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Abstract

The stable set associated to a given set S of nonerasing endomorphisms or substitutions is the
set of all right infinite words that can be indefinitely desubstituted over S. This notion generalizes
the notion of sets of fixed points of morphisms. It is linked to S-adicity and to property preserving
morphisms. Two main questions are considered. Which known sets of infinite words are stable
sets? Which ones are stable sets of a finite set of substitutions? While bringing answers to the
previous questions, some new characterizations of several well-known sets of words such as the set
of binary balanced words or the set of episturmian words are presented. A characterization of the
set of nonerasing endomorphisms that preserve episturmian words is also provided.

Keywords: S-adicity, fixed points, Sturmian words, episturmian words, property preserving mor-
phisms

1 Introduction

As explained with more details in, for instance, [2, 19], the terminology S-adic was introduced by S.
Ferenczi in [6], where he proved that dynamical symbolic systems with subaffine factor complexity
are S-adic uniformly minimal symbolic systems. This result was motivated by the so-called S-adic
conjecture: there exists a stronger notion of S-adicity which is equivalent to linear factor complexity.
Some advances on this conjecture were obtained by J. Leroy [11, 12], especially when the first difference
of the factor complexity is bounded by 2 [13]. Also an adaptation for infinite words was obtained [14].
Many classical words are known to be S-adic words such as, e.g., fixed points of morphisms, morphic
words (images of fixed points), Sturmian words, 3-interval exchange transformations, Arnoux-Rauzy
words and strict episturmian words.

In [2], Berthé and Delecroix write: “Expansions of S-adic nature have now proved their efficiency
for yielding convenient descriptions for highly structured symbolic dynamical systems [...] If one wants
to understand such a system [...], it might prove to be convenient to decompose it via a desubstitution
process: an S-adic system is a system that can be indefinitely desubstituted.” The aim of the paper is
to study more specifically this desubstitutive process under the approach of limit points as defined by
P. Arnoux, M. Mizutani and T. Sella [1] (and also used, for instance, by Justin et al. [5, 10]). More
specifically we study stable sets as defined by E. Godelle [9], that is, sets of limit points of a given set
of substitutions (or free monoid nonerasing endomorphisms). In other terms, a stable set associated
to a set S of substitutions is the set of all right infinite words that can be indefinitely desubstituted
using elements of S.

In [21], answering a question of G. Fici, the author characterizes in terms of limit S-adicity the
family of so-called LSP infinite words, that is, the words having all their left special factors as prefixes.
For this, he determines a suitable set SbLSP of morphisms and an automaton recognizing the allowed
infinite sequences of desubstitutions. As the obtained characterization is quite involved, a second part
of [21] considers the question of finding a simpler limit S-adic characterization. Unfortunately, there
exists no set S of endomorphisms such that the set of LSP infinite words is (exactly) the stable set
associated to S except in the binary case. The main motivation of our study is the question: which
are the known families of infinite words defined by a combinatorial property P that correspond to
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stable sets? In [21], it was observed that, when such a situation arises, morphisms of S necessarily
preserve the property P of infinite words. While bringing answers to the previous question, we present
some new characterizations of several families of words such as the set of balanced words or the set
of episturmian words. This leads us also to characterize the set of nonerasing endomorphisms that
preserve episturmian words.

In Section 2, we present the process of desubstitution as a generalization of the notion of a fixed
point of a morphism. We also recall needed definitions such as those of indefinitely desubstituted
words, limit points and stable sets. In Section 3, we consider an example of a stable set, proving that
the set of binary balanced words is a stable set of a particular set of four morphisms. As far as we
know, this result was not stated formally earlier, even if many aspects of the proof are known. The
considered process of desubstitution is infinite and an infinite sequence of substitutions of a given set
S is associated to the infinite desubstitution of an infinite word: such a sequence of substitutions is
called a directive sequence. We show that, in the general case, any infinite sequence of elements of S
is the directive sequence of at least one infinite word.

In Section 4, we study the possible forms of the elements of a stable set in relation with S-
adicity. We show that the characterization of the set of balanced words can be transformed to another
characterization in terms of S-adicity even if a general transformation cannot exist for arbitrary stable
sets. In Section 5, we provide two more examples of sets of binary infinite words that are stable sets:
the set of Sturmian words and the set of Lyndon Sturmian words. For both sets, there exist only
infinite sets of substitutions for which the set is a stable set.

In Section 6, we consider episturmian words on arbitrary alphabets. As far as we know, the
fact that the set of standard episturmian word is a stable set is the unique result of this form that
was previously stated (without adapted terminology) [10]. After recalling this result, we prove that
the set of A-strict standard episturmian words, the set of episturmian words and the set of A-strict
episturmian words are stable sets, but only of infinite sets of substitutions. For this, we prove and use
a characterization of endomorphisms preserving episturmian words. Observe that in [10] there exists
a characterization of episturmian words using a desubstitution process associated to a finite set S of
substitutions but not all elements of the stable set of S are episturmian (only the recurrent ones are).

2 From fixed points to stable sets

We assume that readers are familiar with combinatorics on words; for omitted definitions see, e.g.,
[4, 16, 17]. All the infinite words considered in this paper are right infinite words. Let us recall some
basic notions on fixed points of morphisms.

Let A be a (finite) alphabet. Let #A be its cardinality. The set of words over A, usually denoted
A∗, equipped with the concatenation operation has a free monoid structure with neutral element the
empty word ε. Given two alphabets A and B, a (free monoid) morphism f is a map from A∗ to B∗

that preserves the monoid structure: for all words u and v, f(uv) = f(u)f(v) (and, consequently,
f(ε) = ε). Morphisms are completely defined by images of letters. In what follows we will essentially
use endomorphisms, that is, morphisms from a free monoid A∗ to itself.

Given an alphabet A, the set of right infinite words, that is, infinite sequences of elements of A,
is usually denoted Aω. Images by a morphism of infinite words are defined naturally but to preserve
infinity, one may consider only nonerasing morphisms (images of nonempty words are never the empty
word). As often done, such a nonerasing morphism will be called a substitution.

A fixed point of an endomorphism is any finite or infinite word w such that w = f(w). For instance,
the following morphism has both finite and infinite fixed points. Actually, since it admits a finite fixed
point, it has infinitely many finite and infinitely many infinite fixed points.

f1 :







a 7→ a

b 7→ bac

c 7→ baca

The definition of fixed points is not constructive. To determine more precisely prefixes of an infinite
fixed point, at least two different approaches are usually considered.
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Limit approach

If w is an infinite fixed point of a morphism f and if p is one of its prefixes, then necessarily, for n ≥ 0,
the word fn(p) is also a prefix of w (classically fn = fn−1 ◦ f , f0 being the identity morphism). If
limn→∞ |fn(p)| = ∞ (where |u| denotes the length, that is, the number of letters, of the word u), then
the words fn(p) provide progressively all the letters of w that, thus, can be viewed as a limit of finite
words. This is usually denoted w = limn→∞ fn(p) or fω(p) (in this last case, p is very often a letter).

Observe that the morphism f1 has exactly one fixed point, the word aω, that cannot be obtained as a
limit of images of powers of f1 applied to a word. The other fixed points are the words limn→∞ fn

1 (a
kb)

with k ≥ 0 an integer.

Desubstitutive approach

The second approach consists of firstly considering the fixed point as the image of another word by
the morphism. There exists a word w′ such that w = f(w′): w′ is called a desubstituted word. In
general, w′ may not be unique. For instance, the unique fixed point of f1 starting with the letter b

can be seen as the image of a word over {a, c} as f1(c) = f1(ba). Nevertheless in our context, we know
that one possibility for w′ is w itself. And so we can iterate the desubstitution. Hence we can find
an infinite sequence (wi)i≥0 of infinite words such that w = w0 and, for all i ≥ 0, wi = f(wi+1): the
word w can be indefinitely desubstituted.

For obtaining large prefixes of a fixed point, the desubstitutive approach is less constructive than
the limit approach but it can be used as follows. Consider the first letter a0 of w. Then consider all
letters whose images by f start with a0: each of these letters a1 is a possible letter for the first letter
of w1 whenever f(a1) is a prefix of w. Then we can iterate looking for potential first letters a2 of
w2, a3 of w3 and so on. The words fn(an), with an the first letter of wn, provide longer and longer
prefixes of w except if this word starts with a finite fixed point. In this case we have to consider the
letter occurring after this fixed point and iterate, from this letter, the search for other letters.

It follows from the definition that any fixed point can be indefinitely desubstituted (remember
that some fixed points cannot be defined by the limit approach). But, for some morphisms, there
may exist some infinite words that can be indefinitely desubstituted without being fixed points. This
does not occur with the morphism f1 but it does occur with the morphism f2 defined by f2(a) = ba

and f2(b) = ab (Observe thatf2 has no fixed point). The words that can be indefinitely desubstituted
using f2 are the fixed points of f2

2 and not of f2 (these words are also the Thue-Morse words, that is,
the fixed points of the morphism µ defined by µ(a) = ab and µ(b) = ba). The previous phenomenon
is much more general.

Lemma 2.1 ([9, Prop. 7.1]). Let w be a right infinite word and let f be a nonerasing morphism. The
word w can be indefinitely desubstituted by f if and only if w is the fixed point of fn for some integer
n ≥ 1.

Proposition 7.1 in [9] is richer than the previous lemma. Its proof depends on a larger context.
For the sake of completeness, we provide a short proof in our context. Let first(u) denote the first
letter of a finite nonempty word or infinite word u.

Proof. First observe that if w is the fixed point of fn, then w can be indefinitely desubstituted. More
precisely, as w = fn(w), the desubstituted words are fn−1(w), . . . , f(w), w, fn−1(w), . . . , f(w), w
and so on.

Assume now that w can be indefinitely desubstituted by f . Let (wn)n≥0 be a sequence of desub-
stituted words: w0 = w and, for all n ≥ 0, wn = f(wn+1). Let an = first(wn) for all n ≥ 0. As the
alphabet A is finite, there exist arbitrarily large integers m, n such that 0 ≤ m < n ≤ m + #A and
an = am. Observe that, if 0 < m < n and an = am, then an−1 = am−1. Indeed, as f is not erasing,
an−1 = first(wn−1) = first(f(wn)) = first(f(an)) = first(f(am)) = am−1. Consequently, the sequence
(an)n≥0 is periodic with a period smaller than or equals to #A. Let π be this period.

Let a = a0 (a is the first letter of w). For all n ≥ 0, aπn = a. Since a is the first letter of
w = fπ(wπ) and since it is the first letter of wπ, a is the first letter of fπ(a). If |fπ(a)| > 1, then
limn→∞ |fnπ(a)| = ∞. For all n ≥ 0, since a is the first letter of wnπ and as w = fnπ(wnπ), the
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word fnπ(a) is a prefix of w. Hence w = limn→∞ fnπ(a). But, similarly, wπ = limn→∞ fnπ(a). Hence
w = fπ(w).

