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�‘�ˆ���‹�•�ˆ�‘�”�•�ƒ�–�‹�‘�•���‡�š�–�”�ƒ�…�–�‹�‘�•���ˆ�”�‘�•���•�ƒ�•�•�‹�˜�‡���†�‹�‰�‹�–�ƒ�Ž���†�ƒ�–�ƒ���™�Š�‹�Ž�‡���‡�•�•�—�”�‹�•�‰���ƒ���Š�‹�‰�Š���Ž�‡�˜�‡�Ž���‘�ˆ���ƒ�…�…�—�”�ƒ�…�›���‹�•��
�„�‹�‘�†�‹�˜�‡�”�•�‹�–�›���ƒ�•�•�‡�•�•�•�‡�•�–�ä

In the context of accelerating human impacts on  ecosystems1, the capacity to monitor biodiversity at large scale 
and high frequency is an urgent although challenging  goal2. �is urgency resonates with the ambition of inter-
national initiatives like the Group on Earth Observations Biodiversity Observation Network (GEO BON) and 
the call for monitoring Essential Biodiversity Variables (EBVs)3,4.

Remote sensors are rapidly transforming biodiversity monitoring in its widest sense from  individuals5 to 
species and communities of  species6. In the last decade,  satellites7,8,  drones9, 10, camera  traps6, or underwater 
 cameras11,12 have been extensively deployed to record pictures or videos of aquatic and terrestrial organisms. 
For instance, satellite data can be used to track whale shark  movements13 or detect  whales14 while photos from 
airborne or underwater vehicles can deliver accurate density estimations of vulnerable organisms like mammals 
or  sharks15,16.

Such massive records are also used by citizen science programs with for example public tools like inaturalist.
org which share pictures and associated metadata, or �shpix (https ://�shp ix.kahak u.go.jp) which o�ers the pos-
sibility to upload individual �sh images that are then identi�ed by experts at the species level.

However, processing photos or videos to identify organisms is a highly demanding task, especially in under-
water environments, where some particular contexts add many di�culties (e.g., visual noise due to particles and 
small objects, complex 3D environment, color changing according to depth, etc.). For instance, identifying all 
�sh individuals on videos may take up to 3�h of expert analysis per hour of  video17. Under the avalanche of new 
videos and images to analyse, alternatives to �sh identi�cation by humans and trained experts must be found.

Recently, an e�ort to use machine learning  methods18,19 and deep learning algorithms (DLAs) for ecologi-
cal analysis have been made, thanks especially to computer-vision challenges on public databases of annotated 
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photos or videos (e.g. for �sh, Fish4Knowledge database (https ://group s.inf.ed.ac.uk/f4k/) and Seaclef challenge 
(https ://www.image clef.org/lifec lef/2017/sea)).

�e last generation of DLAs o�er much promise for passing the bottleneck of image or video analysis through 
automated species  identi�cation20–23. DLAs, and particularly convolutional neural networks (CNNs), simultane-
ously combine the automatic de�nition of image descriptors and the optimization of a classi�er based on these 
 descriptors24. Even though DLAs usually have a high accuracy rate, they do not provide information on the 
con�dence of the outputs. Hence, it remains di�cult to identify and control potential misclassi�cations which 
limits their application.

Misclassi�cation of images has two types of consequences for biodiversity monitoring. On one hand, if all 
individuals of a given species occurring in a given community are erroneously labelled as another species also 
occurring in the community, this species will be incorrectly listed as absent (false absence). �e risk of missing 
present species because of misclassi�cation is the highest for rare species, i.e. those with the lowest abundance 
in terms of the number of individuals per unit area. Yet missing these rare species can be critical for ecosystem 
heath assessment since some play important and unique roles like large parrot�shes on coral  reefs25 while oth-
ers are invasive like the lion�sh in Eastern Mediterranean  Sea26. In addition, since most species in a community 
are represented by a few  individuals27, such misclassi�cations could signi�cantly lead to the underestimation 
of species richness. �e other error associated with misclassi�cation is when an individual of a given species is 
mistaken for another species not present in the community (false presence). Such misclassi�cations could lead 
to an overestimation of the abundance or geographical range of a species as well as it could arti�cially increase 
species richness, unless a species is consistently mistaken for another. Since biodiversity monitoring should be as 
accurate as possible, automated identi�cation of individuals on images should provide high correct classi�cation 
rates (close to 100%) even if a subset of images has not been classi�ed by the algorithm with su�cient con�dence 
and must be identi�ed by humans a posteriori.

Chow28 was the �rst to introduce the concept of risk for a classi�cation algorithm. For instance, a clustering 
algorithm classifying an object placed in the center of a given cluster would present a low risk of misclassi�cation, 
while classifying an object placed on the edge of a cluster would be highly risky.  Chow28 proposed a classi�cation 
framework, which contains n + 1 channels as outputs, n channels for the n classes considered and an additional 
channel called the “rejection” channel. When the risk of misclassi�cation is too important, the algorithm rejects 
the classi�cation.

