S. Díaz, Pervasive human-driven decline of life on Earth points to the need for transformative change, Science, vol.366, p.6471, 2019.

D. S. Schmeller, R. Julliard, P. J. Bellingham, M. Böhm, N. Brummitt et al., Towards a global terrestrial species monitoring program, Journal for Nature Conservation, vol.25, pp.51-57, 2015.

H. M. Pereira, Essential biodiversity variables, Science, vol.339, issue.6117, pp.277-278, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01824601

W. D. Kissling, J. A. Ahumada, A. Bowser, M. Fernandez, N. Fernández et al., Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale, Biological Reviews, vol.93, issue.1, pp.600-625, 2017.

M. Kröschel, B. Reineking, F. Werwie, F. Wildi, and I. Storch, Remote monitoring of vigilance behavior in large herbivores using acceleration data, Animal Biotelemetry, vol.5, issue.1, p.10, 2017.

R. Steenweg, M. Hebblewhite, R. Kays, J. Ahumada, J. T. Fisher et al., Scaling-up camera traps: monitoring the planet's biodiversity with networks of remote sensors, Frontiers in Ecology and the Environment, vol.15, issue.1, pp.26-34, 2016.

H. Schulte-to-bühne and N. Pettorelli, Better together: Integrating and fusing multispectral and radar satellite imagery to inform biodiversity monitoring, ecological research and conservation science, Methods in Ecology and Evolution, vol.9, issue.4, pp.849-865, 2017.

M. A. Wulder and N. C. Coops, Satellites: Make Earth observations open access, Nature, vol.513, issue.7516, pp.30-31, 2014.

J. C. Hodgson, R. Mott, S. M. Baylis, T. T. Pham, S. Wotherspoon et al., Drones count wildlife more accurately and precisely than humans, Methods in Ecology and Evolution, vol.9, issue.5, pp.1160-1167, 2018.

L. P. Koh and S. A. Wich, Dawn of Drone Ecology: Low-Cost Autonomous Aerial Vehicles for Conservation, Tropical Conservation Science, vol.5, issue.2, pp.121-132, 2012.

J. Aguzzi, C. Doya, S. Tecchio, F. C. De-leo, E. Azzurro et al., Coastal observatories for monitoring of fish behaviour and their responses to environmental changes, Reviews in Fish Biology and Fisheries, vol.25, issue.3, pp.463-483, 2015.

D. Mallet and D. Pelletier, Underwater video techniques for observing coastal marine biodiversity: A review of sixty years of publications (1952?2012), Fisheries Research, vol.154, pp.44-62, 2014.

D. P. Robinson, S. S. Bach, A. A. Abdulrahman, and M. Al-jaidah, Satellite tracking of whale sharks from Al Shaheen, The 4th International Whale Shark Conference, 2016.

H. C. Cubaynes, P. T. Fretwell, C. Bamford, L. Gerrish, and J. A. Jackson, Whales from space: Four mysticete species described using new VHR satellite imagery, Marine Mammal Science, vol.35, issue.2, pp.466-491, 2018.

A. Hodgson, D. Peel, and N. Kelly, Unmanned aerial vehicles for surveying marine fauna: assessing detection probability, Ecological Applications, vol.27, issue.4, pp.1253-1267, 2017.

B. Kellenberger, D. Marcos, and D. Tuia, Detecting mammals in UAV images: Best practices to address a substantially imbalanced dataset with deep learning, Remote Sensing of Environment, vol.216, pp.139-153, 2018.

P. Francour, C. Liret, and E. Harvey, Comparison of fish abundance estimates made by remote underwater video and visual census, Nat. Sicil, vol.23, pp.155-168, 1999.

M. C. Chuang, J. N. Hwang, and K. Williams, A Feature Learning and Object Recognition Framework for Underwater Fish Images, IEEE Transactions on Image Processing, vol.25, issue.4, pp.1-1, 2016.

S. Marini, E. Fanelli, V. Sbragaglia, E. Azzurro, J. Del-rio-fernandez et al., Tracking Fish Abundance by Underwater Image Recognition, Scientific Reports, vol.8, issue.1, pp.1-12, 2018.

A. Joly, H. Goëau, H. Glotin, C. Spampinato, P. Bonnet et al., LifeCLEF 2017 Lab Overview: Multimedia Species Identification Challenges, Lecture Notes in Computer Science, pp.255-274, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01629191

X. Li, M. Shang, H. Qin, and L. Chen, Fast accurate fish detection and recognition of underwater images with fast r-cnn, OCEANS'15 MTS/IEEE Washington, 2015.

S. Villon, D. Mouillot, M. Chaumont, E. S. Darling, G. Subsol et al., A Deep learning method for accurate and fast identification of coral reef fishes in underwater images, Ecological Informatics, vol.48, pp.238-244, 2018.
URL : https://hal.archives-ouvertes.fr/lirmm-01884005

J. Wäldchen and P. Mäder, Plant Species Identification Using Computer Vision Techniques: A Systematic Literature Review, Archives of Computational Methods in Engineering, vol.25, issue.2, pp.507-543, 2017.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.521, issue.7553, pp.436-444, 2015.