Now assume that |fπ(a)| = 1. Then w = aw′ with a a letter and w′ an infinite word such that:
a = fπ(a); w′ can be indefinitely desubstituted using f (the desubstituted words are the words w′

n

obtained from the words wn removing their first letters).
Thus, by induction, one can state that one of the two following cases holds.

1. w = a0 · · · aNw′ where N ≥ −1 is an integer (when N = −1, w = w′), w′ is an infinite word
and a0, . . . , aN are letters such that:

• there exists an integer p such that 1 ≤ p ≤ #A and w′ = fp(w′),

• for all i, 0 ≤ i ≤ N , there exists an integer πi such that 1 ≤ πi ≤ #A and ai = fπi(ai).

2. w =
∏

i≥0 ai where for all i ≥ 0, ai ∈ A and there exists an integer πi such that 1 ≤ πi ≤ #A

and ai = fπi(ai).

In the first case, let n = gcd(p, π0, . . . , πN ) and, in the second case, let n = gcd((πi)i≥0). In both
cases, w = fn(w).

Before going further studying words that are indefinitely desubstitutable over a set of morphisms,
let us recall and introduce some useful terminology. For any set X of finite words, let X∗ denote the
set of all finite words that can be obtained by concatenation of elements of X (including the empty
word), let X+ denote the set of all finite words that can be obtained by concatenation of at least one
elements of X and let Xω denote the set of all infinite words that can be obtained by concatenation of
elements of X. Observe that these notations will be used also with sets of substitutions to denote sets
of sequences of substitutions (the set of substitutions is then considered as an alphabet). Each finite
sequence σ1σ2 · · · σk of substitutions refers both to the sequence and to the substitution obtained by
composition of the σi (σ1 ◦ σ2 ◦ . . . ◦ σk). We will use both interpretations alternatively: the context
should be clear when we consider sequences and when we consider substitutions.

Let Subst(A) be the set of substitutions on the alphabet A, that is, the set of nonerasing en-
domorphisms of the free monoid A∗. Let S ⊆ Subst(A). Let (σn)n≥1 ∈ Sω. Following P. Arnoux,
M. Mizutani and T. Sella [1], a finite or an infinite wordw over A is a limit point of the sequence (σn)n≥1

if there exists a sequence (wn)n≥0 of infinite words over A such that w = w0 and wn = σn+1(wn+1)
for all n ≥ 0. In other words w can be indefinitely desubstituted using successively the substitutions
in the sequence (σn)n≥1. The sequence (σn)n≥1 will be called a directive sequence of w.

Following Godelle [9], for S ⊆ Subst(A), the stable set of S, denoted Stab(S), is the set of all limit
points of sequences in Sω. Also a set X of infinite words is stabilized by S if X =

⋃

f∈S f(X).

Lemma 2.2 ([9]).

• Stab(S) is stabilized by S.

• Any set stabilized by S is included in Stab(S).

Thus Stab(S) is the largest set (w.r.t. inclusion) of infinite words stabilized by S. Hence the stable
set of a set of substitutions appears as a natural generalization of the set of fixed points of powers of
a morphism. This is coherent with Lemma 2.1 which states that the stable set of a singleton {f} is
the set of fixed points of the morphisms fn with n ≥ 1.

Let P be a property of infinite words. Let X be the set of all infinite words having this property. A
morphism is said to preserve the property P or to preserve the set X if for all elements w in X, f(w)
also belongs to X. By definition of a stable set, for all S ⊆ Subst(A), for all σ ∈ S and w ∈ Stab(S),
σ(w) ∈ Stab(S). This can be reformulated as the next remark, already made in [21], that will be
useful when proving that some sets of infinite words cannot be stable sets of finite sets of substitutions.

Remark 2.3. If X = Stab(S) for some set S of substitutions, then all elements of S preserve the set
X.
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3 Balanced words: an example of a stable set

The desubstitutive approach naturally arises in the study of infinite binary balanced words, especially
in the study of aperiodic balanced words, that is, the Sturmian words. Here we consider the whole
set of infinite binary balanced words and we show Proposition 3.1 below. Elements of the proof are
rather classical. They allow to illustrate some techniques of proof that will be reused later.

A word on an alphabet A is balanced if for all letters a in A and for all factors u and v with |u| = |v|,
the following inequation holds: ||u|a − |v|a| ≤ 1 (here |w|α denotes the number of occurrences of the
letter α in the word w). The aperiodic, that is, not ultimately periodic, infinite binary balanced words
are called Sturmian words. The most famous one is the Fibonacci word which is the fixed point of the
morphism ϕ defined by ϕ(a) = ab, ϕ(b) = a. Since Morse and Hedlund’s work [18], periodic infinite
binary balanced words are known to be infinite repetitions of conjugates of finite standard words (e.g.,
ab(abaab)ω = (ababa)ω) (two words x and y are conjugates if there exists a word u such that xu = uy).
But there are also some ultimately periodic balanced words that are not purely periodic as for instance
anbaω, (ab)na(ab)ω, (abaab)naba(abaab)ω, . . .

It is well-known that the following four morphisms are intrinsically related to binary balanced
words as they naturally occur in the study of Sturmian words.

La :

{

a 7→ a

b 7→ ab
Lb :

{

a 7→ ba

b 7→ b
Ra :

{

a 7→ a

b 7→ ba
Rb :

{

a 7→ ab

b 7→ b

Let Sbal = {La, Ra, Lb, Rb}.

Proposition 3.1. The set of binary balanced infinite words is the stable set of Sbal.

The previous proposition means that an infinite binary word w is balanced if and only if there
exists some words (wi)i≥0 and morphisms (σi)i≥1 in {La, Lb, Ra, Rb} such that w0 = w and for all
i ≥ 0, wi = σi+1(wi+1). One can also see that all words in (wi)i≥0 are balanced words. The proof of
the only if part illustrates the mechanism of desubstitution.

Proof of the only if part. Given an infinite binary balanced word w over {a, b}, one of the two words
aa and bb does not occur in w. In each case and whatever is the first letter of w, w = σ1(w1) for a
morphism σ1 in {La, Lb, Ra, Rb} and an infinite word w1 over {a, b}. The following table summarises
the four possible cases:

w starts with w does not contain w can be decomposed

a bb over {a, ab}: w = La(w1)

a aa over {ab, b}: w = Rb(w1)

b bb over {ba, a}: w = Ra(w1)

b aa over {ba, b}: w = Lb(w1)

Let us now state that the word w1 is balanced. Assume by contradiction that w1 is not balanced.
Considering a pair of words of same minimal length such that the first one contains at least two more
occurrences of the letter a than the second, we find a word u such that both words aua and bub occur
in w1. In the case where w starts with b and does not contain bb, we verify that the word w = Ra(w1)
contains aaRa(u)a and baRa(u)b as factors (the factor aua is not a prefix of w1, and so, images of
its occurrences in Ra(w1) are necessarily preceded by a). A similar contradiction with the balance
property of w can be obtained in the three other cases.

As w1 is balanced, iterating what precedes, one can find a balanced infinite binary word w2 and
a morphism σ2 in {La, Lb, Ra, Rb} such that w1 = σ2(w2). The proof of the only if part ends by
induction.

The proof of the if part needs the following well-known property:

Lemma 3.2 (see, e.g., [17, chap. 2]). Any morphism in {La, Lb, Ra, Rb}
∗ preserves the balanced prop-

erty.
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Proof of the if part of Proposition 3.1. Assume that s = (σn)n≥1 is a sequence of morphisms in {La,

Lb, Ra, Rb} occurring in an infinite desubstitution of a word w, and let (wn)n≥0 be the corresponding
sequence of words: w0 = w, wi = σi+1(wi+1) for all i ≥ 0.

Assume first that s ∈ {La, Ra}ω. Assume that there exists an integer n such that banb is a factor
of w. Thus, by induction, one can see that ban−ib is a factor of wi for all i such that 0 ≤ i ≤ n.
Especially bb is a factor of wn. This is impossible as it is an image of a word by La or Ra. Thus w
contains at most one b, that is, it belongs to the set {aω, anbaω | n ≥ 1}: it is clearly balanced.

Assume now that more generally, s contains finitely many elements of {Lb, Rb}. This means that
w = f(w′) with f ∈ {La, Lb, Ra, Rb}

∗ and w′ as in the previous case. As w′ is balanced and as f

preserves balanced words by Lemma 3.2, the word w is also balanced.
Similarly w is balanced if s contains finitely many elements of {La, Ra}.
It remains to study the case where s contains both infinitely many occurrences of elements of

{La, Ra} and infinitely many occurrences of elements of {Lb, Rb}. These words are the Sturmian words
[3] and so they are balanced. The proof can be given shortly. The sequence s can be contracted to a
sequence s′ of morphisms in {La, Ra}

+{Lb, Rb} ∪ {Lb, Rb}
+{La, Ra}. All the morphisms σ occurring

in s′ satisfy |σ(a)| ≥ 2 and |σ(b)| ≥ 2. Thus one can obtain the word w as the limit of prefixes
σ′
1 · · · σ

′
n(an) with σ′

1 · · · σ
′
n prefixes of s′. Letters an are the first letters of the words associated to the

infinite desubstitution of w by morphisms in σ′. As letters are balanced words and as all morphisms
σi (i ≥ 1) preserve the property of being balanced by Lemma 3.2, we obtain the balance property of
w.

Let us observe, from the previous proof, that any infinite sequence of morphisms over Sbal is the
directive sequence of at least one aperiodic or purely periodic balanced word. This property is general.

Proposition 3.3. Let S ⊆ Subst(A). Any sequence in Sω is the directive sequence of at least one
element of Stab(S).

This proposition (and its proof) is a generalization of a result by P. Arnoux, M. Mizutani and
T. Sella [1, Prop2.1]: Any primitive sequence of substitutions has a finite and nonzero number of
limit points. Let us recall that a sequence of substitutions (σn)n≥0 over an alphabet A is primitive
if for all n ≥ 0, there exists an integer k such that, for each letter a in A, all letters of A occur in
σn · · · σn+k(a). For an arbitrary set of substitutions, there may not exist aperiodic limit points. Indeed
when S = {Rb}, we have Stab(S) = {bω} ∪ {bnabω | n ≥ 0}. There may also exist infinitely many
aperiodic limit points. Indeed let g be the morphism defined by g(a) = abab, g(b) = b. The fixed
point gω(a) of g starting with a is aperiodic as it contains all words abna (with n ≥ 1) as factors. The
infinite fixed points of g are bω and the words bngω(a) for all n ≥ 0.

Proof of Proposition 3.3. Let (σn)n≥1 be a sequence in Sω. For any n ≥ 1, let fn : A 7→ A be the map
that sends any letter a ∈ A to the first letter of σn(a). The sequence f1(f2 · · · (fn(A)) · · · ) of subsets
of A is a decreasing sequence of nonempty subsets of A, so their intersection is nonempty. Let X be
the set of all words a0 · · · an, with n ≥ 0, such that ai = fi+1(ai+1) for all i, 0 ≤ i < n. By Konig’s
lemma, there exists an infinite sequence of letters (an)n≥0 such that an = fn+1(an+1) for all n ≥ 0.