Applied to machine learning, a �rst method consists in learning a rejection function during the training, in 
parallel to the classi�cation  learning29–31. Another method, called a meta-algorithm, uses two algorithms, one 
being a classi�er, and the other one analyzing the classi�er outputs, to distinguish predictions with a high risk of 
misclassi�cation from those with a low  risk32. A recent comparative study suggests that meta-algorithm-based 
methods are the most  e�cient 33.

An extension of meta-algorithms to control the risk of misclassi�cation is to calibrate models obtained 
through Machine Learning and Deep Learning algorithms. Machine Learning methods usually produce well-
calibrated models for binary  tasks34. �e calibration consists of a matching between the score predicted by the 
machine-learning model and the real probability of true positives. While Deep Learning models produce more 
accurate classi�cations than other Machine learning models, these models are not well calibrated, and thus need 
a re-calibration to be used for real-world  decisions35. Several propositions have been made to improve the cali-
bration of Machine Learning models through the post-processing of outputs. �e Platt  scaling36, the Histogram 
 binning37, the Isotonic  Regression38 and the Bayesian Binning into  Quantiles39 are mapping the model outputs 
to real accuracy probabilities. More recently, Temperature Scaling, an extension of the Platt Scaling, was used 
to calibrate Deep Learning models using a single parameter for all  classes35. �is parameter is used, instead of 
the traditional so�max function, to convert the vector output from the neural network into a real probability.

However, such calibration methods are based on a discretization of the Deep model outputs into bins. Many 
bins are not useful as they only contain a few outputs with low values, whereas many high values fall in the same 
bin and are thus not discriminated. Moreover, the choice of the number of bins is le� to the user, and therefore 
is not optimized to the Deep model nor to a speci�c  application40.

In this paper, we present a simple, yet e�cient method that accounts for uncertainty in the classi�er outputs. 
Unlike calibration methods, our approach is not changing algorithm outputs. Instead, we simply assess the behav-
iour of the model thanks to a validation dataset. We can then set-up a �ne tuned threshold per class, allowing 
us to take into account that the model con�dence can be highly variable between “easy” classes and “di�cult” 
classes. �en, through the addition of a new class “unsure”, corresponding to predictions with scores lower than 
the predicted class threshold, we can control the coverage (total amount of images automatically identi�ed) and 
misclassi�cation rates. We applied this framework to classify 20 species of coral reef �shes in underwater images 
and assessed its e�ciency for 3 real-case scenarios.

���ƒ�–�‡�”�‹�ƒ�Ž���ƒ�•�†���•�‡�–�Š�‘�†�•
���ƒ�–�ƒ�ä��We decided to build our own dataset instead of using existing datasets (e.g. Fish4Knowledge: https ://
group s.inf.ed.ac.uk/f4k/), to be in phase with quality of videos currently used by marine ecologists. We used 3 
independent �sh images datasets from the Mayotte Island (Western Indian Ocean) to train and test our CNN 
model and our post processing method. For the 3 datasets, we used �sh images extracted from 175 underwa-
ter high-de�nition videos which lasted between 5 and 21�min for a total of 83�h. �e videos were recorded in 
1920 × 1,080 pixels with GoPro Hero 3 + black and Hero 4 + black. �e videos were recorded between 2 and 30�m 
deep, with a broad range of luminosity, transparency, and benthic environment conditions on fringing and bar-
rier reefs.

https://groups.inf.ed.ac.uk/f4k/
https://www.imageclef.org/lifeclef/2017/sea
https://groups.inf.ed.ac.uk/f4k/
https://groups.inf.ed.ac.uk/f4k/
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We extracted 5 frames per second from these videos. �en, we cropped images to include only one �sh indi-
vidual with its associated habitat in the background. �us, images of the same species di�ered in terms of size 
(number of pixels), colors, body orientation, and background (e.g. other �sh, reef, blue background) (Fig.�1).

We used 130 videos for the training dataset, from which we extracted a total 69,169 images of 20 di�erent �sh 
species (Supplementary Fig.�S1). We extracted between 1,134 and 7,345 images per species.

In order to improve our model, we used data  augmentation41 on native biodiversity and ecosystem. Each 
“natural” image yielded 4 more images: 2 with increased contrast (120% and 140%) and 2 with decreased contrast 
(80% and 60%) (Supplementary Fig.�S2). We then horizontally �ipped all images to obtain our �nal training 
dataset (T0) composed of 691,690 images (Supplementary Table�S1).