D. Mouillot, D. R. Bellwood, C. Baraloto, J. Chave, R. Galzin et al., Rare Species Support Vulnerable Functions in High-Diversity Ecosystems, PLoS Biology, vol.11, issue.5, p.e1001569, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00912633

E. Azzurro and M. Bariche, Local knowledge and awareness on the incipient lionfish invasion in the eastern Mediterranean Sea, Marine and Freshwater Research, vol.68, issue.10, p.1950, 2017.

K. J. Gaston, What is rarity?, Rarity, pp.1-21, 1994.

C. Chow, On optimum recognition error and reject tradeoff, IEEE Transactions on Information Theory, vol.16, issue.1, pp.41-46, 1970.

C. Corbière, N. Thome, A. Bar-hen, M. Cord, and P. Pérez, Addressing Failure Prediction by Learning Model Confidence, 2019.

C. Cortes, G. Desalvo, and M. ;. Mohri, Chained Boosting, Advances in Neural Information Processing Systems 19, pp.1660-1668, 2007.

Y. Geifman, R. El-yaniv, and T. G. Dietterich, Advances in Neural Information Processing Systems 14, Advances in Neural Information Processing Systems, pp.4878-4887, 2002.

C. De-stefano, C. Sansone, and M. Vento, To reject or not to reject: that is the question-an answer in case of neural classifiers, IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), vol.30, issue.1, pp.84-94, 2000.

M. A. Kocak, D. Ramirez, E. Erkip, and D. E. Shasha, SafePredict: A Meta-Algorithm for Machine Learning That Uses Refusals to Guarantee Correctness, IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.1-1, 2020.

A. Niculescu-mizil and R. Caruana, Predicting good probabilities with supervised learning, Proceedings of the 22nd international conference on Machine learning - ICML '05, pp.625-632, 2005.

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, On calibration of modern neural networks, Proceedings of the 34th International Conference on Machine Learning, vol.70, 2017.

J. Platt, Adaptive Margin Support Vector Machines, Advances in Large-Margin Classifiers, vol.10, pp.61-74, 2000.

B. Zadrozny and C. Elkan, Transforming classifier scores into accurate multiclass probability estimates, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '02, vol.1, pp.609-616, 2002.

B. Zadrozny and C. Elkan, Transforming classifier scores into accurate multiclass probability estimates, Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '02, pp.694-699, 2002.

M. P. Naeini, G. F. Cooper, and M. Hauskrecht, Binary Classifier Calibration Using a Bayesian Non-Parametric Approach, Proceedings of the 2015 SIAM International Conference on Data Mining, 2015.

J. Nixon, M. Dusenberry, L. Zhang, G. Jerfel, and D. Tran, Measuring calibration in deep learning, The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp.38-41, 2019.

S. Villon, D. Mouillot, M. Chaumont, G. Subsol, T. Claverie et al., A new method to control error rates in automated species identification with deep learning algorithms, Scientific Reports, vol.10, issue.1, p.10972, 2020.
URL : https://hal.archives-ouvertes.fr/lirmm-03002261

L. Perez and J. Wang, Preprint repository arXiv achieves milestone million uploads, Physics Today, 2014.

I. Goodfellow, Y. Bengio, A. Courville, Y. D. Bengio, and . Learning, , 2016.

M. Abadi, TensorFlow: learning functions at scale, Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming - ICFP 2016, vol.16, pp.265-283, 2016.

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.770-778, 2016.

W. S. Sarle, Stopped training and other remedies for overfitting, Computing Science and Statistics, pp.352-360, 1996.

J. L. Hintze and R. D. Nelson, Violin Plots: A Box Plot-Density Trace Synergism, The American Statistician, vol.52, issue.2, p.181, 1998.

J. A. Catford, M. Bode, and D. Tilman, Introduced species that overcome life history tradeoffs can cause native extinctions, Nature Communications, vol.9, issue.1, p.2131, 2018.

C. Leclerc, F. Courchamp, and C. Bellard, Insular threat associations within taxa worldwide, Scientific Reports, vol.8, issue.1, p.6393, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01788888

D. R. Spatz, K. M. Zilliacus, N. D. Holmes, S. H. Butchart, P. Genovesi et al., Globally threatened vertebrates on islands with invasive species, Science Advances, vol.3, issue.10, p.e1603080, 2017.

J. A. Mckinney, E. R. Hoffmayer, J. Holmberg, R. T. Graham, W. B. Driggers et al., Long-term assessment of whale shark population demography and connectivity using photo-identification in the Western Atlantic Ocean, PLOS ONE, vol.12, issue.8, p.e0180495, 2017.

E. Maire, S. Villéger, N. A. Graham, A. S. Hoey, J. Cinner et al., Community-wide scan identifies fish species associated with coral reef services across the Indo-Pacific, Proceedings of the Royal Society B: Biological Sciences, vol.285, issue.1883, p.20181167, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02002283

T. Newbold, L. N. Hudson, S. Contu, S. L. Hill, J. Beck et al., Widespread winners and narrow-ranged losers: Land use homogenizes biodiversity in local assemblages worldwide, PLOS Biology, vol.16, issue.12, p.e2006841, 2018.