Consider the sequence of words (un)n≥0 defined by un = σ1σ2 · · · σn(an). Since an is the first
letter of σn+1(an+1), un is, by construction, a prefix of un+1. If the sequence (un)n≥0 is not ultimately
periodic, the limit limn→∞ un defines an infinite word which is a limit point of the sequence (σn)n≥1.
If the sequence un is ultimately periodic, then its ultimate value is a finite word u. Thus the infinite
word uω is a limit point of (σn)n≥1.

4 About the structure of stable sets

In this section, we study links between stable sets and substitutive-adicity. We also provide a de-
scription of elements of a stable set Stab(S) that are not S-adic. For a survey on S-adicity see,
e.g., Berthé and Delecroix [2]. Let us recall that an infinite word w is S-adic if there exist a
sequence (σn)n≥1, σn : A∗

n+1 → A∗
n, of substitutions and a sequence of letters (an)n≥1 such that

w = limn→∞ σ1 · · · σn(an). The sequence (σn)n≥1 is called a directive sequence of w.
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Denoting S = {σn | n ≥ 1}, w is S-adic (where S refers to the set of substitutions and not
to the term “substitutive”). In what follows we will only consider sets of substitutions that are
endomorphisms. As already said, Berthé and Delecroix [2] mentioned that “an S-adic system is a
system that can be indefinitely desubstituted”. The next result formalizes this in our context.

Proposition 4.1. Let S ⊆ Subst(A). Any S-adic word belongs to Stab(S).
Moreover, if (σn)n≥1 is the directive word of an S-adic word w, then (σn)n≥1 is also a directive

sequence of w as an element of Stab(S).

Let us observe that Proposition 4.1 is not immediate. If (σn)n≥1 is the directive sequence of an
S-adic word w, there exists a sequence of letters (an)n≥1 such that w = limn→∞ σ1σ2 · · · σn(an).
This does not imply that for all k ≥ 0, the limit limn→∞ σkσk+1 · · · σn(an) exists. Hence the fact
that w belongs to Stab(S) is not immediate. This phenomenon can be illustrated by the following
example. Let f : a 7→ a, b 7→ a and g : a 7→ bb, b 7→ aa. For all n ≥ 0, we have g2n(a) = a2

2n

g2n+1(a) = b2
2n+1

. Hence taking an = a for all n ≥ 1, we have limn→∞ fgn(a) = aω but lim gn(a) does
not exist. Nevertheless taking w2n = aω and w2n+1 = bω provides a sequence of infinite desubstituted
words of aω using f and g.

Another difficulty to cope with is that, for some sets S of substitutions, there may exist a word
w that is S-adic but for which, given any sequence of desubstituted words (wn)n≥0 of w, we do not
have w = limn→∞ σ1 · · · σn(first(wn)). For instance, let S = {La}. There is only one word in Stab(S):
the word aω. The unique sequence of desubstituted words is (aω)n≥0 and aω 6= limn→∞Ln

a(first(a
ω)).

Nevertheless aω is {La}-adic since aω = limn→∞ anb = limn→∞Ln
a(b).

The situation in the previous example can be greatly explained by the fact that the finite word a can
be indefinitely desubstituted. In Section 4.1, we study the set of finite words that can be indefinitely
desubstitutable. In particular, Proposition 4.3 states that, given a directive sequence s, the set of finite
words that can be indefinitely desubstituted with s is finitely generated. The next example shows that
this does not mean that the set of finite words that can be indefinitely desubstituted using a given
set of substitutions is finitely generated. Set S = {La, Lb}. The words a and b can be indefinitely
desubstituted using, respectively, Lω

a and Lω
b as directive sequences. But not all words over {a, b}

belong to Stab(S).
After proving Proposition 4.3 in Section 4.1, we use this proposition to prove Proposition 4.1 (in

Section 4.2). In Section 4.3, we provide more information on the structure of stable sets. In Section 4.4,
we consider a question relative to a converse to Proposition 4.1.

4.1 On desubstitutable finite words

For s ∈ Sω, let StabFin(s) and StabLet(s) denote the sets of, respectively, finite nonempty words
and letters that can be indefinitely desubstituted using s as directive sequence. Set GenStabFin(s) =
StabFin(s) \ (StabFin(s) StabFin(s)+): this set is the set of all elements of StabFin(s) that cannot be
decomposed as a concatenation of two or more elements of StabFin(s). Finally, let StabUltLet(s) be
the subset of StabFin(s) containing words that can be desusbtituted in such a way that desubstituted
words are ultimately letters:

StabUltLet(s) = {f(α) | s = fs′, f ∈ S∗, s′ ∈ Sω and α ∈ StabLet(s′)}

Proposition 4.2. Let S ⊆ Subst(A) and let s ∈ Sω.

1. StabFin(s) = GenStabFin(s)+

2. GenStabFin(s) ⊆ StabUltLet(s)

Proof. Relation 1 follows directly the definition of StabFin(s) and GenStabFin(s).
Relation 2 is also a consequence of the definition of the sets GenStabFin(s) and StabUltLet(s).

Let w ∈ GenStabFin(s). Let s = (σn)n≥1 and let (wn)n≥0 be the corresponding sequence of finite
desubstituted words: w0 = w and wn−1 = σn(wn) for n ≥ 1. Observe that |wn−1| ≥ |wn| ≥ 1.
Hence the sequence (|wn|)n≥0 is ultimately constant. If this constant is 2 or more, then we find a
contradiction with indecomposability of elements of GenStabFin(s). Hence (|wn|)n≥0 is ultimately 1
and Relation 2 holds.
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Observe that the inverse inclusion of the second assertion of Proposition 4.2 does not hold in
general. For instance if S = {f, Id} with Id the identity morphism and f defined by f(a) = bc, f(b) = b

and f(c) = c, then bc 6∈ GenStabFin(f. Idω) (with f. Idω the sequence of substitutions beginning with
f and followed by Idω), even if bc = f(a), as b and c belong to GenStabFin(f. Idω). The same
phenomenon exists if one consider, instead of Id, any morphism g such that g({a, b, c}) = {a, b, c}.

Proposition 4.3. Let S ⊆ Subst(A) and s ∈ Sω. The sets GenStabFin(s) and StabUltLet(s) are
finite. Their cardinalities are bounded by the cardinality of A.

More precisely there exist p ∈ S∗ and s′ ∈ Sω such that s = ps′, and, for all elements u in
StabUltLet(s), u = p(α) for some α ∈ StabLet(s′).

Proof. By Relation 2 of Proposition 4.2, it is sufficient to prove the result for StabUltLet(s). Let
x1, . . . , xk be distinct elements of StabUltLet(s). There exist prefixes p1, . . . , pk of s (each pi is a
composition of morphisms), suffixes s1, . . . , sk of s and letters α1, . . . , αk such that, for all i, 1 ≤ i ≤ k,
xi = pi(αi), αi ∈ StabLet(si) and s = pisi. Let p be the longest word among the words p1, . . . , pk. Let
s′ be the corresponding suffix of s: s = ps′. For each i, let fi such that p = pifi. As αi ∈ StabLet(si),
there exists a letter α′

i ∈ StabLet(s′) such that αi = fi(α
′
i). Hence for all i, xi = p(α′

i). As StabLet(s
′)

is a subset of A, we conclude that k ≤ #A. So StabUltLet(s) is finite.

4.2 Proof of Proposition 4.1

Let w be an S-adic word. There exist a sequence (σn)n≥1 of elements of Sω and a sequence of letters
(an)n≥1 such that w = limn→∞ σ1σ2 · · · σn(an). We prove that w ∈ Stab(S) and that (σn)n≥1 is a
directive sequence of w. We have to construct a sequence of desubstituted words.

Note that, for all m ≥ 1, limn→∞ |σm · · · σn(an)| = ∞. Let k ≥ 1 be an integer. We first consider
links between prefixes of length k of words σm · · · σn(an) (when k ≤ |σm · · · σn(an)|). Informally, the
idea of the proof is that if we can find a k and a sequence (pm)m≥0 of such prefixes such that, for all m,
pm is a prefix of σm(pm+1) and limm→∞ |σ1σ2 · · · σm(pm)| = ∞, then the words limn→∞ σm · · · σn(pn)
would form a sequence of desubstituted words. If we cannot find any k and any sequence of such
prefixes, then w has infinitely many prefixes that can be indefinitely desubstituted using the directive
sequence (σn)n≥1 and the construction of desubstituted words would differ.

Let Vk be the set of all pairs (p,m) with m ≥ 1 an integer and p a word of length k such that there
exists an integer n ≥ m for which p is a prefix of σm · · · σn(an). Let Gk be the directed acyclic graph
whose vertices are the elements of Vk and the edges are the pairs ((p,m), (p′,m + 1)) of elements of
Vk such that p is the prefix of length k of σm(p′).

Let (p′,m+1) be an element of Vk with m ≥ 1. Let n ≥ m+1 be an integer such that p′ is a prefix
of σm+1 · · · σn(an). Let p be the prefix of length k of σm(p′): p is also a prefix of σmσm+1 · · · σn(an).
Hence (p,m) ∈ Vk and ((p,m), (p′,m+1)) is an edge of Gk. More precisely, since σm(p′) has a unique
prefix of length k, ((p,m), (p′,m + 1)) is the unique edge of Gk ending on (p′,m+ 1). It follows that
Gk is an infinite forest.

Let πk be the prefix of length k of w. As w = limn→∞ σ1σ2 · · · σn(an), there exist infinitely many
elements (p,m) in Vk for which there exists a path from (πk, 1) to (p,m). Let Tk be the subgraph of
Gk induced by elements of Vk that are accessible from (πk, 1). The graph Tk is an infinite tree. By
Konig’s lemma, there exists an infinite path (pi, i)i≥1 starting from (πk, 1).

Let m,n with n ≥ m ≥ 1. By construction, pm is the prefix of length k of σm · · · σn−1(pn) and,
by definition of Vk, pn is a prefix of σn · · · σℓ(aℓ) for some ℓ ≥ 1. Hence pm is the prefix of length
k of σm · · · σℓ(aℓ) for arbitrary large ℓ. It follows that σ1 · · · σm−1(pm) is a prefix of σ1 · · · σℓ(aℓ) for
arbitrary large ℓ. As w = limn→∞ σ1σ2 · · · σn(an), σ1 · · · σm−1(pm) is a prefix of w.

Assume that limn→∞ |σ1 · · · σn−1(pn)| = ∞. We have w = limn→∞ σ1 · · · σn−1(pn). Let m ≥ 1. We
also have limn→∞ |σm · · · σn−1(pn)| = ∞. Moreover, by construction, for all n ≥ m, σm · · · σn−1(pn)
is a prefix of σm · · · σn(pn+1). Thus limn→∞ σm · · · σn−1(pn) defines an infinite word. We denote it
wm. It follows from the construction that, for all m ≥ 1, wm = σm(wm+1) and w1 = w. Hence
w ∈ Stab(S) and w has (σn)n≥1 as directive sequences.