We then used two independent datasets made of di�erent videos recorded on di�erent days and on di�erent 
sites than videos used to build the training dataset. �e �rst dataset (T1) contained 6,320 images from 20 videos 
with at least 41 images per species, and the second (T2) contained 13,232 images from 25 videos with at least 
55 images per species (Supplementary Table�S1). We then used dataset T1 to tune the thresholds and T2 as the 
test dataset. �is method ensures that our results are not biased by similar acquisition conditions between the 
training, tuning and testing dataset and hence that algorithm performance was evaluated using a realistic full 
cross-validation procedure.

���—�‹�Ž�†�‹�•�‰�� �–�Š�‡�� �…�‘�•�˜�‘�Ž�—�–�‹�‘�•�ƒ�Ž�� �•�‡�—�”�ƒ�Ž�� �•�‡�–�™�‘�”�•�ä��Convolutional neural networks (CNNs) belong to the 
class of DLAs. For the case of species identi�cation, the training phase is supervised, which means that the 
classes to identify are pre-de�ned by human experts while the parameters of the classi�er are automatically 
optimized in order to accurately classify a “training”  database24. CNNs are composed of neurons, which are 
organized in layers. Each neuron of a layer computes an operation on the input data and transfers the extracted 
information to the neurons of the next layer. �e speci�city of CNNs is to build a descriptor for the input image 
data and the classi�er at the same time, ensuring they are both optimized for each  other42. �e neurons extract-
ing the characteristics from the input data in order to build the descriptors are called convolutional neurons, as 
they apply convolutions, i.e. they modify the value of one pixel according to a linear weighted combination of the 
values of the neighbor pixels. In our case, each image used to train the CNN is coded as 3 matrices with numeric 
values describing the color component (R, G, B) of the pixel. �e optimization of the parameters of the CNN is 
achieved during the training through a process called back-propagation. Back-propagation consists of automati-
cally changing parameters of the CNN through the comparison between its output and the correct class of the 
training element to eventually improve the �nal classi�cations rate. Here we used a 100-layer CNN based on the 
 TensorFlow43 implementation of  ResNet44. �e ResNet architecture achieved the best results on ImageNet Large 

Figure�1.  Diversity of individual images and their environment for the same �sh species (Moorish idol, Zanclus 
cornutus).
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Scale Visual Recognition Competition (ILSVRC) in 2015, considered as the most challenging image classi�ca-
tion competition. It is still one of the best classi�cation algorithms, while being very easy to use and implement.

All �sh images extracted from the videos to build our datasets were resized to 64 × 64 pixels before being 
processed by the CNN. Our training procedure lasted 600,000 iterations; each iteration processed a batch of 16 
images, which means that the 691,690 images of the training dataset were analyzed 14 times each by the network 
on average. We then stopped the training to prevent from  over�tting45, as an over �t model is too restrictive and 
only able to classify images that were used during the training.

���•�•�‹�‰�•�‹�•�‰���ƒ���…�‘�•�¤�†�‡�•�…�‡���•�…�‘�”�‡���–�‘���–�Š�‡�����������‘�—�–�’�—�–�•�ä���e last layer of our architecture, as in most CNNs, 
is a “so�max”  layer44. When input data passing through the network reaches this layer, a function is applied to 
convert the image descriptors into a list of n scores � � , with � � � �� ��� � � � and n the number of learned classes (here 
the 20 di�erent �sh species), with the sum of all scores equal to 1. A high score means a “higher chance” for a 
given image to belong to the predicted class. However, a CNN o�en outputs a class with a very high score (more 
than 0.9) even in case of misclassi�cation. To prevent misclassi�cations, the classi�er should thus be able to add 
a risk or a con�dence criterion to its outputs.

���•�•�‡�•�•�‹�•�‰���–�Š�‡���”�‹�•�•���‘�ˆ���•�‹�•�…�Ž�ƒ�•�•�‹�¤�…�ƒ�–�‹�‘�•���„�›���–�Š�‡���������ä��For a given input image, a CNN returns a pre-
dicted class, in our case a �sh species. As seen in the previous section, the CNN outputs a decision based on the 
score, without any information on the risk of making an error (i.e. a misclassi�cation). Following De Stefano 
et�al.32, we thus propose to apply a post-processing step on the CNN outputs in order to accept or reject its clas-
si�cation decision. �e hypothesis is that the higher the similarity between an unknown image and the images 
used for the training, the stronger the activation in the CNN during the classi�cation process (i.e. the higher the 
score is), and thus, the more robust the classi�cation is.

For this method, the learning protocol is thus made of two consecutive steps performed on 2 independent 
training datasets.

• In the �rst phase, a classi�cation model is built by training a CNN on a given database T0 (Fig.�2a)
• �en, the second phase consists of tuning a risk threshold � � speci�c to each class (i.e. each species in our 

case), noted i, with � � � �� ���� � � , using a second and independent database noted T1 (Fig.�2b).

