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Chapter 1

FROM NON-M ODEL -BASED TO ADAPTIVE

M ODEL -BASED TRACKING CONTROL OF

L OW-I NERTIA UNDERWATER VEHICLES

Auwal Shehu Tijjani and Ahmed Chemori�

LIRMM, University of Montpellier, CNRS, Montpellier, France.

Abstract
This chapter investigates the performances of different control schemes, from non-

model-based (proportional-integral-derivative control, PID) to model-based (com-
puted torque control, CT) as well as adaptive model-based (adaptive proportional-
derivative plus control, APD+), implemented on a low-inertia underwater vehicle for
three- dimensional (3D) helical trajectory tracking. Then, the asymptotic stability of
the resulting closed-loop dynamics for each control scheme is proven based on the
Lyapunov direct method. The performances of the control schemes, implemented on
the Leonard underwater vehicle for 3D helical trajectory tracking, are then demon-
strated through scenarios-based numerical simulations. The proposed simulations are
conducted under the in�uences of the vehicle's buoyancy and damping changes, para-
metric variations; sensor noise, internal vehicle's perturbations; and water current,
external disturbances rejection. Moreover, we demonstrate the task of transporting
an object by the vehicle during underwater missions. The obtained simulation results
show the effectiveness and robustness of the APD+ control scheme for tracking control
of the low-inertia underwater vehicle in marine applications, outperforming the other
controllers.

Keywords: Non-model-based control, model-based control, adaptive model-based control,
computed torque control, PID, APD+, stability analysis, low-inertia underwater vehicle.

� LIRMM, University of Montpellier, CNRS, Montpellier, France. E-mail: Ahmed.Chemori@lirmm.fr
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2 Auwal Shehu Tijjani and Ahmed Chemori

1 Introduction

1.1 Context

The high demand for raw materials on the land surface due to the rapid technological ad-
vances in industry and research activities broaden the exploration and exploitation of sub-
sea environments. These raw materials includes: crude oil and natural gas, solid minerals
(nickel, silver, copper, gold, cobalt etc), aquatic plants and animals [1]. Being an alter-
native natural source of raw materials currently and in the near future, approximately less
than 10% of the subsea is explored and exploited by human either for civil or military pur-
poses [2], [3], [4]. Some of the characteristics that make the subsea challenging to explore
and exploit by the human despite its abundance deposit of raw materials include: poor vis-
ibility especially at higher depths, poor or impossible electromagnetic transmission which
hinders online communications, highly dynamical and unstructured nature of the environ-
ment, as well as the impact of waves and water currents [5].

Being motivated by the challenges of the subsea as well as the high demand for raw
materials, research communities proposed using divers for exploring and exploiting this en-
vironment. The proposed solution was associated to inherent challenges such as putting the
lives of the divers at risk, the expensive cost, the time-consuming, the low ef�ciency, etc.
Based on these limitations, other groups of research communities proposed using manned
underwater vehicles (MUVs) for exploring and exploiting the subsea environment. Al-
though the proposed idea was a big step forward, it was also associated with other chal-
lenges. For instance, when MUVs got stuck in a con�ned environment, the lives of the
personnel inside will be at risk such as the real-life scenario happen with an MUV carrying
seven personnel identi�ed asAS� 28. The vehicle was trapped 15 years ago by underwater
radar cables in the paci�c ocean at a depth of approximately 250m from the surface [5]. In
view of the challenges faced by MUVs, with the recent technological advances in compu-
tational power of microprocessors, sensors, battery systems and vision system, unmanned
underwater vehicles (UUVs) are becoming the ultimate tool for exploring and exploiting
subsea environments [6].

In general, UUVs can be classi�ed into remotely operated underwater (ROVs) and au-
tonomous underwater vehicles (AUVs) [6]. During the exploration and exploitation of the
subsea, either for the civil or military purposes, the mission may involve operations such as
sea�oor mapping, drilling, monitoring, inspection, debris cleaning, search and rescue, etc.
These missions may require the ability of the vehicle to make autonomously an intelligent
decision. The autonomous behaviours for instance could be station keeping, spatial trajec-
tory tracking, collision avoidance, desired velocity pro�le regulation, and so on [7], [8].
The presence of intelligent behaviour in AUV broadens its operational context in subsea
missions [7]. In this chapter, we will focus on the case spatial trajectory tracking. Even
though designing an onboard control scheme combining several autonomous behaviours
for AUVs remains a challenging task and an open research problem.



i

i

“Main_Book_Chapter” — 2020/7/17 — 19:45 — page 3 — #3
i

i

i

i

i

i

From Non-Model-Based to Adaptive Model-Based Tracking Control ... 3

1.2 Related Work

Despite, the challenge of designing an onboard control scheme for AUVs, various contri-
butions have been proposed by several research communities to resolve the problems of
station keeping, spatial trajectory tracking, collision avoidance, desired velocity pro�le reg-
ulation and classical path-following. Focusing on trajectory tracking and station keeping
problems, some of the proposed classical non-model-based controllers include: classical
PD and PID control schemes for position and velocity regulation, respectively, of a fully
actuated AUVs, that have been proposed in [9]. Even though the authors focused the work
on control design and the stability analysis, the analytical stability analysis of the control
schemes designed are not conducted. Similarly, in [10], the authors demonstrated the appli-
cation of a PID control scheme for depth motion control of micro-AUVs swamps through
simulation and real-time experiment. However, the obtained results show that the PID con-
trol scheme is oscillatory at steady-state. For this reason, the authors proposed a bounded
PD control scheme to deal with this effect, and the proposed control scheme was validated
through simulations and real-time experiments. A real-time station keeping problem was
also addressed in [11] using classical PID control. Moreover, the depth and heading control
using a classical PID control scheme for Amogh AUV has been proposed in [12].