To end the proof of Proposition 4.1, we consider the case where for all k ≥ 1, and for all infinite
paths (pi, i)i≥1 in Tk, limn→∞ |σ1 · · · σn−1(pn)| is finite.
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Let k ≥ 1 be an integer and let (pi, i)i≥1 be an infinite path in Tk. As, for all i ≥ 1, pi is a prefix
of σi(pi+1), σ1 · · · σi−1(pi)is a prefix of σ1 · · · σi(pi+1). The fact that limn→∞ |σ1 · · · σn−1(pn)| is finite
implies that there exists an integer N such that, for all n ≥ N , |σ1 · · · σn−1(pn)| = |σ1 · · · σn(pn+1)|. It
follows that, for all n ≥ N , |pn| = |σn(pn+1)| and so pn = σn(pn+1). As for all n ≥ 0, σ1 · · · σn−1(pn)
is a prefix of σ1 · · · σn(pn+1) and a prefix of w, the limit limn→∞ σ1 · · · σn−1(pn) converges to a prefix
π of w.

For any n ≥ 1, |pn| = k. Let us decompose pn over letters. For i with 1 ≤ i ≤ k, let pn,i ∈ A

such that pn = pn,1 · · · pn,k. We have π = [σ1 · · · σN−1(pN,1)] · · · [σ1 · · · σN−1(pN,k)] and for all n ≥ N

and for all i, 1 ≤ i ≤ k, pn,i = σn(pn+1,i). In other words, the prefix π of w can be decomposed into
k factors that are indefinitely desubstitutable with (σn)n≥1 as directive sequence: π ∈ StabUltLet(s)
with s = (σn)n≥1.

What is described before holds for arbitrary k ≥ 1 since we have assumed: for all k ≥ 1, and for
all infinite paths (pi, i)i≥1 in Tk, limn→∞ |σ1 · · · σn−1(pn)| is finite. This means that w has infinitely
many prefixes in (StabUltLet(s))∗. By Proposition 4.3, StabUltLet(s) is finite. Thus w belongs to
(StabUltLet(s))ω .

Let us decompose w over StabUltLet(s). Let (ui)i≥1 in StabUltLet(s) such that w =
∏

i≥1 ui. For
each i ≥ 1, let (ui,j)j≥0 be the sequence of desubstituted words of ui: ui = ui,0 and ui,j = σj+1(ui,j+1)
for j ≥ 0. Let wj =

∏

i≥1 ui,j. By construction, w = w0 and, for j ≥ 0, wj = σj+1(wj+1). So w

belongs to Stab(S) and (σn)n≥0 is a directive sequence of w.

4.3 More on the structure on stable sets

For s ∈ Sω, let Stab(s) denote the set of infinite words that can be indefinitely desubstituted using
s as directive sequence. Let adic(s) be the set of infinite words that are S-adic with s as directive
sequence.

Proposition 4.4. Let S ⊆ Subst(A) and let s ∈ Sω. We have:

Stab(s) = GenStabFin(s)ω ∪ (GenStabFin(s))∗ adic(s)

Proof. The inclusion GenStabFin(s)ω ∪ (GenStabFin(s))∗ adic(s) ⊆ Stab(S) follows directly the def-
initions. For the converse, assume that w ∈ Stab(s). Let s = (σn)n≥1 and let (wn)n≥0 be the
corresponding sequence of desubstituted words. Let also (an)n≥0 be the sequence (first(wn))n≥0. If
there exist arbitrarily large integers n such that |σn(an)| ≥ 2, then w(= w0) belongs to adic(s).
Otherwise we ultimately have an−1 = σn(an). Set u = limn→∞ σ1 · · · σn(an). This word u belongs
to StabFin(s). Thus, by Relation 1 of Proposition 4.2, w = uw′ with u ∈ GenStabFin(s)+ and
w′ ∈ Stab(s). Hence the proof can end by induction on the length of prefixes of w.

Let us observe that GenStabFin(s)ω ∪ (GenStabFin(s))∗ adic(s) may not be empty. This is the
case for instance when s = Lω

a since aω = limn→∞Ln
a(b) and GenStabFin(s) = {a}.

The next result is a direct consequence of Propositions 4.4 and 4.3.

Corollary 4.5. Let S ⊆ Subst(A). An infinite word w belongs to Stab(S) if and only if one of the
two following cases holds:

• w = f(uw′) with f ∈ S∗ and there exists a sequence s ∈ Sω such that u ∈ StabLet(s)∗ and
w′ ∈ adic(s).

• w = f(w′) with f ∈ S∗ and w′ ∈ (StabLet(s))ω for a sequence s ∈ Sω.

The next result is a direct consequence of Corollary 4.5.

Corollary 4.6. Let S ⊆ Subst(A). If
⋃

s∈Sω StabLet(s) is empty, then the set Stab(S) is exactly the
set of S-adic words.

Let us observe that the converse of this lemma does not hold, as shown by Proposition 4.8.
Let us observe also that the condition in Corollary 4.6 is decidable when S is finite. Indeed the

set StabLet(S) can be algorithmically determined as follows. First construct the graph whose vertices

9



are letters and whose labeled oriented edges are the triples (α, f, β) with α, β letters and f ∈ S such
that α = f(β). Elements of StabLet(S) are the vertices from which go at least one infinite path in the
graph. Labels of such paths are directive sequences of the desubstitutions. Finally,

⋃

s∈Sω StabLet(s)
is empty if and only if there is no circuit in the graph. An open question is to decide, given a finite
set S of substitutions, whether the set Stab(S) is exactly the set of S-adic words.

4.4 Substitutive-adicity of balanced words

After Corollary 4.6, a natural question is: given a set S ⊆ Subst(A), does there exist a set S ′ ⊆
Subst(A) such that Stab(S) is the set of all S ′-adic words. Although Proposition 4.8 below provides
an example of positive answer, this does not hold in general as shown by the set {Id} with Id the
identity morphism over A∗: Stab({Id}) = Aω but this set does not correspond to a set of S ′-adic
words as shown by the next lemma. We say that a morphism is a permutation if {f(a) | a ∈ A} = A.

Lemma 4.7. Let A be an alphabet containing at least two letters. There exists no set S ⊆ Subst(A)
such that Aω is exactly the set of all S-adic words. Moreover any set S such that Aω = Stab(S) must
contain a permutation.

Proof. Let A be an alphabet with k ≥ 2 distinct letters a1, . . . , ak. Let S ⊆ Subst(A) be such that Aω

is the set of all S-adic words. By Proposition 4.1, Aω = Stab(S). Let w be an infinite word containing
all finite words over A as factors. There exists a substitution f in S and an infinite word w′ such that
w = f(w′). For each i, 1 ≤ i ≤ k, w has arbitrary large factors that are powers of ai. This implies
that there exists a letter αi ∈ A and an integer ℓi with f(αi) = aℓii . Note that A = {αi | 1 ≤ i ≤ k}.

Hence w = f(w′) belongs to {aℓ11 , . . . , a
ℓk
k }ω. But there also exist arbitrarily large factors of w in

(a1a2 · · · ak)
∗. As k ≥ 2, for all i, ℓi = 1. The morphism f is a permutation.

Observe that w′ contains all finite words as factors. Thus, by induction, we can see that any
directive sequence of w as an S-adic word is a sequence of permutations. This contradicts the fact
that, for any directive sequence (σn)n≥0 of w as an S-adic word, it should exist a sequence of letters
(an)n≥0 such that w = limn→∞ σ1 · · · σn(an).

Let us recall that J. Cassaigne provides an example showing that all words of Aω are S-adic with S
a finite set of substitutions but the substitutions used in this example are defined on a larger alphabet
than A and the stable set Stab(S) contains elements that are not in Aω (see, e.g., [2, Remark 3]). Let
us recall this example. Let w = (ai)i≥1 in Aω (ai ∈ A). We have w = limn→∞ fσ2 · · · σn(ℓ) with ℓ a
letter that does not belong to A and the morphisms f and (σi)i≥2 defined as follows.

f :

{

ℓ 7→ a1
α 7→ α (α ∈ A)

σi :

{

ℓ 7→ ℓai
α 7→ α (α ∈ A)

Note also that the previous lemma is not true for a one-letter alphabet as aω is the fixed point of
the morphism d defined by d(a) = aa.

The next result characterizes balanced words in terms of S-adicity.

Proposition 4.8. An infinite word over {a, b} is balanced if and only if it is Sbal-adic.

Proof. First assume that a word w is Sbal-adic. By Proposition 4.1, w belongs to Stab(Sbal). Then
by Proposition 3.1, it is balanced.

From now on, assume that w is balanced. By Proposition 3.1, w ∈ Stab(Sbal). Let s = (σn)n≥1 ∈
Sω be a directive sequence of w. As already mentioned in the proof of Proposition 3.1, if s contains
infinitely many elements in {La, Ra} and infinitely many elements in {Lb, Rb}, then w is Sbal-adic. In
the remaining cases, there exist an integer N ≥ 1 and a letter α ∈ {a, b} such that, for all n ≥ N ,
σn ∈ {Lα, Rα}. Let f = σ1 · · · σN−1 and let w′ be the element of Stab(S) directed by (σn)n≥N such
that w = f(w′). Let β be the letter such that {α, β} = {a, b}. Observe that w′ contains at most one
occurrence of β. Indeed if it contains a factor βαnβ for some integer n, then for any i, 1 ≤ i ≤ n, the
ith desubstituted word of w′ (remember that σi ∈ {Lα, Rα}) would contain the factor βαn−iβ. But
the nth desubstituted word cannot contain the factor ββ since it can itself be desubstituted using Lα

or Rα. Hence w′ = αω = limn→∞ Ln
α(β) or w

′ = αkβαω = Lk
α(limn→∞Rn

α(β)) for some k ≥ 0. Hence
w′ and w = f(w′) are Sbal-adic.
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5 Two other examples of stable sets on binary alphabets

After Remark 2.3, while searching for examples of stable sets defined by a combinatorial property, it
is natural to consider properties for which we know the morphisms that preserve them. But this does
not provide systematically a stable set as shown by the next example.

An overlap-free word is a word that contains no factor of the form αuαuα with α a letter and
u a word. Since Thue [22], it is known that the morphisms that preserve overlap-free words are the
morphisms obtained by compositions of the morphism µ (µ(a) = ab, µ(b) = ba) and the exchange
morphisms E (E(a) = b, E(b) = a). As µE = Eµ, one can check that Stab({µ}) = Stab({µ,E}∗ \
{E, Id}) = {M, E(M)} where M, the Thue-Morse word, is the fixed point of µ starting with letter a.
It follows that no stable set corresponds to the set of binary overlap-free words. Also M and E(M) are
the unique overlap-free words that can be defined using S-adicity for a set S of morphisms preserving
overlap-freeness (as by Proposition 4.1, S-adic words belong to Stab(S)).