In terms of classi�cation, it means we transform the 2 classi�cation options (correct, wrong) in 3 options 
(Fig.�3) by applying Eqs.�(15, 16).

���‘�•�’�—�–�‹�•�‰���–�Š�‡���…�‘�•�¤�†�‡�•�…�‡���–�Š�”�‡�•�Š�‘�Ž�†�•�ä��A�er the phase 1 (model training phase), for an image �  of the 
threshold tuning dataset processed by the classi�er, we obtain an output � � � � � � � � � � � , where � � � � is the class 
(i.e. species, belonging to the trained set of species) with the highest classi�cation score � � � � � For this image, we 
know the ground truth �  in � �� ��� � � belonging to the same set of species classes.

So with � � � � being the output class, �  the ground truth class, and � � �� the enumeration function, the standard 
de�nition for Correctly Classi�ed images (or true positives) rate of a class � is:

We can also write the standard de�nition of Misclassi�ed images rate (or false negatives) of a class � as:

�en, we can extend the Correct Classi�cation rate (CC) and Misclassi�cation (MC) rate of a species � by 
introducing the thresholds � � and by adding the Unsure Classi�cation (UC) rate:

For each species we have:

We can also note that the standard coverage de�nition (COV, the rate of images for which a classi�cation is 
given) of a species � can be extend with the introduction of thresholds as threshold �  as:

(1)�� � �
� � � � � � � � ��� � � ��

�� � �

(2)�� � �
� � � � � � �� � ��� � � ��

�� � �

(3)�� � � � � � �
�� � � � � � � �� ��� �� � � � � � � ����� � � � ��

� � � � ��

(4)�� � � � � � �
� �� � � � � �� ����� �� � � � � � � �� ��� � � � ��

� � � � ��

(5)�� � � � � � �
� �� � � � � � �� �� � � � � � �� ��� ��� �� � � � � � � �

� � � � ��

(6)�� � � � � � �� � � � � � �� � � � � � �

(7)��� � � � � � �� � � � � � �� � � � �
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Figure�2.  Overview of the 3 parts of our framework: 2 consecutive steps for the learning phase, followed by 
the applicative testing step. (a) We trained a CNN model with a training dataset (T0) composed of images 
and a label for each image, in our case, the species corresponding to each �sh individual. (b) �en, for each 
species i, we processed an independent dataset T1, with our model. For each image, we obtained the species j 
attributed by the CNN to the image and a classi�cation score � � . We have the ground truth and the result of the 
classi�cation (correct/incorrect), so we can de�ne a threshold according to the user goal. �is goal is a trade-o� 
between the accuracy of the result and the proportion of images fully processed. (c) We then used this threshold 
to post-process outputs of the CNN model. More precisely, for a given image, the classi�er of the CNN returns 
a score for each class (here for each �sh species). �e most likely class � � � � for this image is the one with the 
highest score � � � � We then compared this highest score � � � � with the computed con�dence threshold for 
this species (� � � � �) obtained in the second phase. If the score was lower than the computed threshold that is 
� � � � � � � � � � , then the input image was classi�ed as “unsure”. Otherwise, we kept the CNN classi�cation.
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�e question is now to select “optimal” thresholds � � � � ���
���  based on the dataset T1. �is is not straightforward 

as is it up to user speci�c objective, such as minimizing MC, maximizing CC, minimizing UC… In the following, 
we analyze three di�erent goals corresponding to some standard protocols in marine ecology:

• �e �rst goal G1 consists of keeping the best correct classi�cation rate while reducing the misclassi�cation 
error rate. For this, we used two steps. First, we identi�ed the threshold(s) �  which maximizes �� � � � � . Since 
several thresholds could reach this maximum, we get a set of threshold(s) �� � �  . �en, we selected the threshold 
with the lower �� � � � � . �is can be mathematically written as:

• �e second goal G2 consists in constraining the misclassi�cation error rate to an upper bound of 5% while 
maximizing the correct classi�cation rate. Reaching this goal requires to �rst �nd �� � �  the set of threshold(s) 
such as �� � � � � < 5%. If there is none, we considered �� � �  as the set of threshold(s), which minimize �� � . 
�en we de�ned the optimal threshold � � by choosing the one in �� � �  which maximizes �� �:

• �e third goal G3 consists of keeping the lowest misclassi�cation rate while raising the correct classi�ca-
tion error rate (implying a lower coverage). First, we de�ned �� � �  as the set of threshold(s) �  that minimizes 
�� � � � � . If there were several thresholds with the same minimal value, we chose � � as the one which maximizes 
�� �:

For a given image X in the test dataset, the classi�cation and post-process is sequential as follows (Fig.�2c):