Although PID control scheme demonstrated some level of AUV's tracking control per-
formance in the literature, keeping in mind the dynamical nature of the subsea and the
vehicle's dynamics nonlinearity, this non-model-based control scheme will certainly not be
able to solve all the trajectory tracking and station keeping problems for AUVs especially
in high precision applications. For this reason, improved non-model-based control schemes
such as fuzzy logic-based PID [13, 14], GA-based PID [15], saturation-based nonlinear
PD/PID [16], classical RISE control, etc. have been proposed. To improve the performance
of the classical PID controller for tracking control of mini-ROVs in subsea applications,
the idea of auto-adjustment of the feedback gains using neural networks has been proposed
in [17]. Although the authors demonstrated the performance of the control scheme through
simulations and real-time experiments, the neural networks are always associated with long
training time and high computational cost. Also, in [18], PID control approach has been
proposed for depth and yaw tracking of UUVs. To improve the performance of the PID, the
authors proposed using fuzzy gain scheduling to design the controller at various operating
points with optimal gains.

So far, the improved non-model-based controllers show superior performance over clas-
sical non-model-based controllers, such as classical PD and PID in trajectory tracking and
station keeping for UUVs; however, having some knowledge about the AUVs dynamics
will certainly help to improve the performance of the designed control scheme for these ve-
hicles. Consequently, model-based classical control (saturation-based nonlinear fractional
order PD, nonlinear PD based on variable saturation function, etc.) as well as model-based
robust control (nonlinear RISE, sliding mode, high-order sliding mode, etc.) have been in-
vestigated in [19], [20] and [21], [22] respectively. Also, in [23] exact linearisation and non-
linear model-based controllers have been proposed for set-point regulation and trajectory
tracking tasks. The performances of the proposed control schemes are evaluated through
real-time experiments using Johns Hopkins University remotely operated vehicle (JHU-
ROV). However, the computational time of the proposed controllers can be reduced using
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desired compensation in the control schemes, which could be computed of�ine. Similarly, a
nonlinear model-based controller for six degrees of freedom position and velocity tracking
has been proposed in [24]. The control scheme has been implemented on the fully actuated
JHU-ROV through both numerical simulations and real-time experiments. The obtained re-
sults show the better performance of the nonlinear model-based controller when compared
with a non-model-based controller. A robust fuzzy controller for ROVs has been proposed
by [25]. In the control scheme, the membership functions are adjusted using genetic algo-
rithms, which modi�ed the gains of the controller based on the task complexity assigned to
the ROV. Similarly, an optimised fuzzy controller for path tracking of an underwater vehicle
has been proposed in [26], and validated experimentally on Sea-Dog underwater vehicle.
Also, three-dimensional spatial tracking control of a hybrid AUVs under the in�uence of
underwater currents has been addressed in [27].

In spite of the notable performances of model-based robust control schemes, in some
subsea missions, their performances may be degraded drastically due to inherent uncer-
tainties in subsea environments, as well as in the vehicles themselves. To deal with these
effects, several research communities proposed using control schemes able to dynamically
adjust themselves in real-time. Indeed, the proposed idea opens another interesting �eld of
research known as adaptive control; based on the notion that the auto-adjustment will not
only maintain but also improve the desired control system performance.

In the context of underwater vehicles, adaptive control schemes have been proposed by
several research studies. For instance, an adaptive thruster fault tolerant region tracking
control with prescribed transient performance has been investigated in [28]. Even though
factors such as thruster fault, measurement noise, parameter uncertainties and underwater
currents were considered; additional cases could be added to ascertain the effectiveness of
the proposed scheme. Similarly, adaptive tracking control and its improvement using a dis-
turbance observer for underwater vehicles have been proposed in [29] and [8] respectively.
Besides, a variable forgetting factor model-free adaptive control for surface unmanned ve-
hicles has been studied in [30]; this scheme could be extended to the case of UUVs. Output
constraints fuzzy-based adaptive tracking control for autonomous underwater vehicles was
investigated in [31]; where numerical simulations were carried out to show the effectiveness
of the proposed scheme. Adaptive formation control based on output-feedback for an under-
actuated surface vehicle has been proposed in [32]. However, this scheme does not consider
measurement noise. In [33], an indirect adaptive control scheme for intervention operations
of AUV has been proposed. The robustness of the control scheme is enhanced with an ex-
tended Kalman �lter (EKF), which is used to take care of external disturbances, parametric
uncertainties, payload variations, sensor noise and actuator nonlinearity. Despite the pro-
posed complex adaptive control schemes in the literature, still classical adaptive schemes
dominating the majority of real-time marine applications.

1.3 Chapter Contribution and Organisation

In this chapter, we propose to investigate design, stability analysis and effectiveness of
tracking control schemes, from non-model-based to model-based as well as adaptive model-
based and their application to control a low-inertia underwater vehicle for marine missions.
These vehicles are characterised with high power to weight ratio, which makes them vul-
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Figure 1: View of Leonard underwater vehicle thrusters' allocation, which produces forces
responsible for the navigation of the vehicle.

nerable toward any slight variation in the system parameter.
The remaining parts of this chapter are organised as follow. In section 2, the low-

inertia underwater vehicle description as well as its six-degree-of-freedom modelling are
introduced. Then, section 3 is devoted to the proposed tracking control schemes and their
stability analysis. Numerical simulation results are presented and discussed in section 4,
while section 5 �nalises the chapter with some concluding remarks and future works.

2 Vehicle Description and Modelling

2.1 Vehicle Description

To validate our proposed investigations in this chapter, we perform numerical simulation us-
ing a LIRMM's underwater vehicle known as Leonard. Even though some speci�c features
of this vehicle are well described in [34] and [8]; we recall some of these essential features
again to facilitate kinematics and dynamics formulations of the vehicle in this chapter. The
vehicle can be categorised as a low-inertia hybrid underwater vehicle, that is, having both
remote and autonomous operation capabilities. Additionally, being a holonomic system can
be suitable for various marine missions. The vehicle's translational and rotational motions
are determined by its thrusters' allocation illustrated in Figure 1.