5.1 Sturmian words

As mentioned previously the Sturmian words are the binary balanced aperiodic words. We show below
that the set of Sturmian words can be defined as a stable set but only with infinite sets of substitutions.

In the proof of Proposition 3.1 we have already recalled that Sturmian words are (exactly) the
elements of Stab(Sbal) such that any directive sequence contains infinitely many elements of {La, Ra}
and infinitely many elements of {Lb, Rb} [3]. Using the contraction method already used in the
proof of Proposition 3.1, this can be reformulated using the set SSturm = {La, Ra}

+{Lb, Rb} ∪
{Lb, Rb}

+{La, Ra}. Thus we have proved the following proposition.

Proposition 5.1. A word is Sturmian if and only if it belongs to Stab(SSturm).

Proposition 5.2. There exists no finite set S of substitutions such that the set of Sturmian words is
equal to Stab(S).

For the proof of this proposition we need the next lemma.

Lemma 5.3 (see, e.g., [17, chap. 2]). Morphisms that preserve Sturmian words are the elements of
the set (Sbal ∪ {E})∗.

Proof of Proposition 5.2. Assume that the set of Sturmian words is the set Stab(S) for some finite
set S of substitutions. First observe that, by Remark 2.3, for all f in S, f preserves the family of
Sturmian words. Hence by Lemma 5.3, S ⊆ {La, Lb, Ra, Rb, E}∗. As ELa = LbE, ELb = LaE,
ERa = RbE, ERb = RaE and EE = Id, we have S ⊆ {La, Lb, Ra, Rb}

∗{Id, E}. Hence there exist
two subsets F and G of S∗

bal such that S = F ∪ GE . As S is finite, let F = {fi | 1 ≤ i ≤ ℓ} and let
G = {gi | 1 ≤ i ≤ k}.

The following fact is important.
Fact. For i ≥ 0 an integer, for f ∈ Si

bal and for an infinite word w, if the word f(w) contains a
factor baj+2b with j ≥ i, then f ∈ {La, Ra}

i.
Let us prove this fact by induction on i. It is basically true for i = 0. Assume i ≥ 1. Observe that

for any infinite word u, both words Lb(u) and Rb(u) does not contain aa. As aa is a factor of f(w)
and f ∈ Si

bal, it follows that f = Lag or f = Rag with g ∈ Si−1
bal . Whatever is the decomposition of f ,

g(w) contains a factor baj+1b = ba(j−1)+2b. As i − 1 ≤ j − 1, by induction, g ∈ {La, Ra}
i−1. hence

f ∈ {La, Ra}
i.

Now let M = 2max({|fi| | 1 ≤ i ≤ ℓ} ∪ {|gi| | 1 ≤ i ≤ k}) (here, for f ∈ S∗
bal, |f | is the length of

f considered as a word over the alphabet Sbal). Let w be a Sturmian word that contains the factor
baM+2b. Let (σn)n≥1 ∈ Sω be a directive word of w (as an element of Stab(S)).

For any morphism f in (Sbal ∪ E)∗, let f̄ be the morphism obtained from the decomposition of f
over {La, Lb, Ra, Rb} replacing each occurrence of La with Lb, each occurrence of Ra with Rb, each
occurrence of Lb with La and each occurrence of Rb with Ra. Observe that fE = Ef̄ .

Let σ′
1, σ

′
2 be the morphisms defined as follows.

• if σ1 ∈ F and σ2 ∈ F , set σ′
1 = σ1, σ

′
2 = σ2 (note that σ′

1σ
′
2 = σ1σ2);
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• if σ1 ∈ F and σ2 ∈ GE, set σ′
1 = σ1, σ

′
2 = σ2E (note that σ′

1σ
′
2 = σ1σ2E);

• if σ1 ∈ GE and σ2 ∈ F , set σ′
1 = σ1E, σ′

2 = σ2 (note that σ′
1σ

′
2 = σ1σ2E);

• if σ1 ∈ GE and σ2 ∈ GE, set σ′
1 = σ1E, σ′

2 = σ2E (note that σ′
1σ

′
2 = σ1σ2).

In all cases, σ′
1 and σ′

2 belong to S∗
bal and w = σ′

1σ
′
2(w

′) for some infinite word w′. As |σ′
1σ

′
2| ≤ M

and as w contains the factor baM+2b, by the initial fact, we must have σ′
1σ

′
2 ∈ {La, Ra}

∗, and so σ′
1,

σ′
2 ∈ {La, Ra}

∗

If σ1 ∈ F , we get σ1 ∈ {La, Ra}
∗. If σ1 6∈ F and σ2 ∈ F , from σ′

2 ∈ {La, Ra}
∗, we get σ2 ∈

{Lb, Rb}
∗. If σ1 6∈ F and σ2 6∈ F , we have σ1σ2 ∈ {La, Ra}

∗. But then, one of the words aω or bω

belongs to Stab(S) with σω
1 , σ

ω
2 or (σ1σ2)

ω as a directive sequence. As these words are not Sturmian,
we have a contradiction with the hypothesis that Stab(S) is the set of Sturmian words.

The previous result shows that the set of aperiodic words of a stable set of a finite set of substitu-
tions may not form also a stable set of a finite set of substitutions by themselves.

5.2 Lyndon Sturmian words

Let us recall that an infinite Lyndon word is a word smaller, with respect to the lexicographic order,
than its suffixes. Here, without loss of generality, we restrict our attention on the ordered alphabet
{a < b}, that is on the alphabet {a, b} with a < b. Results for the order {b < a} can be obtained
exchanging the roles of a and b. Let us show that the set of binary balanced infinite Lyndon words
form a stable set. Set SLynd = {Ln

aRb, R
n
bLa | n ≥ 1}.

Proposition 5.4.

• A word is a Lyndon Sturmian word over {a < b} if and only if it belongs to Stab(SLynd) if and
only if it is SLynd-adic.

• There is no finite set S such that the set of Lyndon Sturmian words is Stab(S).

Proof. The first part is a direct consequence of Theorems 5.6 and 6.5 in [15] from which we have: A
Sturmian word w is a Lyndon word over {a < b} or over {b < a} if and only if there exists a sequence
(dn)n≥0 of integers such that d1 ≥ 0, dk ≥ 1 for all k ≥ 2 and

w = lim
n→∞

Ld1
a Rd2

b Ld3
a Rd4

b · · ·Ld2n−1

a Rd2n
b (a)

or
w = lim

n→∞
Ld1
b Rd2

a Ld3
b Rd4

a · · ·L
d2n−1

b Rd2n
a (a)

Consequently a Sturmian wordw is a Lyndon word over {a < b} if and only if it is SLynd-adic. Observe
that, for any f in SLynd, |f(a)| ≥ 2 and |f(b)| ≥ 2. Hence the set

⋃

s∈Sω
Lynd

StabLet(s) is empty. By

Corollary 4.6, the set of SLynd-adic words is equal to Stab(SLynd).
The second part is a consequence of the fact that morphisms that preserve Lyndon Sturmian

words are the elements of {La, Rb}
∗ [20]. Assume that the set of Lyndon Sturmian words is Stab(S)

for some S ⊆ Subst({a, b}). By Remark 2.3, S ⊆ {La, Rb}
∗. But no element of S can belong to L∗

a or
R∗

b as aω and bω (that are indefinitely desubstitutable over La and Rb respectively) are not Lyndon
words. Hence any element f ∈ S should be a concatenation of elements of {La, Rb} with at least one
occurrence of La and one occurrence of Rb. But then, as in the proof of Proposition 5.2, S cannot be
finite as otherwise the number of occurrences of the letter a between two occurrences of the letter b

would be bounded.
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6 Episturmian words

In [5, 10] an episturmian word is defined as an infinite word whose set of factors is closed under
reversal and that has at most one left special factor of each length (Let us recall that u is a left special
factor of a word w if au and bu are factors of w for a and b two different letters). The subset of
the strict episturmian words (or A-strict episturmian words with A the alphabet) corresponds to the
Arnoux-Rauzy words. It is the set of infinite words having exactly one left special factor of each length,
whose set of factors is closed under reversal and such that if u is a left special factor then all words
αu, for α ∈ A, are also factors. Also an episturmian word is standard if its left special factors are its
prefixes.

The following morphisms are important when studying episturmian words. They extend to arbi-
trary alphabet the morphisms of Sbal, and the exchange morphism E. For a, b ∈ A, let Ea,b be the
substitution defined by Ea,b(a) = b, Eb,a(b) = a and Eb,a(c) = c for c ∈ A \ {a, b}. For α ∈ A, let Lα

and Rα be the following substitutions:

Lα :

{

α 7→ α

β 7→ αβ for β 6= α, β ∈ A
Rα :

{

α 7→ α

β 7→ βα for β 6= α, β ∈ A

Let L = {Lα | α ∈ A} and R = {Rα | α ∈ A}. Let Exch be the set {Eα,β | α, β ∈ A}. Observe
that elements of Exch∗ are the permutations. The set Exch∗ is finite and its cardinality is #A!. Here
follows some useful relations. For pairwise distinct letters α, β, γ, we have

LαEβ,γ = Eβ,γLα (1)

RαEβ,γ = Eβ,γRα (2)

LαEα,β = Eα,βLβ (3)

RαEα,β = Eα,βRβ (4)

6.1 Standard episturmian words and stable sets

As far as we know, the next statement is the unique one that characterized explicitly a combinatorial
family of words in terms of a stable set before the current paper.

Proposition 6.1 ([10, Cor. 2.7]). The set of standard episturmian words is Stab(L).

Strict standard episturmian words correspond to the words whose directive sequence contains
infinitely many Lα for each letter α (see [10]). In the binary case they correspond to the standard
Sturmian words, also called characteristic words, that is, to the infinite binary words such that their
prefixes are exactly their special factors. It is known that the standard Sturmian words are the L-adic
words (see, e.g., [17, Prop. 2.2.24]). This does not extend to strict standard episturmian words for
alphabets with three letters or more. Indeed over an alphabet containing three letters or more, being
L-adic does not imply that there exists a directive sequence such that, for each letter α, Lα occurs
infinitely often in the directive sequence. For instance, the episturmian word directed by Lc(LaLb)

ω

is L-adic but it not a strict standard episturmian word.
Let LStrictStand be the set of all elements of L∗ whose decompositions on L contain at least one

occurrence of each element of L and the last substitution in the decomposition has no previous oc-
currence in the decomposition: f ∈ LStrictStand if f = La1La2 · · ·Lak for some letters a1, . . . , ak, if
for each α ∈ A, there exists i, 1 ≤ i ≤ k such that ai = α, and if ak 6∈ {a1, . . . , ak−1}. (Observe
that the decomposition La1La2 · · ·Lak is unique: This can be verified directly using the fact that,
for an infinite word w containing a, La(w) contains aa) For instance, when A = {a, b}, LStrictStand

= {Ln
aLb, L

n
bLa | n ≥ 1}. From the definition of strict standard episturmian words and from the

definition of the set LStrictStand, the first part of the next proposition may be directly verified.

