.e. the one with 
the lowest NRMSE score on the test set) can be selected for each 
RF performance and for the different scenarios. Results are 
summarized in Table III, which reports for each model the 
number of selected IMs together with the NRMSE scores 
computed on train and test sets.  

TABLE III.  SUMMARY OF BEST RESULTS ACHIEVED UNDER DIFFERENT 

SCENARIOS OF LEARNING POPULATION FOR THE 3 RF PERFORMANCES  

  # IMs NRMSE-Train Set NRMSE-Test Set 

Original 
Learning Set 

Tx-EVM 15 2.86% 2.89% 

Tx-gain 13 0.85% 0.87% 

Rx-gain 15 0.60% 0.60% 

10-filtered 

Learning Set 

Tx-EVM 10 2.76% 2.86% 

Tx-gain 15 0.85% 0.84% 

Rx-gain 14 0.57% 0.58% 

6-filtered 

Learning Set 

Tx-EVM 12 2.52% 2.52% 

Tx-gain 13 0.63% 0.68% 

Rx-gain 15 0.51% 0.55% 
 
These results confirm the general trends previously 

commented on the graphs. Indeed, we observe that whatever the 
learning set, the difference between the NRMSE scores 
computed on train and test sets never exceeds 0.2%, clearly 
indicating that there is no overfitting. Regarding the 
improvement brought by the use of a filter, it is negligible in case 
of the relaxed filter with a reduction of the NRSME score that 
remains inferior to 0.1% over the 3 RF performances. In case of 
the strict filter, the improvement is also negligible for the Rx-
gain (NRMSE reduction less than 0.1%), quite small for the 



   

Tx-gain (NRMSE reduction around 0.2%), and more significant 
for the Tx-EVM (NRMSE reduction around 0.35%). 

Globally, these results are positive for the implementation of 
the indirect test strategy since they show that it is possible to 
build quite accurate models for the three RF performances. The 
best solution is obtained using models constructed on a learning 
population filtered with a strict filter. In this case, we obtain an 
accuracy of 0.55% for Rx-gain prediction, 0.68% for Tx-gain 
prediction and 2.52% for Tx-EVM prediction. 

B. Efficiency of classical indirect test implementation  

In this part, we explore the efficiency that can be achieved 
with a classical indirect test implementation, i.e. all circuits are 
evaluated using only the indirect test flow and there is no circuit 
directed to a regular specification test flow (tolerance zone set to 
zero). We also explore how this efficiency is influenced by the 
use (or not) of a filter during the initial learning phase. Results 
are summarized in Figure 6, which compares the NRMSE and 
MR scores achieved on test and validation sets for the different 
scenarios of learning population and the three RF performances.  

 
(a) Tx-EVM 

 
(b) Tx-gain 

 
(c) Rx-gain 

Fig.6. NRMSE and MR scores achieved on test and validation sets 

for the different scenarios of learning population 

A first evident comment arises: although working with a 
filtered population during the initial learning phase permits to 
improve the quality of constructed models, these models are 

nevertheless not able to correctly handle all circuits that can be 
encountered during the production testing phase. Indeed, there is 
a significant degradation between NRMSE and MR scores 
determined on the test set and the ones achieved on the 
validation set when the strict filter is used. The strongest 
difference is observed for the Tx-EVM, with an increase of the 
NRMSE and MR scores by +2.3% and +3.8% respectively. For 
the Tx-gain, we observe a small increase of the NRMSE score 
by +0.4% and a more significant increase of the MR score by + 
2.0%. For the Rx-gain, the impact is mostly visible on the 
NRMSE score with an increase of +1.3%. The difference 
between NRMSE and MR scores determined on test and 
validation sets lessens by using the relaxed filter (maximum 
difference of 0.3% in NRMSE and 0.7% in MR over the three 
RF performances), and becomes negligible when the learning is 
performed on the original population (maximum difference of 
0.06% in NRMSE and 0.3% in MR over the three RF 
performances). These results indicate that it is not pertinent to 
work with a filtered population since it can entail a strong 
discrepancy between the test quality estimated during the 
learning phase and the one that will be encountered during the 
production phase. Moreover, it can be observed that the best 
results achieved on the validation set are obtained when the 
learning is done on the original learning set. It is therefore 
recommended to include circuits with possible outlying values 
in the indirect measurements in the learning population.  

For the practical case study investigated in this paper, a fairly 
good efficiency can be attained by the classical indirect test 
implementation, with a low MR of 2.5% and 1.8% for the 
Tx-EVM and Tx-gain respectively, and the ideal MR of 0% for 
the Rx-gain. However, despite the drastic testing costs reduction 
offered by this solution where all circuits are evaluated based 
only on low-cost indirect measurements, a misclassification rate 
around 2% might not be sufficient to comply with industrial test 
quality constraints. 