Besides, the vehicle is equipped with six thrusters, energy consumption is minimised
by keeping neutrally both the vehicle's pitch and roll close to zero with respect to the hor-
izontal. Table 1 summarises some of the vehicle's hardware components, as well as its
parameters.
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Table 1: The main technical speci�cations of Leonard low-inertia underwater vehicle
Hardware Components and
Parameters

Descriptions

Attitude Sensor Sparkfun MPU 9250, MEMS 9-axes gyrometer, accelero-
meter and magnetometer microprocessor.

Depth Sensor MS5803-14BA (Pressure Sensor).
Dimensions 0.75m (l)� 0.55m (w)� 0.45m (h).
Floatability 9N.
Mass 28kg.
Maximal Depth 100m.
Power 48V - 600W.
Sampling Period 0.05s.
Tether Length 150m.
Thrusters 6-Seabotix BTD150.

2.2 Vehicle Modelling in Six Degrees of Freedom

The kinematics and dynamics of a low-inertial underwater vehicle such as Leonard can
be derived with respect to 3D reference frames. These frames are the earth-�xed and the
body-�xed frames. Figure 2 illustrates the frames assignment, for guidance and navigation
of Leonard underwater vehicle, using SNAME (Society of Naval Architects and Marine
Engineers) standard [34].

2.2.1 Vehicle kinematics in six degrees of freedom

For a rigorous kinematic formulation based on Figure 2, we can express the time derivatives
of the vehicle's position and orientation in the earth-�xed frame with respect to its linear
and angular velocities in vehicle's body-�xed frame as follows:

�h = J(h)n (1)

wheren = [ n1 n2]T is the vector of linear and angular velocities in the body-�xed frame,
n1 = [ u v w] 2 R3� 1 andn2 = [ p q r] 2 R3� 1, h = [ h1 h2]T denotes the vector of position
and orientation in the earth-�xed frame,h1 = [ x y z] 2 R3� 1 andh2 = [ f q y ] 2 R3� 1, while
J(h) 2 R6� 6 is a matrix of the 3D spatial transformation between the earth-�xed frame and
body-�xed frame.
This transformation matrixJ(h) is given by [35]:

J(h) =

"
J1(h2) 03� 3

03� 3 J2(h2)

#

(2)

whereJ(h1) andJ(h2) are given by (3) and (4) respectively, as follows (see [35] for further
details):

J1(h2) =

2

6
4

cy cq cy sqsf � sy cf cy sqcf + sy sf
sy cq sy sqsf + cy cf sy sqcf � cy sf
� sq cqsf cqcf

3

7
5 (3)
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OI
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zI

xI

yI

zb

surge;u

roll ; p

yb

pitch;q

sway;v

xb

heave;w

yaw;r

Figure 2: Illustration of the earth-�xed frame (OI , xI , yI , zI ) and the body-�xed frame (Ob,
xb, yb, zb) frames assignment for kinematic and dynamic modelling.

J2(h2) =

2

6
4

1 sy tq cy tq
0 cy � sy
0 sf =cq cf =cq

3

7
5 (4)

with c angle,s angle andt angle representingcosangle,sin angle andtan angle functions
respectively, where angle =f = q = y .

2.2.2 Vehicle dynamics in six degrees of freedom

Many research studies have well described the dynamics of an underwater vehicle [34], [5].
Inspired by these research studies and representation proposed by [35], the dynamics de-
scribing the motion of our underwater vehicle, based on SNAME notations in the vehicle's
body-�xed frame, can be written as follows:

M �n+ C(n)n+ D(n)n+ g(h) = t + wext(t) (5)

whereM 2 R6� 6 de�nes the inertia matrix including the added mass effects,C(n) 2 R6� 6

represents the Coriolis and centripetal matrix,D(n) 2 R6� 6 is the hydrodynamic damping
matrix including both linear and quadratic effects,g(h) 2 R6� 1 de�nes the vector of restor-
ing forces and moments,t 2 R6� 1 represents the vector of control inputs andwext(t) 2 R6� 1

is the vector of time-varying external disturbances.
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Additionally, the matrices and vectors de�ned in the vehicle's dynamics (5) are de-
scribed as follows:

The total contributions of the vehicle's rigid-body inertia,MRB and the inertia of the
added mass,MA constitute the so called inertia matrixM. This matrix can be written as:

M = MRB+ MA (6)

Based on the assumption that we consider the motion of the vehicle at low-speed, the matrix
M can be simpli�ed as follows:

M = diagf m+ X�u; m+ Y�v; m+ Z �w; Ixx+ K �p; Iyy+ M �q; Izz+ N�rg (7)

wherem is the mass of the vehicle,f Ixx; Iyy; Izzg are the vehicle's rigid-body moments of
inertia andf X�u;Y�v;Z �w;K �p;M �q;N�rg are the hydrodynamics added masses.

Similarly, the Coriolis and centripetal matrix is usually expressed as (see [35] for more
details):

C(n) = CRB(n)+ CA(n) (8)

whereCRB(n) andCA(n) denote the Coriolis and centripetal (rigid-body and hydrodynam-
ics) matrices, which are given by (9) and (10) as follows:

CRB(n) =

2

6
6
6
6
6
6
6
4

0 � mr mq 0 0 0
mr 0 � mp 0 0 0

� mq mp 0 0 0 0
0 0 0 0 Izzr � Iyyq
0 0 0 � Izzr 0 Ixxp
0 0 0 Iyyq � Ixxp 0

3

7
7
7
7
7
7
7
5

(9)

CA(n) =

2

6
6
6
6
6
6
6
4

0 0 0 0 � Z �ww Y�vv
0 0 0 Z �ww 0 � X�uu
0 0 0 � Y�vv X�uu 0
0 � Z �ww Y�vv 0 � N�r r M �qq