(8)�� � � � ��� ���
�

�� � � � �

(9)� � � ��� ���
� � ���� � �

�� �
�
� � �

(10)�� � � � � � �� � � � � � ��

(11)�� �� � � � � ���� �� � � � ��� ���
�

�� � � � �

(12)� � � ��� ���
� � ���� � �

�� �
�
� � �

(13)�� � � � ��� ���
�

�� � � � �

(14)� � � ��� ���
� � ���� � �

�� �
�
� � �

Figure�3.  Impact of the post-processing framework on classi�cation of images for a given species and a given 
threshold. Usually, the classi�cation of an image of class i can either be correct, if the model classi�es it as i, or 
wrong, if the classi�er classi�es it as j with j ��  i (a). We propose a post processing to set a con�dence threshold 
for each class to obtain 3 types of results, correct, misclassi�ed, and unsure (b). �e goal is then to transform as 
many misclassi�cations as possible as “Unsure”, while preventing to transform too many correct classi�cations 
“Unsure”.
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• First, the image is given to the CNN, which outputs a list of scores, including � � � � the highest score obtained 
by a class.

• Second, for the class � � � � (i.e. the class with the highest classi�cation score), the post-processing step esti-
mates the risk of classifying the image as belonging to the class � � � � . If � � � �  � � , the prediction is changed 
to “Unsure”, otherwise, it is con�rmed as the class j (Fig.�2c).

�e misclassi�cation rate for a species � � � a�er post-processing thus equals:

and the unsure classi�cation rate equals:

First, to assess the e�ectiveness of our framework, we processed all the images contained in T2 through the 
DL algorithm, without post processing (threshold tuning + threshold application).

Second, we assessed whether a unique threshold for all the classes was su�cient to separate correct classi�ca-
tions from misclassi�cations for all species. For this test, we computed the distribution of correct classi�cations 
and misclassi�cations over scores for each species. During this study, we multiplied the so�max scores, which 
ranged from 0 to 1, by 100, for an easier reading.

�en, to study the impact of the post-processing method in an hypothetical ideal condition, we selected the 
thresholds based on the dataset T2 and we applied them to the same dataset T2. For this experiment and the 
following, we also measured both the Correct Classi�cation rate and the Accuracy, de�ned for a species � as

�e accuracy varies from 0 to 1, and increases when the number of false positives decreases and the number 
of true positives increases. Meanwhile, the CC rate varies from 0 to 100, and increases when the number of false 
negatives decreases and the number of true positives increases.

(15)�� �
� �

�
�
� � � � � �� � � ���

�
� � � � � � �

��
��� � � � ��

� � � � ��

(16)�� �
� �

�
��

� � � � � �
�
���

�
� � � � � � �

��
��� � � � ��

� � � � ��

�������� � �
� �� � � � � � �� ��� � � � � � � � � �� ��� � � � ��

� �� � � � � � �� ��� � � � � � � � � ��

Table 1.  Output of the deep learning classi�er without post-processing.�Percentages of correct classi�cations 
are shown for the 20 �sh species. Each line shows the species name, the correct classi�cation rate of images of 
this species present in the dataset T2, the so�max score above which we have 95% of the correct classi�cation 
(noted sq0.05), and the percentage of Misclassi�ed images with score equal or above sq0.05.

Species Test dataset T2 (% of correct classi�cations)
So�max score for the 0.05 quantile of correct classi�cation 
(sq0.05) % of Misclassi�cation for sq0.05

Chaetodon trifasciatus 87.80 99.91 20

Chaetodon trifascialis 90.00 99.98 11.11

Naso brevirostris 54.14 99.92 29.91

Chaetodon guttatissimus 85.50 99.82 10.77

�alassoma hardwicke 90.90 99.92 0

Pomacentrus sulfureus 90.14 99.88 0

Oxymonacanthus longirostris 96.43 99.98 0

Monotaxis grandoculis 57.10 98.78 34.1

Zebrasoma scopas 63.04 96.78 19.92

Abudefduf vaigiensis 99.07 99.99 0

Amblyglyphidodon indicus 58.78 92.85 22.04

Acanthurus lineatus 59.72 99.98 16.38

Chromis ternatensis 59.61 86.74 26.98

Chromis opercularis 61.29 99.00 16.67

Gomphosus caeruleus 75.72 99.84 33.33

Acanthurus leucosternon 86.15 99.94 16.65

Halichoeres hortulanus 82.93 99.96 16.33

Naso elegans 93.24 99.78 6.46

Chaetodon auriga 87.05 99.98 10.77

Zanclus cornutus 81.36 99.68 9.1

Mean 78.00 98.64 17.49

Standard Deviation 15.16 3.27 10.84
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Figure�4.  Distribution of correct classi�cations and misclassi�cations of �sh images with respect to the score 
from the CNN model. We plotted the results for all species (a), and for 2 species, the Brown unicorn�sh (Naso 
brevirostris) (b) and the Maldives damsel�sh (Amblyglyphidodon indicus) (c). We also plotted the 5% bottom 
line for each type of classi�cation. We used violin plots for the visualisation. Violin plot are histograms with 
inverted axis allowing a graphical visualisation of a distribution, with the number of individuals on the Y axis 
and their value on X axis. �e borders of the shapes show the number of individuals while the dots show the 
local density”46.