Proposition 6.2. Let A be an alphabet containing at least two letters.

• The set of A-strict standard episturmian words is the set Stab(LStrictStand)

• There exists no finite set S ⊆ Subst(A) such that Stab(LStrictStand) = Stab(S).
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• The set of standard episturmian words is the set of L-adic words.

Proof. The proof of the second part is similar to the proof of Proposition 5.2 but we have to face a
combinatorial problem due to the fact that the alphabet may have more than two letters.

Assume, by contradiction, that the set of A-strict standard episturmian words, (Stab(LStrictStand)
by the first part of the proposition) is equal to Stab(S) for some finite set S of substitutions. First
observe that, by Remark 2.3, for all f in S, f preserves A-strict standard episturmian words. Theorem
10 in [5] states that a substitution σ ∈ Subst(A) preserves A-strict standard episturmian words if and
only σ ∈ (L∪Exch)∗. Hence S ⊆ (L∪Exch)∗. By Equations (1) and (3), S∗ ⊆ L∗ Exch∗ : any element
σ of S∗ can be decomposed into σ = fπ with f ∈ L∗ and π a permutation.

Let a and b be two different letters. The following fact is important.
Fact. Let i, j be integers such that i ≤ j. Let w ∈ Aω and f ∈ Li. If f(w) contains a factor

baj+2b, then f = Li
a.

We prove this fact by induction. It is basically true for i = 0. Assume i ≥ 1. Observe that for
c 6= a and for any infinite word u, Lc(u) does not contain aa. As aa is a factor of f(w) and as
f ∈ Li, it follows that f = Lag with g ∈ Li−1. Consequently, g(w) contains a factor ba(j−1)+2b and
i− 1 ≤ j − 1. Hence g = Li−1

a by induction. So f = Li
a.

Now let M1 = max({|f | | fπ ∈ S, f ∈ L∗, π ∈ Exch∗} (here, for f ∈ L∗, |f | is the length of
f considered as a word over the alphabet L). Let M = (#A! + 1)M1 Let w be a strict standard
episturmian word containing the factor baM+2b. Let (σn)n≥1 ∈ Sω be a directive word of w (as an
element of Stab(S)).

Let i, 1 ≤ i ≤ #A! + 1. For 1 ≤ j ≤ i, as σj ∈ L∗ Exch∗, there exist gj ∈ L∗ and π′
j ∈ Exch∗

such that σj = gjπ
′
j. Using Equations (1) and (3), we can see that there exist fi ∈ L∗ and πi ∈ Exch∗

such that σ1 · · · σi = fiπi. Moreover |fi| =
∑i

j=1 |gj | and so |fi| ≤ iM1 ≤ M . From the previous fact,
fi ∈ {La}

∗. Since the cardinality of Exch∗ is #A!, there exists i and j such that 1 ≤ i < j ≤ #A! + 1,
such that πi = πj. Set π = πi.

Let ℓi and ℓj be the integers such that σ1 . . . σi = Lℓi
a π and σ1 . . . σj = L

ℓj
a π. We have L

ℓj
a π =

σ1 . . . σj = Lℓi
a πσi+1 · · · σj. Thus πσi+1 · · · σj = L

ℓj−ℓi
a π. By Equations (1) and (3), there exists a letter

c such that L
ℓj−ℓi
a π = πL

ℓj−ℓi
c . So σi+1 · · · σj = L

ℓj−ℓi
c .

Now observe that the word cω can be indefinitely desubstituted using the morphism L
ℓj−ℓi
c . Thus

cω ∈ Stab(S). But cω is not a strict standard episturmian word as it does not contain all the letters
of A. This contradicts the fact that Stab(S) is the set of strict standard episturmian words.

Let us prove the third part of Proposition 6.2. By Proposition 6.1, standard episturmian words
are the elements of Stab(L). If an element w of Stab(L) has a directive sequence (σn)n≥1 containing
infinitely many occurrences of at least two elements of L and if (wn)n≥0 is the corresponding sequence
of desubstituted words, then one can verify that limn→∞ |σ1 · · · σn(first(wn))| = ∞, and so, w is L-
adic. If it is ultimately Lω

α, then w = f(αω) for some f ∈ L∗. As there exists a letter β different from
α, αω = limn→∞Ln

α(β): f(α
ω) is L-adic.

Conversely, by Proposition 4.1, the set of L-adic words is a subset of Stab(L).

Let us recall some results on the family of LSP words. These words were introduced by G. Fici in
2011 [7] as the words having all their left special factors as prefixes. Standard episturmian words are
particular LSP words. The set of factors of these words is not necessarily closed by reversal. In [21]
it was proved that the set of LSP words over {a, b} is the set Stab({La, Lb}). By Proposition 6.1 this
means that on a binary alphabet, a word is standard episturmian if and only if it is LSP. This does
not hold on larger alphabets. Indeed by [21] there exist no finite set S ⊆ Subst(A) such that the set
of LSP words over A is Stab(S).

6.2 Recurrence, stable sets and Episturmian words

Justin and Pirillo [10] obtained also the next result on desubstitutions of episturmian words. Let us
recall that a word is recurrent if all its factors occur infinitely often, or equivalently, if all its factors
occur at least twice.
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Theorem 6.3 ([10, Th. 3.10]). An infinite word w is episturmian if and only if w ∈ Stab(L ∪ R)
and it has a sequence (wn)n≥0 of recurrent desubstituted words.

The previous theorem and Proposition 3.1 show that, in the binary case, the episturmian words
are the recurrent balanced words. On arbitrary alphabet, this characterization of episturmian words
can be simplified as follows.

Proposition 6.4. An infinite word w is episturmian if and only if it is a recurrent element of Stab(L∪
R).

To prove this proposition we need the next two lemmas. The first one is a slight variation of
Theorem 5.2 in [8] that concerns only the directive sequence and not the sequence of desubstituted
words.

Lemma 6.5. Let w be an element of Stab(L ∪R). There exist a sequence of infinite words (wn)n≥0

and a sequence (σn)n≥1 in (L ∪R)ω such that w0 = w, for all n ≥ 0, wn = σn+1(wn+1), and, for all
k ≥ 0, if wk begins with the letter α, then σk+1 6= Rα.

Proof. As w ∈ Stab(L∪R), there exist sequences (wn)n≥0 and (σn)n≥1 such that w0 = w and for all
n ≥ 0, wn = σn+1(wn+1).

We construct sequences (w′
n)n≥0 and (σ′

n)n≥1 such that w′
0 = w, w′

n = σ′
n+1(w

′
n+1) for all n ≥ 0,

and, for all k ≥ 0, if w′
k begins with the letter α, then σ′

k+1 6= Rα. It may be emphasize that for all
k ≥ 0, there will exist an integer nk ≥ 0, such that wk = first(wk)

nkw′
k. The construction is done by

an infinite induction. Set w′
0 = w0.

Let k ≥ 0 be an integer such that (w′
i)0≤i≤k and (σ′

i)1≤i≤k are already defined.
Assume first that w′

k = wk.
Let α = first(wk). If σk+1 6= Rα (that is σk+1 = Rβ with β 6= α or σk+1 = Lβ (possibly β = α)),

set w′
k+1 = wk+1 and σ′

k+1 = σk+1.
If σk+1 = Rα, from wk = Rα(wk+1), we get first(wk+1) = α. Let w′

k+1 be the word such that
wk+1 = αw′

k+1. Set σ′
k+1 = Lα. We have w′

k = wk = Rα(wk+1) = Rα(αw
′
k+1) = αRα(w

′
k+1) =

Lα(w
′
k+1) = σ′

k+1(w
′
k+1).

To continue the induction step, we now have to consider cases where wk = αnw′
k for some letter

α and some integer n ≥ 1. Observe that, since αnw′
k = wk = σk+1(wk+1), we cannot have σk+1 = Lβ

with β 6= α. Observe also that if σk+1 = Lα, then wk+1 begins with αn−1β where β = first(w′
k).

If σk+1 = Lα and α 6= β, let w′
k+1 be the word such that wk+1 = αn−1w′

k+1. Set σ′
k+1 = Rα.

From αnw′
k = wk = Lα(wk+1) = Lα(α

n−1w′
k+1) = αn−1Lα(w

′
k+1), we get αw′

k = Lα(w
′
k+1) and so

w′
k = Rα(wk+1) = σ′

k+1(w
′
k+1).

If σk+1 = Lα and α = β, let w′
k+1 be the word such that wk+1 = αnw′

k+1. Set σ′
k+1 = Lα. From

αnw′
k = wk = Lα(wk+1) = Lα(α

nw′
k+1) = αnLα(w

′
k+1), we get w′

k = Lα(w
′
k+1) = σ′

k+1(w
′
k+1).

If σk+1 = Rβ for some letter β 6= α, from αnw′
k = wk = Rβ(wk+1), we deduce successively that

first(wk+1) = α, wk begins with αβ and n = 1. Let w′
k+1 be the word such that wk+1 = αw′

k+1.
Set σ′

k+1 = Lβ. From αw′
k = Rβ(αw

′
k+1) = αβRβ(w

′
k+1), we get w′

k = βRβ(w
′
k+1) = Lβ(w

′
k+1) =

σ′
k+1(w

′
k+1).

If σk+1 = Rα, from αnw′
k = wk = Rα(wk+1), we deduce that wk+1 begins with αnβ with β

the first letter of w′
k. If α 6= β, let w′

k+1 be the word such that wk+1 = αnw′
k+1. Set σ′

k+1 = Rα.
From αnw′

k = Rα(α
nw′

k+1) = αnRα(w
′
k+1), we get w′

k = Rα(w
′
k+1) = σ′

k+1(w
′
k+1). If wk+1 begins

with αn+1, let w′
k+1 be the word such that wk+1 = αn+1w′

k+1. Set σ′
k+1 = Lα. From αnw′

k =
Rα(α

n+1w′
k+1) = αnαRα(w

′
k+1), we get w′

k = αRα(w
′
k+1) = Lα(w

′
k+1) = σ′

k+1(w
′
k+1).

Observe that, in all cases, we have by construction σ′
k+1 6= Rfirst(w′

k
).

Lemma 6.6. Let w be an infinite word and let α be a letter.

• If Lα(w) is recurrent then w is recurrent.

• If Rβ(αw) is recurrent then αw is recurrent for any letter β 6= α.
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Proof. Assume by contradiction that w is not recurrent. It has a factor u that occurs only once. Let
v = Lα(u)α. Any occurrence of v in Lα(w) must come from an occurrence of u in w. This contradicts
the recurrence property of Lα(w).

Assume by contradiction that αw is not recurrent. As α 6= β, we have Rβ(αw) = αβRβ(w) =
αLβ(w). As Rβ(αw) is recurrent, Lβ(w) is recurrent and, from what precedes, w is also recurrent.
Hence αw has a prefix v such that αv occurs only once in αw. As Rβ(αw) is recurrent, the word
Rβ(αv) occurs at a non-prefix position in Rβ(αw). This implies that αv also occurs at a non-prefix
position in αw. A contradiction.