Z �ww 0 � X�uu N�r r 0 � K �pp
� Y�vv X�uu 0 � M �qq K �pp 0

3

7
7
7
7
7
7
7
5

(10)

The detail step-by-step process of obtaining approximate values of the hydrodynamics
elements (Xu; Yv; Zw; Kp; Mq; Nr ) of the vehicle'sD(n) matrix is addressed in [34]. Con-
sidering the low-speed motion of the vehicle, we can approximate the damping matrixD(n)
as follows:

D(n) = diagf Xu; Yv; Zw; Kp; Mq; Nrg (11)

Concerning the restoring forces and momentsg(h), we assume that the centre of gravity
coincides with the centre of the vehicle; as a result, the vectorg(h) can be written as:

g(h) =

2

6
6
6
6
6
6
6
4

fbsq
� fbcqsy
� fbcqcy

� zcbBcqsy
� zcbBsq

0

3

7
7
7
7
7
7
7
5

(12)
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whereB = Buoyancy, whilefb andzcb are the buoyancy force and the position of the centre
of buoyancy of the vehicle, respectively.

We �nalise the description of the vehicle's dynamics terms witht , which is a control in-
puts vector responsible for the translational and rotational motions of the vehicle. A partic-
ular motion pattern is possible through actuating a precise vehicle's thrusters con�guration.
The control input vectort can be written as follows:

t = B? � F? (13)

whereB? 2 R6� 6 is the thrusters' allocation matrix, which maps all the control inputs to
their corresponding forces and moments for translational and rotational motions of the ve-
hicle, andF? = [ F1 F2 F3 F4 F5 F6]T is a vector of the forces generated by the six thrusters
of the vehicle.

3 Proposed Control Solutions and their Stability Analysis

3.1 Control Solution 1: A Non-model-based Tracking Control Scheme

A control scheme that can be designed based only on the system states is referred to as
a non-model-based control scheme [36]. It does not require any prior information on the
system dynamics. There are many control schemes proposed in the literature based on
non-model-based structures. However, the most famous scheme, widely used in indus-
try, is the conventional proportional-integral-derivative (PID) control scheme. Besides its
implementation simplicity, this approach scheme works satisfactorily in many industrial
applications [37]. Regarding low-inertia underwater water vehicles, PID and PD control
schemes have widely been used in most of the real-time marine applications [38], [16];
therefore in this section, we focus on the control structure based on the PID algorithm as
our non-model-based control scheme case study.

3.1.1 Background on PID control scheme

The classical PID control scheme has the following structure:

U(t) = Kpe(t)+ Ki

Z t

0
e(s)ds + Kd

2

4 de(t)
dt

3

5 (14)

whereU(t) is the control signal,e(t) de�nes the error signal, which is obtained as the
difference between the reference signalr(t) and output to be controlledy(t), while Kp,
Ki andKd are respectively the proportional, integral and derivative feedback gains of the
controller. Even though the feedback gains can be selected easily during the implementation
of the control scheme, the selection of optimal feedback gains is a nontrivial task. Where
each gain has a particular effect on the system's behaviour; for instance, an optimal value
of Kp decreases the response time and steady-state error of the closed-loop system, optimal
Ki value removes steady-state error andKd improves the stability through increasing the
damping of the resulting closed-loop dynamics.
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On the other hand, non-optimal gains selection may lead to the instability of the result-
ing closed-loop dynamics. Several techniques have been proposed in the literature for a
relevant tuning of these feedback gains (see for instance, [39]).

3.1.2 Application of the PID on Leonard underwater vehicle

We proposed to apply the classical PID structure given by (14) to our nonlinear coupled six
degrees of freedom underwater vehicle described in (5). The controller is aimed to guide
the vehicle to track the desired trajectories de�ned as follows:

hd(t) = [ xd(t); yd(t); zd(t); f d(t); qd(t); y d(t)]T (15)

If we write the vehicle's trajectories as:

h(t) = [ x(t); y(t); z(t); f (t); q(t); y (t)]T (16)

Then, the tracking errore(t) can be expressed as follows:

e(t) = h(t) � hd(t) (17)

wheree(t) is a vector of the tracking errors of all the six degrees of freedom, and is ex-
pressed as,e(t) = [ e1(t);e2(t); :::;e6(t)]T , while hd(t) andh(t) are the desired and actual
trajectories given by (15) and (16), respectively.
The control input vectort to be applied to our underwater vehicle is designed as follows:

t = � JT(h)[t PID] (18)

where, the PID control lawt PID can be expressed as follows:

t PID = Kpe(t)+ Ki

Z t

0
e(s)ds + Kd

2

4 de(t)
dt

3

5 (19)

wheret = [ t x; t y; t z; t f ; t q; t y ]T is the vector of the control inputs for all the six degrees
of freedom,e(t) is the vector of the tracking errors, whileKp = diagf k1p;k2p; :::;k6pg > 0,
Ki = diagf k1i ;k2i ; :::;k6ig > 0 andKd = diagf k1d;k2d; :::;k6dg > 0 are the PID feedback
gains matrices.
The above designed PID-based control scheme can be illustrated by the block diagram of
Figure 3.

3.1.3 Stability analysis

To facilitate the stability analysis, let us consider the transformation of (5) into the earth-
�xed frame (OI , xI , yI , zI ) using (1) as follows:

M?(h)ḧ + C?(n;h) �h + D?(n;h) �h + g?(h) = t ?(h)+ wext(t) (20)

where

M?(h) = J� T(h)MJ� 1(h);
C?(n;h) = J� T(h)[C(n) � MJ� 1(h) �J(h)]J� 1(h);
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wext(t)

h(t)

hd(t) � ++
t PID t

� JT(h)
e(t)

Ki
Rt

0 e(s)d(s)

Kpe(t)

Kd
de(t)

dt

Figure 3: Block diagram of the non-model-based PID control scheme implemented on
Leonard underwater vehicle.