Figure�5.  Average distribution of correct, wrong, and unsure classi�cations for all species along a gradient of 
con�dence threshold score.
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Finally, to ensure that the post-processing method was relevant for any real-life application, i.e. that thresh-
olds are de�ned and tested on independent datasets, we used the dataset T1 for the threshold-setting phase and 
the dataset T2 for the testing phase. To assess the robustness of our method, we repeated the same experiment 
while switching the roles of T1 and T2. Note that we limited our experiments to the use of T1 and T2, but that it 
could be interesting in further work to assess the robustness of this method with datasets composed of less data.

Results
���‡�•�—�Ž�–�•�� �‘�ˆ�� �–�Š�‡���������� �•�‘�†�‡�Ž���…�Ž�ƒ�•�•�‹�¤�…�ƒ�–�‹�‘�•�ä���e mean rate of correct classi�cation of �sh images inT2 
by the raw CNN was of 78.0%, with rates of correct classi�cations per species ranging from 54.4% to 99.1% 
(sd = 15.16) (Table�1). �ese results are the baseline for our following experiments.

Images obtained so�max scores between 41 and 100 with 80% of images classi�ed with a score between 60 
and 100 (Fig.�4a). �e distribution of correct classi�cations and misclassi�cations among scores was highly vari-
able among species (Fig.�4b,c, Table�1).

���‡�•�…�Š�•�ƒ�”�•�� �‘�ˆ�� �–�Š�‡�� �–�Š�”�‡�•�Š�‘�Ž�†�� �¤�•�‡�æ�–�—�•�‹�•�‰�� �•�‡�–�Š�‘�†�ä��For each species i, we computed �� � , �� � , �� � 
values while varying the threshold. We computed and applied the thresholds on T2, according to Eqs.�8–16. As 
the score varied from 0 to 99.9, the misclassi�cation rate decreased to 0.9% (Fig. �5). �is decrease was mainly 
compensated by the increasing rate of unsure classi�cations between 0 and 99.9 of classi�cation scores.

Indeed, the rate of correct classi�cations experienced little variation along this distribution of threshold scores, 
remaining between 74 and 78% for threshold scores between 0 and 99.8 and decreasing to 61% for threshold 
scores > 99.8. However, correct, wrong, and unsure classi�cation rates were highly variable among species (Sup-
plementary Table�S2).

For the �rst goal G1, we de�ned the thresholds (one per species) to minimize the misclassi�cation with 
�� � � ��� �� � . We obtained a mean rate of 78% (standard deviation = 15.15%) of correct classi�cations, 10.81% 
(s.d = 8.15%) of unsure classi�cations, and 11.19% (s.d = 9.58%) of misclassi�cations (Fig.�6a).

For the second goal G2, we maximized the correct classi�cations while constraining the misclassi�cation error 
rate to an upper bound of 5% (if possible). We obtained a rate of 75.47% (s.d = 17.83%) of correct classi�cations, 
17.88% (s.d = 14.22%) of unsure classi�cations, and 6.66% (s.d = 6.44%) of misclassi�cations.

Figure�6.  Benchmark scenario and cross–validation classi�cation rates. We compare results obtained by tuning 
the thresholds on T2 and using T2 as a testing set (a) and real-life scenario obtained by tuning the thresholds 
on T1 and using T2 as a testing set (b). For sub-�gure: From top to bottom, rates of correct classi�cations, 
misclassi�cations, and unsure classi�cations for each post-processing: (1) Goal 1: Minimizing misclassi�cation 
with �� � � ��� �� � , (2) Goal 2: maximizing correct classi�cations under the constraint of having less than 
5% of misclassi�cations, (3) Goal 3: maximizing correct classi�cation with �� � � ��� �� � , (4) No post-
Processing.
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For the third goal G3, we maximized the number of correct classi�cations with �� � � ��� �� � . We obtained 
a rate of 68.21% (s.d = 22.41%) of correct classi�cations, 29.71% (s.d = 22.14%) of unsure classi�cations, and 
2.07% (s.d = 3.20%) of misclassi�cations, on average. Compared to the �rst goal, we decreased the rate of correct 
classi�cations by 8.9% and the rate of misclassi�cations by 2.6% (Supplementary Table�S4).