Proof of Proposition 6.4. Assume that w is a recurrent element of Stab(L∪R). There exist sequences
(wn)n≥0 and (σn)n≥1 as in the statement of Lemma 6.5. By induction, using Lemma 6.6 we get the
recurrence of all words wn. By Theorem 6.3, w is episturmian.

The converse also follows immediately from Theorem 6.3.

One can observe that while desubstituting balanced words in the proof of Proposition 3.1, we get
directly a sequence of desubstituted words and a directive sequence as in Lemma 6.5.

6.3 Characterizing the set of episturmian words as a stable set

Let E be the set of episturmian words. Proposition 6.8 provides characterizations of E as a stable set
and as a set of adic words. We first need a technical result.

Lemma 6.7. Any episturmian word, considered as an element of Stab(L∪R), has a directive sequence
containing infinitely many occurrences of elements of L. In other words, any episturmian word belongs
to Stab(R∗L).

Proof. Let w in Stab(L ∪ R) and let (wn)n≥0 and (σn)n≥1 as in Lemma 6.5. Observe that, for any
infinite word u and any letters α, β, the word Rβ(u) begins with α if and only if u begins with α.

Assume that (σn)n≥ℓ+1 ∈ Rω for some integer ℓ. Let α be the first letter of wℓ. From the previous
observation, it follows that α is the first letter of wk for all k ≥ ℓ. The hypothesis “if wk begins with
the letter α, then σk+1 6= Rα”, implies that σk 6= Rα for all k ≥ ℓ+ 1. Hence, for any k ≥ ℓ, α occurs
only as a prefix of the words σℓ · · · σk(α) whose lengths grow to infinity. As these words σℓ · · · σk(α) are
prefixes of wℓ, α has only one occurrence in wℓ and the word wℓ is not recurrent. Using Lemma 6.6
and the previously recalled hypothesis, by inverse induction, we can show that wi is also not recurrent
for every i, ℓ ≥ i ≥ 0. Hence, by Proposition 6.4, w0 is not episturmian. Thus, for all ℓ ≥ 1, there
exists k ≥ ℓ such that σk ∈ L, that is, w ∈ Stab(R∗L).

Proposition 6.8. Consider an alphabet containing at least two letters. The set E of episturmian
words is the set Stab(R∗L) and it is also the set of all R∗L-adic words.

Proof. From Theorem 6.3 and Lemma 6.7, E ⊆ Stab(R∗L).
Assume now that w ∈ Stab(R∗L). Let (σn)n≥1 be a directive sequence of w (σn ∈ R∗L for all

n ≥ 1). If there exists a letter a such that σn ∈ R∗
aLa for arbitrarily large n, then, w = f(aω) for

some f in (R∗L)∗. As there exists a letter b 6= a, aω = limn→∞Ln
a(b): w is R∗L-adic. Otherwise, let

(wn)n≥0 be a sequence of desubstituted words of w using (σn)n≥1. For any integer n ≥ 0, there exists
m, m ≥ n, such that |σn+1 · · · σm(first(wm))| ≥ 2. Hence w is (R∗L)-adic.

Assume now that w is R∗L-adic. A first case is that w = f(aω) for some letter a and some f in
(L ∪ R)∗. In this case w is recurrent as any periodic word is. Moreover it belongs to Stab(L ∪ R)
with fLω

a as a directive sequence. By Proposition 6.4, w is episturmian.
Assume now that the first case does not hold (but still w is R∗L-adic). By Proposition 4.1,

w ∈ Stab(R∗L). Let s = (σn)n≥1 be the directive sequence of w as an element of this stable set (for
all n ≥ 0, σn belongs to Stab(R∗L)) and let (wn)n≥0 be the sequence of desubstituted words. Observe
that there cannot exist a letter α and an integer N such that, for all n ≥ N , σn ∈ (R∗

αLα). Indeed, for
any infinite word u and any element f of (R∗

αLα)
k, f(u) begins with αk. Hence the existence of α and

N would implies that wN = αω and that we are back in the first case. From the previous observation,
we deduce that, for all n ≥ 0, there exist an integer m ≥ 1 and a letter b 6= first(wn) such that
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|σn+1 · · · σm(first(wm))|b 6= 0. This implies that, for all n ≥ 0, first(wn) has at least two occurrences
in wn. Observe that any factor of w is a factor of a prefix of w and so a factor of σ1 · · · σn(first(wn)) for
some integer n. Hence any factor of w occurs at least twice in w: w is recurrent. By Proposition 6.4,
w is episturmian.

As R∗L is infinite, the next proposition answers a natural question.

Proposition 6.9. Assume that the alphabet A contains at least two letters. There is no finite set
S ⊆ Subst(A) such that the set E of episturmian words is Stab(S).

For proving this result, we need a characterization of the set of endomorphisms preserving epis-
turmian words.

Let P be the set of all endomorphisms f for which there exists a letter a such that, for all letter
b in A, f(b) ∈ a+. For any infinite word w and f ∈ P, f(w) is periodic: it is the word aω for some
letter a. Finally, let Sepi = (L ∪R ∪ Exch∪P)∗.

Proposition 6.10. The set of endomorphisms preserving E is Sepi.

Proof. Let us first verify that any element of Sepi preserves E . It is sufficient to consider elements
of L ∪ R ∪ Exch∪P. As for any letter α the word αω is episturmian, this holds for elements of P.
Changing the alphabet of a word does not change the property of being episturmian. Hence this holds
also for elements of Exch. Finally, as E = Stab(R∗L) by Proposition 6.8, elements of (L ∪ R) also
preserve E .

To prove that any endomorphisms preserving E is an element of Sepi, we need the next two lemmas.

Lemma 6.11. Let f , g in Subst(A) and α ∈ A such that f = Lαg or f = Rαg. We have: f preserves
E if and only if g preserves E.

Proof. We have just seen that elements of L ∪R preserve E . Hence if g preserves E , f also preserves
E .

From now on, assume that f preserves E but not g. This means that there exists w in E such
that g(w) 6∈ E and f(w) ∈ E . Observe that g(w) is recurrent as w is recurrent. By definition of
episturmian words, g(w) has two left special factors of the same length or its set of factors is not
closed by reversal.

First assume the existence of two different left special factors. Considering them of minimal length
we may assume that these words are ua1 and ua2 for a word u and different letters a1 and a2. There
exist letters b1, b2, c1, c2 with b1 6= b2, c1 6= c2 such that b1ua1, b2ua1, c1ua2, c2ua2 are factors of
g(w). As g(w) is recurrent, we can consider non-prefix occurrences of the previous words.

If f = Lαg, then the words b1Lα(u)αa1, b2Lα(u)αa1, c1Lα(u)αa2, c2Lα(u)αa2 are factors of
Lα(g(w)). To verify this assertion it may be observed that (for instance) b1Lα(u)αa1 is a factor of
Lα(b1ua1)α which is a factor of Lα(g(w)) (note that moreover a1α = αa1 when a1 = α).

If f = Rαg, then the words b1αRα(u)a1, b2αRα(u)a1, c1αRα(u)a2, c2αRα(u)a2 are factors of
Rα(g(u)). To verify this assertion it may be observed that (for instance) b1αRα(u)a1 is a factor of
αRα(b1ua1) which is also a factor of Rα(g(w)) as we consider a non-prefix occurrence of b1ua1.

In both cases, f(w) has two left special factors of the same length and consequently it is not
episturmian. A contradiction.

From now on, assume that g(w) contains a factor u but not its reversal ũ. The word Lα(g(w))

contains the factor Lα(u)α but not its reversal. Indeed if it contains L̃α(u)α = αL̃α(u) = αRα(ũ) =
Lα(ũ)α, then the word g(w) contains the factor ũ: a contradiction. Similarly the word Rα(g(w)) con-
tains the factor αRα(u) (remember that g(w) is recurrent and so there exists a non-prefix occurrence
of u) but not its reversal αRα(ũ). As f(w) = Lα(g(w)) or f(w) = Rα(g(w)), f(w) is not episturmian.
This contradicts the facts that w is episturmian and that f preserves E . Hence g preserves E .

Lemma 6.12. Let f ∈ Subst(A) \ Exch∗ be a morphism that preserves E. All images of letters by f

begin with the same letter, or, all images of letters end with the same letter.
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Proof. Let last(w) be the last letter of a non-empty finite word w.
Let f ∈ Subst(A)\Exch∗ be a morphism that preserves E . We start with the following observation:

For any episturmian word w, there exists a letter α such that any factor of w of length 2 contains α.
This follows directly from Theorem 6.3 that states, that for any episturmian word w, there exists a
letter α such that w = Lα(w

′) or w = Rα(w
′) for some episturmian word w′.

Case 1. Assume first that there exist letters α and a such that αα is a factor of f(a). Then, by
the previous observation, for any episturmian word w containing a, f(w) cannot contain a factor βγ
with β, γ two letters with β 6= α and γ 6= α. This implies that there cannot exist letters b and c such
that first(f(c)) 6= α and last(f(b)) 6= α. Indeed there exist episturmian words containing both a and
bc: their images by f would contain both αα and the word last(f(b)) first(f(c)) which is impossible.
Thus all images of letters begin with α or all images of letters end with α.

Case 2. Assume now that the previous case does not hold but that there exist pairwise distinct
letters α, such that αβ or βα is a factor of an element of f(A), and, αγ or γα is also a factor of an
element of f(A).

Assume first that there exist an episturmian word w containing all letters, and, two letters δ1 and
δ2 different from α such that δ1δ2 is a factor of f(w). Then by initial observation, as the previous
case does not hold, δ1δ2 ∈ {βγ, γβ}. It follows that no other letter than α, β and γ occurs in words of
f(A). Indeed otherwise, f(w) would contain two factors written on different letters: a contradiction
with the initial observation. Assume now by contradiction that there exist images of letters that do
not begin with the same letter and images of letters that do not end with the same letter. Then there
exist a letter x ∈ {α, β, γ} such that x = first(f(b)) and x = last(f(a)) for some letters a and b. Let w
be an episturmian word containing all letters and the factor ab. The episturmian word f(w) contains
xx and a factor of length 2 that does not contains x. This contradicts the initial observation.

Hence, for any w ∈ E , f(w) cannot contain a factor δ1δ2 with δ1, δ2 two letters different from α.
We end as in the Case 1.

Case 3. Assume now that the previous cases do not hold but that there exists a letter b such that
|f(b)| ≥ 2.

Note that, as the two previous cases do not hold, there must exist distinct letters α and β such
that factors of length 2 of elements of f(A) are necessarily αβ and βα. This implies that the first
letter of f(b) is α or β. Without loss of generality, assume f(b) begins with α. Hence, for some k ≥ 1,
f(b) = (αβ)k of f(b) = (αβ)kα.