D?(n;h) = J� T(h)D(n)J� 1(h);
g?(h) = J� T(h)g(h);
t ?(h) = J� T(h)t
Assumption 1: The external disturbancewext(t), including water waves and currents,
is assumed to be Lipschitz continuous. Also, its time derivative exists and is bounded:�
� �wiext(t)

�
� � Li ; i = 1;6.

Substituting (18) into (20), yields:

M?(h)ḧ = � C?(n;h) �h � D?(n;h) �h � g?(h)+ wext(t) � t PID (21)

Before substituting (19) into (21), the integral term oft PID introduces an auxiliary state
variable, which leads to the modi�cation of (19) as follows:

t PID = Kpe+ Kiz+ Kd �e (22)

where,z =
Rt

0 e(s)ds is the auxiliary state variable and �e is the time derivative of (17).
Then, we can adopt the following change of variable [40]:

z= az+ e (23)

wherea > 0 andz= [ z1;z2; :::;z6]T .
Using this change of variable, (22) can be rewritten as follows:

t PID = K?
pe+ K?

i z+ Kd �e (24)

whereK?
p = Kp � 1

aKi andK?
i = 1

aKi .
By substituting (24) into (21), the resulting vehicle's closed-loop dynamics can be rewritten
as follows:

ḧ = M?(h) � 1[� C?(n;h) �h � D?(n;h) �h � g?(h)+ wext(t) � K?
pe� K?

i z� Kd �e] (25)

Then, (25) can be written in state-space form with a unique equilibrium point as follows:

d
dt

2

6
4

e
�e
z

3

7
5 =

2

6
4

�e
M?(h) � 1[� C?(n;h) �h � D?(n;h) �h � g?(h)+ wext(t) � K?

pe� K?
i z� Kd �e] � ḧd

ae+ �e

3

7
5

(26)
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To guarantee the stability of the unique equilibrium point of this state-space model, we pro-
pose to use the Lyapunov direct method by considering the following Lyapunov candidate
function:

V(e; �e;z) =
1
2

�eTM?(h) �e+ [ g?T(h)+ �hT
d D?(n;h)]e+

Z e

0
zTK?

pdz+
Z e

0
zTK?

i dz (27)

To prove thatV(e; �e;z) is a positive de�nite function and radially unbounded, the term
1
2 �eTM?(h) �e is positive de�nite, sinceM?(h) is a positive de�nite matrix; also, in the second
termD?(n;h) > 0 and it is possible to designhd such that�hd > 0. For the integral terms,
we consider the following arguments [16]:

Z e

0
zTK?

pdz=
Z e1

0
zT
1 k?

1pdz1 +
Z e2

0
zT
2 k?

2pdz2 + ::: +
Z e6

0
zT
6 k?

6pdz6 (28)

Z e

0
zTK?

pdz> 0, 8 e6= 0 2 Rn (29)

whereK?
p = diagf k?

1p;k?
2p; :::;k?

6pg.
From the arguments (28) and (29), we can deduce that:

Z e

0
zTK?

pdz! ¥ as kek ! ¥ (30)

Similarly, it is possible to apply the same above arguments to the second integral term of
V(e; �e;z) as follows:

Z e

0
zTK?

i dz> 0, 8 e6= 0 2 Rn (31)

leading to
Z e

0
zTK?

i dz! ¥ as kek ! ¥ (32)

From (27), the time derivative ofV(e; �e;z) can be expressed as follows:

�V(e; �e;z) = �eTM?(h)ë+
1
2

�eT �M?(h) �e+ eTK?
p �e+ zTK?

i �e+ g?T(h) �e+ �hT
d D?(n;h) �e (33)

Injecting the closed-loop state-space dynamics (26) into (33), yields:

�V(e; �e;z) = � �eTC?(n;h) �h � �eTD?(n;h) �h � �eTg?(h)+ �eTwext(t) � �eTK?
pe

� �eTK?
i z� �eTKd �e� �eTM?(h)ḧd +

1
2

�eT �M?(h) �e+ eTK?
p �e+ zTK?

i �e

+ g?T(h) �e+ �hT
d D?(n;h) �e

(34)

Assumption 2: In this work, we consider that our vehicle moves at a low speed.

Based on Assumption 2,�M?(h) = 0 andC?(n;h) � 0, therefore (34) can be rewritten as
follows:

�V(e; �e;z) = � �eTD?(n;h) �e� [ �eTKd �e+ �eTM?(h)ḧd � �eTwext(t)] (35)
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From (35), if we consider Assumption 1, it is always possible to designKd of the controller
to compensate for the effect ofwext(t) as follows:

Kid >




 wext(t)




 �




 M?(h)ḧd






k �ek
i = 1;6 (36)

whereKd = diagf k1d;k2d; :::;k6dg
Also, from (35) we can deduce that �eTD?(n;h) �e> 0, sinceD?(n;h) > 0. Therefore, if (36)
is satis�ed, then�hTD?(n;h) �h will dominate the right-hand side of (35). Consequently, we
can conclude that�V(e; �e;z) in (35) is negative semide�nite. In accordance with the LaSalle's
invariance principle, the origin of the resulting closed-loop dynamics is asymptotically sta-
ble [34], [40].
Remark 1: Even though the PID controller proposed here is non-model-based, the process
of tuning of its feedback gains is a nontrivial task. It can be noticed in (36) that having
some knowledge of the system dynamics (for instance, inertia matrixM?(h) in our case)
may help to select better PID feedback gains, which could improve the overall performance
of the controller.