�e accuracy of the goals G1, G2, and G3 were, on average, higher than the raw accuracy (0.53) with respec-
tively 0.72, 0.89 and 0.94 (Table�2).

�e thresholds showed higher variations among species for G1, with values ranging from 33.46 to 99.97, 
than for G3 for which values ranged from 99.86 to 99.98 among the 20 species (Supplementary Tables�S2, S3).

���’�’�Ž�‹�…�ƒ�–�‹�‘�•���‘�ˆ���–�Š�‡���•�‡�–�Š�‘�†�ä��For a real cross-validation experiment, thresholds were set using T2 and then 
applied on T1. �e correct, wrong and unsure classi�cation rates were very close (di�erence < 2.6%) to those 
obtained with the benchmark situation (Supplementary Table�S5).

�e proposed post-processing was able to decrease the misclassi�cation rate by at least 10.05%, for all goals, 
and 19.02% at most compared to the raw output of the Deep Learning model (Fig.�6b). �e accuracy followed the 
same tendency, with an average accuracy for G1, G2 and G3 respectively equal to 0.74, 0.81 and 0.92 (Table�3).

Finally, we also performed the same experiment while switching T1 and T2 roles (Supplementary Tables�S6, 
S7, S8). For each goal, the unsure classi�cation rate was higher a�er the switch (+ 3.8% for G1, + 4.4% for G2, 
and + 8.9% for G3), implying lower scores were obtained in both correct classi�cation (� 3.5%, � 5%, �  7.3%) and 
misclassi�cation, with the exception of the 2nd goal (-0.2%, + 0.6%, �  1.6%).

���‹�•�…�—�•�•�‹�‘�•
Biodiversity monitoring is experiencing a revolution with the emergence of new sensors (light, noise, image, 
environmental DNA) that generate massive datasets and require powerful and accurate treatment tools. Indeed, 
species misclassi�cations must be controlled and limited to avoid false negatives or absences i.e., missing species 
that are actually present and false positives or presences i.e., detecting species that are actually absent.

In this paper, we demonstrated that the risk of misclassi�cation by CNN algorithms can be measured and 
controlled in a post-processing step to provide more accurate identi�cation of species on pictures. Such post-
processing can be applied with any classi�er as long as the output is a vector of scores. Reducing the misclassi�ca-
tion rate is at the detriment of the correct classi�cation rate and increases “unsure” classi�cations, which implies 
a low coverage and a greater human e�ort needed to identify unclassi�ed individuals. Hence, there is a trade-o� 
between a more secure (less misclassi�cations) or a more automatic (more classi�cations) method so species 
thresholds can be set according to the goal or priority of the study or the availability and time of experts. Here 

Table 2.  Accuracy of the models without post-processing, and with post processing according to our goals, 
with thresholds tuned and applied on T2. Each line shows the result for a species, with: the species name, the 
accuracy of the model without post processing, and the accuracy of the model with post processing according 
to the 3 goals de�ned earlier.