Case f(b) = (αβ)k. There cannot exist letters a, c, γ, δ such that γ 6= β, α 6= δ, γ = last(f(a)),
δ = first(f(c)). Indeed otherwise f(abc) would contain the factor γ(αβ)kδ. Since β is not a factor of
γα and α is not a factor of βδ, for any episturmian word w containing abc, the word f(w) would not
be an episturmian word by the initial observation. Hence all images of letters begin with α, or, all
images of letters end with β.

Case f(b) = (αβ)kα. Assume that there exists a letter a such that last(f(a)) = γ with γ 6= α.
As all length 2 factors of images of letters are αβ and βα, if γ 6= β, then f(a) = γ. In this case,
for any episturmian word containing aab, f(w) contains both γγ and αβ contradicting the fact that
it is episturmian. So γ = β. Moreover f(a) = (αβ)ℓ or f(a) = (βα)ℓβ for some ℓ ≥ 0. The case
f(a) = (αβ)ℓ has already been considered. Hence assume f(a) = (βα)ℓβ. Let w be an episturmian
word containing the factor bbbabb. The word f(w) contains the factor

α(αβ)kα(αβ)kα(βα)ℓβ(αβ)kαα

which is equals to
α(αβ)kα(αβ)k+ℓ+1+kαα

As f(w) ∈ Stab(L ∪ R) by Theorem 6.3, f(w) = Lα(w
′) or f(w) = Rα(w

′) for some episturmian
word w′. Thus w′ should contain the factor αβkαβk+ℓ+1+kα. As k + ℓ+ 1 + k ≥ k + 2, this implies
that both βk+1 and βkα are left special factors of w′: this contradicts the fact that w′ is episturmian.
Thus for each letter a, last(f(a)) = α.

Case 4. It remains to consider the case where all images of letters are of length 1. As f 6∈ Exch∗, if
all images are not the same, then there exist pairwise different letters a, b and c such that f(a) = f(b)
and f(a) 6= f(c). Set x = f(a), y = f(c) (x and y are letters). Letw be an episturmian word containing
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the factor acc. The word LaLbLc(w) contains the factor cabaabacabac and the word fLaLbLc(w)
contains the factor yx6yx3y. Hence x3y and x4 are both left special factors of fLaLbLc(w). This is
not possible for an episturmian word: we have a contradiction with the fact that f preserves E . Thus
all images of letters are equal.

Let us continue the proof of Proposition 6.10.
From now on, let f be an endomorphism preserving episturmian words. Let ||f || =

∑

α∈A |f(α)|.
We prove by induction on ||f || that f ∈ Sepi.

Assume first that ||f || = #A. If f(A) = A, then f ∈ Exch∗ ⊆ Sepi. Otherwise by Lemma 6.12,
f ∈ P ⊆ Sepi.

From now on, assume that ||f || > #A and assume f 6∈ P. By Lemma 6.12, all images of letters
begin with the same letter, or, all images of letters end with the same letter. Assume that the first
case holds (the second case is symmetric) and let α be the first letter of images of letters. Let w ∈ E .
By hypothesis f(w) ∈ E . As E ⊆ Stab(L∪R) by Theorem 6.3, f(w) = Lβ(w

′) or f(w) = Rβ(w
′) for

some letter β and some word w′.
When f(w) = Lβ(w

′), we have α = β and we can find a morphism g such that f = Lαg. By
Lemma 6.11, g preserves E . As f 6∈ P, ||g|| < ||f || and by induction g ∈ Sepi. So f ∈ Sepi.

Assume now that f(w) = Rβ(w
′). If all images of letters by f end with β, then f = Rβg and,

as in the case f = Lαg above, f ∈ Sepi. If some image of a letter by f does not end with β, as the
image of letters is followed by α in f(w) and by β in Rβ(w

′), we get α = β. Hence f = Lαh for some
morphism h, and as previously f ∈ Sepi.

Proof of Proposition 6.9. The proof is similar to the proof of the second part of Proposition 6.2 but we
have to take care of elements in R. Assume by contradiction that there exists a finite set S ⊆ Subst(A)
such that the set of episturmian words is Stab(S). By Remark 2.3, elements of S preserve E and so,
by Proposition 6.10, S ⊆ Sepi = (L ∪R ∪ Exch∪P)∗.

Observe that S ∩ Exch∗ = ∅. Indeed if f ∈ S ∩ Exch∗, f acts on the alphabet as a permutation
and there exists an integer n such that fn is the identity. Then any infinite word belongs to Stab(S):
a contradiction.

From now on, we consider only aperiodic episturmian words. These words can be desubstituted
only on elements of S ∩ (L ∪R ∪ Exch)∗. From Relations (1) to (4), any element of (L ∪R ∪ Exch)∗

can be decomposed into σe with σ ∈ (L ∪R)∗ and e ∈ Exch∗, that is, it can be viewed as an element
of (L ∪R)∗ Exch∗.

Let a and b be two different letters. The following fact is important.
Fact. Let i, j be integers such that i ≤ j. Let w ∈ Aω and f ∈ (L ∪ R)i. If f(w) begins with

abj+2a, then f = Ri
b.

We prove this fact by induction on i. It is basically true for i = 0. Assume i ≥ 1. As f(w) begins
with abb and f ∈ (L ∪R)i, necessarily f = Rbg for some g ∈ (L ∪R)i−1. Moreover g(w) has a prefix
ab(j−1)+2a and i− 1 ≤ j − 1. Hence g = Ri−1

b by induction. So f = Ri
b.

Now let M1 = max({|f | | fπ ∈ S, f ∈ (L ∪ R)∗, π ∈ Exch∗}. (here, for f ∈ (L ∪ R)∗, |f | is
the length of f considered as a word over the alphabet L ∪ R). Let M = (#A! + 1)M1. Let w be
an episturmian word having abM+2a as a prefix. Let (σn)n≥1 ∈ Sω be a directive word of w (as an
element of Stab(S)).

Let i, 1 ≤ i ≤ #A! + 1. For 1 ≤ j ≤ i, as σj ∈ (L ∪ R)∗ Exch∗, there exist gj ∈ (L ∪ R)∗ and
π′
j ∈ Exch∗ such that σj = gjπ

′
j . Using Equations (2) and (4), we can see that there exist fi ∈ (L∪R)∗

and πi ∈ Exch∗ such that σ1 · · · σi = fiπi. Moreover |fi| =
∑i

j=1 |gj | and so |fi| ≤ iM1 ≤ M .
From the previous fact, fi ∈ {Rb}

∗. Since the cardinality of Exch∗ is #A!, there exists i and j,
1 ≤ i < j ≤ #A! + 1, such that πi = πj. Set π = πi.

Let ℓi and ℓj be the integers such that σ1 . . . σi = Rℓi
b π and σ1 . . . σj = R

ℓj
b π. We have R

ℓj
b π =

σ1 . . . σj = Rℓi
b πσi+1 · · · σj . Thus πσi+1 · · · σj = R

ℓj−ℓi
b π. By Equations (3) and (4), there exists a

letter c such that R
ℓj−ℓi
b π = πR

ℓj−ℓi
c . So σi+1 · · · σj = R

ℓj−ℓi
c .
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Observe that, for d a letter different from c (the alphabet A contains at least two letters), Rω
c is a

directive sequence of the word dcω. Thus (R
ℓj−ℓi
c )ω is a directive sequence of the word dcω. Hence this

word dcω belongs to Stab(S) although it is not episturmian (by Theorem 6.3 since it is not recurrent).
We have obtained a contradiction with Stab(S) = E .

6.4 Strict episturmian words

Theorem 6.3 recalls only a part of Theorem 3.10 in [10]. This latter theorem also implies that an
infinite wordw is A-strict episturmian if and only if there exist an infinite sequence of recurrent infinite
words (wn)n≥0 and a sequence (σn)n≥1 in (L∪R)ω such that, for each letter α in A, Lα or Rα occurs
infinitely often in (σn)n≥1. Let Sstrictepi be the set (L∪R)∗L(L∪R)∗∩∩α∈A(L∪R)∗{Lα, Rα}(L∪R)∗

of all elements of (L ∪R)∗ having a decomposition over L ∪R with at least one element of L and at
least one element of {Lα, Rα} for each letter α.

From what precedes, using Lemma 6.5, we can see that the set of A-strict episturmian words is
included in Stab(Sstrictepi). Conversely, acting as in the proof of Proposition 6.8, we can deduce that
any element of Stab(Sstrictepi) is recurrent. The next result follows.

Proposition 6.13. The set of A-strict episturmian words is Stab(Sstrictepi).

In [10, Th. 3.13], it is proved that (L∪R∪Exch)∗ is the set of endomorphisms of A∗ that preserve
A-strict episturmian words. Using this result, as done for the proof of Proposition 6.9, we can prove:

Proposition 6.14. There is no finite set S ⊆ Subst(A) such that Stab(S) is the set of A-strict
episturmian words.

7 Conclusion

Stable sets formalize the concept of infinite desubstitutions using a set of nonerasing endomorphisms.
We have shown that several known sets of words are stable sets: the set of binary balanced words,
the set of Sturmian words, the set of Lyndon Sturmian words, the set of standard episturmian words
(which corresponds, in the binary case, to the set of LSP words), the set of strict standard episturmian
words (which corresponds, in the binary case, to the set of standard words), the set of episturmian
words and the set of strict standard episturmian words. Among all these sets, only the set of binary
balanced words and the set of standard episturmian words are stable sets of a finite set of substitutions.
A first natural question is whether there exist other sets defined by combinatorial properties that are
stable sets of a (finite) set of substitutions.

A characterization of a set of words as the stable set of an infinite set of substitutions may be more
difficult to understand and to use than a characterization as a subset of a stable set of a finite set
of substitutions using conditions on directive sequences. For instance, it is probably more interesting
to know that standard Sturmian words are the elements of Stab(L ∪ R) whose directive sequences
contain infinitely many occurrences of La and infinitely many occurrences of Lb than to know that
they are the elements of Stab(Sstand), even if this latter formulation states the same result in a more
compact form. Similarly, it may be more interesting to know that episturmian words are the recurrent
elements of Stab(L ∪R) than to know that they are the elements of Stab(R∗L). More generally one
can search for a characterization of a set of words as a subset of a stable set whose directive sequence
of elements verify a particular condition. Such a result was obtained for the set of LSP words [21].
Moreover this approach is often done w.r.t. the concept of S-adicity instead of stable sets (see, e.g.
the case of Sturmian words or the paper [2] and its references).

Some extensions of the notion of stable set could also be studied. For instance it should be quite
natural to search for sets of words that are images by a morphism or by a set of morphisms (not
necessarily endomorphisms) of a stable set. But except the morphic words, the author knows no
example among classical sets of words.

Another direction of study could be to have a better formalization of the possible changes of
alphabets. Indeed, remember that in the definitions of S-adicity, the considered morphisms are not
necessarily endomorphisms. Also in the examples of stable sets one can observe that some elements
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of stable sets have desubstituted words written on alphabets whose cardinalities may decrease (see for
instance the word LcLb(a

ω)).

Acknowledgements
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[11] J. Leroy. Contribution à la résolution de la conjecture S-adique. Doctoral Thesis, Université de Picardie
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