3.2 Control Solution 2: A Model-based Tracking Control Scheme

In various marine missions, the performance of non-model-based controllers is degraded
due to external disturbances and parametric variations. Certainly, integrating the system
dynamics (partially or entirely) into a non-model-based controller structure will help to
improve its performance. Therefore, when a non-model-based control scheme contains
the dynamics (partially or entirely) of the system it is known as a model-based control
scheme [36]. However, obtaining accurate and simple dynamics of a system, having all
the properties of the real system remains a challenging task. Concerning the control of
our low-inertia underwater vehicle, we propose to focus our study on the computed torque
(CT) control as an example of a model-based control scheme, which is based on the full
knowledge of the vehicle's dynamics.

3.2.1 Background on the CT control and its application on Leonard underwater ve-
hicle

The majority of the real systems are represented mathematically by nonlinear differential
equations which mainly result in a nonlinear closed-loop dynamics, when controlled with
model-based controllers. However, the CT control scheme has the advantage of transform-
ing the closed-loop dynamics of the nonlinear system into a linear open-loop dynamics. As
a result, we can use linear systems design tools to analyse the resulting linear closed-loop
dynamics. Additionally, the CT controller can ful�l the tracking control objective without
necessary an optimal tuning of the feedback gains [40]. For the tracking control of Leonard
underwater vehicle, we propose to design the CT controller as follows:

t = JT(h)

"

M?(h)ḧd + C?(n;h) �h + D?(n;h) �h + g?(h) � M?(h)
h
Kpe(t)+ Kd

de(t)
dt

i
#

(37)
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wheret = [ t x; t y; t z; t f ; t q; t y ]T is the vector of the control inputs for all the six degrees of
freedom of the vehicle,J(h) is the transformation matrix, de�ned above,e(t) is the vector
of the tracking errors,Kp = diagf k1p;k2p; :::;k6pg > 0 andKd = diagf k1d;k2d; :::;k6dg > 0
are the feedback gains,M?(h) de�nes the inertia matrix including the added mass effects,
C?(n;h) represents the Coriolis and centripetal matrix,D?(n;h) is the hydrodynamic damp-
ing matrix including both linear and quadratic effects, andg?(h) de�nes the vector of restor-
ing forces and moments.
Indeed, the termsM?(h), C?(n;h), D?(n;h) andg?(h) in the CT control law (37) are ob-
tained from the vehicle's dynamics (20). The block diagram of the CT controller structure
implemented on Leonard underwater vehicle is illustrated in Figure 4.

wext(t)
n(t)

h(t)

hd(t) � +++
t

JT(h)

[C?(n;h)+ D?(n;h)] �h
e(t) Kpe(t)

Kd
de(t)

dt

d2

dt2

d
dt

M?(h)

g?(h)

Figure 4: Block diagram of model-based CT control scheme implemented on Leonard un-
derwater vehicle.

3.2.2 Stability analysis

To facilitate the stability analysis, let us begin by injecting the CT control law (37) into the
vehicle's dynamics (20), resulting in:

M?(h)ḧ + C?(n;h) �h + D?(n;h) �h + g?(h) = M?(h)ḧd + C?(n;h) �h + D?(n;h) �h

+ g?(h) � M?(h)
h
Kpe(t)+ Kd

de(t)
dt

i
+ wext(t)

(38)

Then, we can rewrite the above closed-loop dynamics in the state-space form as follows:

d
dt

"
e
�e

#

=

"
�e

M?(h) � 1wext(t) � Kpe� Kd �e

#

(39)

Next, we can use the Lyapunov direct method to prove the stability of the resulting closed-
loop dynamics by considering the following Lyapunov candidate function:

V(e; �e) =
1
2

�eT �e+
Z e

0
aTKpda (40)
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The proposed Lyapunov candidate function is positive de�nite and radially unbounded since
1
2 �eTM?(h) �e is positive de�nite, and the integral term satis�es the following arguments:

Z e

0
aTKpda =

Z e1

0
aT

1 k1pda1 +
Z e2

0
aT

2 k2pda2 + ::: +
Z e6

0
aT

6 k6pda6 (41)

Z e

0
aTKpda > 0, 8 e6= 0 2 Rn (42)

whereKp = diag[k1p;k2p; :::;k6p].
From the above arguments (41) and (42), we can deduce that:

Z e

0
aTKpda ! ¥ as kek ! ¥ (43)

Next, sinceV(e; �e) is positive de�nite and radially unbounded, then we can evaluate its time
derivative along the trajectory of the resulting closed-loop dynamics as follows:

�V(e; �e) = �eT ë+ eTKp �e (44)

Substituting (39) into (44) yields:

�V(e; �e) = �eT [M?(h) � 1wext(t) � Kpe� Kd �e]+ eTKp �e (45)

which, we can rewritten as follows:

�V(e; �e) = � [ �eTKd �e� �eTM?(h) � 1wext(t)] (46)

From (46), and based on Assumption 1,Kd can be designed to compensate for the effect of
wext(t) as follows:

Kid >




 wext(t)






mini
�
� l i f M?(h)g

�
�k �ek

; i = 1;6 (47)

whereKd = diagf k1d;k2d; :::;k6dg.
Finally, from (46) we can deduce that�V(e; �e) is negative semide�nite if argument (47)
is satis�ed. This leads to the conclusion that the origin of the closed-loop dynamics is
asymptotically stable based on LaSalle's invariance principle.