Species
Raw
Accuracy

G1
Accuracy

G2
Accuracy

G3
Accuracy

Abudefduf vaigiensis 0.51 0.65 0.9 0.97

Acanthurus leucosternon 0.61 0.69 0.87 0.96

Acanthurus lineatus 0.87 0.91 0.97 0.97

Amblyglyphidodon indicus 0.08 0.74 0.94 0.98

Chaetodon auriga 0.95 0.99 1 1

Chaetodon guttatissimus 0.16 0.84 0.95 0.98

Chaetodon trifascialis 0.97 0.87 0.95 0.96

Chaetodon trifasciatus 0.56 0.62 0.79 0.97

Chromis opercularis 0.68 0.8 0.96 1

Chromis ternatensis 0.01 0.44 0.79 0.9

Gomphosus caeruleus 0.24 0.31 0.54 0.72

Halichoeres hortulanus 0.51 0.59 0.8 0.93

Monotaxis grandoculis 0.77 0.81 0.96 0.99

Naso brevirostris 0.02 0.9 0.96 1

Naso elegans 0.89 0.92 0.97 0.97

Oxymonacanthus longirostris 0.36 0.46 0.89 0.85

Pomacentrus sulfureus 0.52 0.7 0.91 0.95

�alassoma hardwicke 0.78 0.85 0.93 0.95

Zanclus cornutus 0.55 0.68 0.87 1

Zebrasoma scopas 0.61 0.7 0.81 0.81

Mean 0.53 0.72 0.89 0.94

Standard deviation 0.30 0.18 0.10 0.07
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we de�ne three main goals which represent archetypal study cases. �e �rst goal, maximizing the correct clas-
si�cation rate but not limiting misclassi�cations, can be applied when avoiding false negatives is more important 
than detecting false positives. �is can be the case for monitoring invasive species, since the priority is to detect 
the �rst occurrence of such invasive individuals with potential deleterious consequences on native biodiversity 
and ecosystem  functioning47 particularly on  islands48,49. For instance, the Indo-Paci�c predator lion�sh (Pterois 
volitans and P. miles) has invaded most reefs of the Western Atlantic and depleted many native prey populations, 
and are starting to spread in the Eastern Mediterranean  Sea12. To better anticipate the impact of such species, eco-
system mangers needs to be aware of the �rst occurrence on reefs and can thus accept having “false alarms”. �e 
same constrains applies for detection particular or emblematic individuals, like Whale Sharks, through photo-
identi�cation50 where the primary goal is to avoid missing an occurrence. In both ecological cases, experts will 
eventually validate the few false positive identi�cations of targeted organisms by the algorithm to discard them.

�e second goal, maximizing the correct classi�cation rate while limiting misclassi�cations at 5% maximum 
per species, can be applied when avoiding false negatives and false positives are both important. �is is the trade-
o� scenario that requires the least human e�ort and that can process massive datasets with few errors. It can be 
recommended to analyze long videos (> 2�h) for monitoring biodiversity metrics that are weakly in�uenced by 
undetected species (rare or classi�ed as “unsure”), like the assessment of taxonomic or functional  diversity25, and 
that can feed initiatives like the Group on Earth Observations Biodiversity Observation Network (GEO BON) 
and provide robust estimates of Essential Biodiversity Variables (EBVs)3,4.

�e third goal, minimizing the misclassi�cation rate, can be applied when detecting false positives is more 
problematic than avoiding false negatives, which creates many “unsure” classi�cations. �is can be the case 
when priority is to accurately analyze a relatively small dataset with the support of many experts who can help 
to identify species on potentially a high number of “unsure” images. For instance, assessing abundance of all 
species within a given area to explain ecosystem functioning (e.g.51) or to monitor changes in species relative 
abundances (e.g.52) requires a minimum number of misclassi�cations.

Whatever the goal, our framework is highly �exible and can be adapted by tuning the species thresholds 
regulating the trade-o� between classi�cation robustness and coverage in an attempt to monitor biodiversity 
through big datasets where species are unidenti�ed. To unclog the bottleneck of information extraction about 
organism forms, behaviors and sounds from massive digital data, machine learning algorithms, and particularly 
the last generation of deep learning algorithms, o�er immense promises. Here we propose to help the users to 
control their error rates in ecology. �is is a valuable addition to the ecologist’s toolkit towards a routine and 
robust analysis of big data and real-time biodiversity monitoring from remote sensors. With this control of error 
rate in the hands of users, Deep Learning Algorithms can be used for real applications, with acceptable and 

Table 3.  Accuracy of the model without post-processing, and with post processing according to our goals, on 
the cross-validation, with thresholds tuned on T1 and applied on T2. Each line shows the result for a species, 
with: the species name, the accuracy of the model without post processing, and the accuracy of the model with 
post processing according to the 3 goals de�ned earlier.

Species
Raw
Accuracy

G1
Accuracy

G2
Accuracy

G3
Accuracy

Abudefduf vaigiensis 0.51 0.61 0.92 0.97

Acanthurus leucosternon 0.61 0.7 0.92 0.94

Acanthurus lineatus 0.87 0.91 0.95 0.97

Amblyglyphidodon indicus 0.08 0.72 0.97 0.97

Chaetodon auriga 0.95 0.99 0.95 1

Chaetodon guttatissimus 0.16 0.88 0.72 0.96

Chaetodon trifascialis 0.97 0.9 0.96 0.98

Chaetodon trifasciatus 0.56 0.62 0.43 0.85

Chromis opercularis 0.68 0.83 0.03 1

Chromis ternatensis 0.01 0.47 0.97 0.87

Gomphosus caeruleus 0.24 0.31 0.89 0.75

Halichoeres hortulanus 0.51 0.57 1 0.9

Monotaxis grandoculis 0.77 0.82 0.99 0.98

Naso brevirostris 0.02 0.92 0.89 1

Naso elegans 0.89 0.91 0.99 0.97

Oxymonacanthus longirostris 0.36 0.46 0.72 0.8

Pomacentrus sulfureus 0.52 0.92 0.71 0.91

�alassoma hardwicke 0.78 0.94 0.77 0.94

Zanclus cornutus 0.55 0.64 0.4 0.98

Zebrasoma scopas 0.61 0.66 0.99 0.8

Average 0.53 0.74 0.81 0.93

Standard deviation 0.30 0.19 0.25 0.07
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controlled error rates, lower than any state of the art fully automatic process, while �xing the e�ort by human 
experts to correct algorithm mistakes.
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