C. Efficiency of two-tier adpative test flow  

In this part, we present results regarding the benefit that can 
be brought by the implementation of a two-tier adaptive test 
flow, in particular regarding the tradeoff between test quality and 
test cost. As mentioned in Section II, this tradeoff depends on 
the size of the tolerance zone around the test limits.  

Results are summarized in Figure 7, which reports the 
tradeoff curves between MR score and percentage of retested 
circuits obtained by varying the size of the tolerance zone. Note 
that these curves are presented only for the Tx-EVM and Tx-gain 
performances since the ideal MR of 0% is achieved for the 
Rx-gain without the need of retesting any devices. These results 
indicate again that the use of a filter during the learning phase 
(especially the strict one) is not recommended since there is a 
huge difference between the tradeoff curve evaluated on the test 
set and the one observed on the validation set. Moreover, the 
decrease in the MR score observed on the validation set is much 
slower than the one obtained when the learning is performed on 
the original population. These results also clearly demonstrate 
that it is possible to significantly improve the test quality 
compared to a classical indirect test implementation. Indeed, 
with a learning performed on the original population, there is a 
rapid decrease of the MR score observed on the validation set, 
which means that the test quality improvement can be obtained 



   

with only a limited number of devices that need to be retested 
through a conventional specification test. In particular, it is 
possible to attain a very low MR score below few tenths of 
percent with a majority of devices that are tested using only the 
low-cost indirect measurements.  

 
(a) Tx-EVM                                       (b) Tx-gain 

Fig.7. Tradeoff curves between MR and percentage of retested devices 

For the sake of a concrete illustration, an arbitrary target of a 
MR score below 0.1% for each RF performance has been fixed. 
Based on devices of the test set, the size of the tolerance zone 
necessary to fulfil this constraint has been determined for each 
RF performance; the efficiency of the two-tier adaptive test flow 
has then been evaluated on the validation set. Results are 
summarized in Table IV (results obtained under the best learning 
scenario with no filter applied on the learning population).  

TABLE IV.  SUMMARY OF RESULTS ACHIEVED BY THE TWO-TIER ADAPTIVE 

TEST FLOW WITH A MR TARGET OF 0.1% FOR EACH RF PERFROMANCE 

 
MR Percentage of retested devices 

Test Set Valid Set Test Set Valid Set 

Tx-EVM 0.10% 0.14% 15.3% 15.7% 

Tx-gain 0.10% 0.09% 9.4% 12.0% 

Rx-gain 0% 0% 0% 0% 

Global 0.19% 0.23% 22.2% 23.8% 
 
These results confirm that the two-tier adaptive test flow 

permits to reach a substantial reduction of the test costs while 
preserving a very good test quality. Indeed, the targeted MR 
score of 0.1% can be attained for each RF performance; the 
difference between the MR score forecasted on the test set and 
the one evaluated on the validation set remains inferior to 0.04%. 
Only a limited number of devices need to be retested to ensure 
this quality, i.e. around 16% for the Tx-EVM, around 12% for 
the Tx-gain, and 0% for the Rx-gain.  

Globally for this practical case study, a very good test quality 
is achieved with only about 0.2% misclassified devices over the 
three RF performances while more than 76% devices are 
processed using only the low-cost indirect measurements, 
leading to substantial saving in the test costs. Note that the global 
misclassification rate achieved over the three RF performances 
is a bit higher than the targeted one on each individual RF 
performance because misclassified devices with respect to a 
given performance are not necessarily the same than 
misclassified devices with respect to another performance. In the 
same way, the global percentage of circuits that need to be 
retested is higher than the one established for each individual RF 
performance. Also note that all these numbers correspond to 
worst-case results because they are established on a population 
fabricated with corner process conditions. We can expect lower 
numbers, especially the percentage of circuits that need to be 

retested, in the regular context of production testing where 
circuits are manufactured under normal process conditions.  

VI. CONCLUSION 

In this paper, we have investigated on a practical case study 
whether it is possible to benefit of the potential test cost 
reduction offered by the indirect test strategy without 
compromising the test quality. We have proposed an original 
implementation of a two-tier adaptive test flow that relies on the 
use of a tolerance zone around test limits in order to establish the 
confidence in the decision proposed by the indirect test; only 
devices with sufficient confidence are processed by the indirect 
test while others are directed to a second tier where they are 
evaluated by a standard specification test. A methodology has 
been defined in order to make the pertinent choices for the 
efficient implementation of this test flow.  

Results have shown that a very good test quality can be 
preserved while achieving a substantial test cost reduction, i.e. a 
low misclassification rate of few tenths of percent (the classical 
indirect test implementation remains above the percent) and less 
than 25% of devices that need to go through a standard 
specification test.  
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