3.3 Control solution 3: Adaptive Model-based Tracking Control Scheme

Even though having complete or partial knowledge of the system dynamics improves the
performance of the control scheme, the process of obtaining an accurate model which rep-
resents system remains a challenging task. Similarly, tracking control of a low-inertia un-
derwater vehicle with a model-based controller may result in a high tracking error due to its
challenging modelling process, in addition to the variations of the vehicle's parameters as
well as the unpredictable nature of the underwater environments. Besides, the parametric
variations, the high sensitivity of low-inertia underwater vehicles, the inherently coupled
nonlinearities in their dynamics drastically affect the control schemes performances dur-
ing marine missions. To deal with these issues, the designed controllers for such vehicles
should dynamically adjust themselves to neutralise these effects in real-time. In the �eld of
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control systems, any controller with auto-adjustment mechanism is referred to as an adap-
tive controller [2]. Hence, an adaptive control technique can be considered as a process of
designing a control scheme with an auto-adjustment mechanism for a dynamical system un-
der the in�uence of parametric uncertainties in high precision applications [40]. However,
the adaptive control scheme design requires accurate knowledge of the system dynamics
structure, which is used to characterise the uncertainty of the system as a set of unknown
parametric terms; this may help to facilitate the controller design. The adaptive control
scheme can be categorised as a direct adaptive control technique or an indirect adaptive
control technique. The direct adaptive control technique deals with direct estimation of the
control parameters which are used to modify the system's dynamics. However, the indirect
adaptive control technique involves the estimation of the system's dynamics, which is used
in the design of the controller. For the case of our underwater vehicle in this section, we
focus on the implementation of an adaptive version of PD+ controller (APD+) for trajectory
tracking. This controller is designed and implemented on the vehicle subsequently.

3.3.1 Background on the APD+ control scheme and its application on Leonard un-
derwater vehicle

A PD control structure combined with desire compensation terms, obtained from a system
dynamics as well as a prede�ned desired trajectory in tracking control, is known as a PD+
control scheme. Besides, its implementation simplicity in real-time applications, the com-
pensation terms in the control law can be computed of�ine to reduce computational cost
once the desired trajectory is de�ned [40]. Considering these advantages of the PD+ con-
trol scheme, we modify its structure by adding an adaptation to improve its robustness. The
improved control scheme is implemented on the highly uncertain dynamical model with a
nonlinear coupled behaviour of Leonard underwater vehicle. The design and implementa-
tion of this control law as well as its adaptation mechanism for Leonard underwater vehicle
are given as follows:

t = JT(h)

"

M?(h)ḧd + C?(n;h) �hd + D?(n;h) �hd �
h
F qq̂T + Kpe(t)+ Kd

de(t)
dt

i
#

(48)

�̂q = G� 1
q F q

h
ae(t)+

de(t)
dt

i
(49)

wheret = [ t x; t y; t z; t f ; t q; t y ]T is the vector of the six control inputs of the vehicle,
J(h) is a matrix which de�nes three dimensional spatial-transformation between the earth-
�xed frame and vehicle's body-�xed frame,M?(h) de�nes the inertia matrix including the
added mass effects,C?(n;h) represents the Coriolis and centripetal matrix,D?(n;h) is the
hydrodynamic damping matrix including both linear and quadratic effects,e(t) is the vector
of the tracking errors,Kp = diagf k1p;k2p; :::;k6pg > 0 andKd = diagf k1d;k2d; :::;k6dg > 0
are the feedback gains,a > 0, G� 1

q = diagf g1;g2; :::;g10g > 0 is the adaptation gain matrix,
F q is the regressor matrix andq is the vector of the unknown parameters to be estimated by
the controller.
The dynamics of Leonard underwater vehicle is characterised by its linearity with respect
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to the dynamic parameters. We exploit this property of the vehicle's dynamics and focus
on designingF q andq based on the terms (i.e.wext(t) andg?(h)) which signi�cantly affect
the steady-state of the vehicle as follows [35] [41]:

F q =
h
F g; F wext

i
with F g =

2

6
6
6
6
6
6
6
4

sq
� cqsf 03� 1

� cqcf
� cqsy

03� 1 � sq
0

3

7
7
7
7
7
7
7
5

and F wext = J(h) (50)

and

q̂T =
h
q̂T

g ; q̂T
wext

i T
with q̂T

g = [ fB zbB]T and q̂T
wext

= [ wx; wy; wz; 0; 0; 0]T (51)

whereF g andF wext are the regressor matrices ofg?(h) andwext(t) respectively, whilêqT
g

andq̂T
wext

are the estimates of the unknown dynamic parameters ofg?(h) andwext(t) respec-
tively. Further,wext(t) is considered as a water current with irrotational componentswx, wy

andwz in earth-�xed frame.
The structure of the proposed APD+ control scheme implemented on Leonard underwater
vehicle is illustrated in Figure 5.

wext(t)

h(t)

hd(t) �+
APD+

Controller
Equation(48)

Adaptation
Equation(49)

t
JT(h)e(t)

Figure 5: Block diagram of APD+ control scheme implemented on Leonard underwater
vehicle.

3.3.2 Stability analysis

For the ease of the stability analysis, we substitute the controller (48) into the vehicle's dy-
namics (20) and write the resulting closed-loop dynamics in a state-space form as follows:

d
dt

2

6
4

e
�e
q̂

3

7
5 =

2

6
6
6
4

�e

M?(h) � 1
h

� C?(n;h) �e� D?(n;h) �e� g?(h)+ wext(t) � F qq̂T � Kpe� Kd �e
i

G� 1
q F q

h
ae+ �e

i

3

7
7
7
5

(52)
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Next, we consider the following Lyapunov candidate function:

V(e; �e; q̃) =
1
2

�eTM?(h) �e+
1
2

q̃TGqq̃+
Z e

0
aTKpda (53)

The proposed Lyapunov candidate function in (53) is positive de�nite and radially un-
bounded since the �rst two terms are positive de�nite, and the integral term satis�es the
following arguments:

Z e

0
aTKpda =

Z e1

0
aT

1 k1pda1 +
Z e2

0
aT

2 k2pda2 + ::: +
Z e6

0
aT

6 k6pda6 (54)

Z e

0
aTKpda > 0, 8 e6= 0 2 Rn (55)

whereKp = diagf k1p;k2p; :::;k6pg.
From arguments (54) and (55) above, we can conclude that:

Z e

0
aTKpda ! ¥ as kek ! ¥ (56)

Then, the time derivative of (53) can be written as follows:

�V(e; �e; q̃) = �eTM?(h)ë+
1
2

�eT �M?(h) �e+ q̃TGq
�̃q+ eTKp �e (57)

By substituting the closed-loop dynamics (52) into the time derivative of the Lyapunov
candidate function (57), we deduce:

�V(e; �e; q̃) = �eT
h

� C?(n;h) �e� D?(n;h) �e� g?(h)+ wext(t) � F qq̂T � Kpe� Kd �e
i

+
1
2

�eT �M?(h) �e+ q̃TGq
�̃q+ eTKp �e

(58)

Since we design the adaptation law of the controller based on the terms which affect the
steady-state of the vehicle, that is,wext(t) andg?(h), then these terms can be rewritten in a
regressor form as follows:

wext(t) � g?(h) = F qqT (59)

Then, substituting (59) into (58) leads to:

�V(e; �e; q̃) = � �eT [D?(n;h) �e+ Kd] �e+
1
2

�eT [ �M?(h) � 2C?(n;h)] �e+ �eF q[qT � q̂T ]

� q̃TGq
�̂q

(60)

Injecting the adaptation law (49) into (60) above, leads to:

�V(e; �e; q̃) = � �eT [D?(n;h) �e+ Kd] �e+
1
2

�eT [ �M?(h) � 2C?(n;h)] �e+ �eF q[qT � q̂T ]

� q̃TGq

h
G� 1

q F q[ae+ �e]
i (61)
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Then, (61) can be rewritten as follows:

�V(e; �e; q̃) = � �eT [D?(n;h) �e+ Kd] �e+
1
2

�eT [ �M?(h) � 2C?(n;h)] �e+ �eF qq̃T

� q̃TF qae� q̃TF q �e
(62)

Based on Assumption 2 and the fact thatC?(n;h) is skew symmetric, then we can rewrite
(62) as follows:

�V(e; �e; q̃) = � �eT [D?(n;h) �e+ Kd] �e� q̃TF qae (63)

From (63) above, it is possible to conclude that�V(e; �e; q̃) is negative de�nite; additionally,
D?(n;h) > 0 andKd > 0, and the second term on the right-hand side of�V(e; �e; q̃), is neg-
ative. Even if, the second term on the right-hand side of�V(e; �e; q̃) changes the sign due to
the possible high degree of uncertainty on the external disturbance, thena can be designed
so that the effect of this second term becomes negligible, while the �rst term dominates the
right-hand side of�V(e; �e; q̃). Consequently,�V(e; �e; q̃) will remain negative de�nite despite
the in�uence of these effects. Therefore, we can conclude that the origin of the resulting
closed-loop dynamics is asymptotically stable.

4 Simulation Results: A Comparative Study

To compare the effectiveness and robustness of the proposed three controllers designed in
the previous section, we implemented them on Leonard underwater vehicle described in
section 2. During the implementation process of the control schemes, various scenarios-
based numerical simulations have been conducted and the obtained results are discussed in
the sequel. Before discussing the obtained results, the proposed simulation scenarios are
introduced.

4.1 Proposed Numerical Simulations Scenarios

The following scenarios are tested to evaluate the effectiveness and robustness of all the
proposed three control schemes on Leonard low-inertia underwater vehicle:

Scenario 1 (nominal case): The main objective of this scenario is to obtain the best control
feedback gains, which will result in the best vehicle's desired trajectory tracking. The
obtained gains are used in the remaining scenarios without any modi�cation.

Scenario 2 (external disturbance rejection): In this scenario, we consider the presence
of water current and the task of transporting an object by the vehicle from a �rst point and
dropping it at another point as an external disturbance. The ability of each controller to
reject this disturbance and keep the vehicle on the desired trajectory is evaluated. Indeed,
the task of transporting the object and dropping it at a speci�c desired depth is illustrated in
Figure 6.

Scenario 3 (robustness toward vehicle's damping and buoyancy changes): The main
objective of this scenario is to evaluate the robustness of each controller toward parametric
variations such as the modi�cations of the vehicle's buoyancy and damping.



i

i

“Main_Book_Chapter” — 2020/7/17 — 19:45 — page 20 — #20
i

i

i

i

i

i

20 Auwal Shehu Tijjani and Ahmed Chemori

Surface

Bottom

Testing pool

 object
Desired Trajectory!

Figure 6: Illustration of Leonard underwater vehicle following a prede�ned desired helical
trajectory while carrying an object from the surface and dropping it at the bottom of the
testing pool.

4.2 Nominal scenario (Results and discussion)

In this simulation test, de�ned previously as Scenario 1, the vehicle is intended to follow a
prede�ned 3D helical desired trajectory under the in�uence of internal disturbances such as
sensor noise; external disturbances and parametric uncertainties are not considered in order
to obtain the best feedback gains to be used in forthcoming scenarios. The obtained results
are depicted in Figures 7- 11. The three controllers are able to guide the vehicle to follow
the desired 3D helical trajectory from the initial position (� 0m) to a depth of approximately
13m, which is near to the bottom of the testing pool. The vehicle completes this mission in
720sand remains stable near to the bottom of the testing pool.

Besides the complex nature of the chosen trajectory, it has a medium radius (� 4m),
which helps us to evaluate the robustness and effectiveness of the proposed controllers to
manoeuvre the vehicle in tracking the desired helical trajectory. The six degrees of freedom,
namely, surge and roll, sway and pitch as well as heave and yaw evolution versus time are
shown in Figure 7 (top plots), Figure 8 (top plots) and Figure 9 (top plots), respectively.
Figure 10 shows the tracking results in 3D, which can help to visualise the motion of the
vehicle in 3D easily during this test. Moreover, one can observe from Figure 7 (top left
plot), Figure 8 (top left plot) and Figure 9 (top left plot) under this scenario, that all the
three controllers effectively guide the vehicle to track the desired trajectory in the surge,
sway and heave, respectively.

Similarly, regarding the vehicle's attitude tracking, the proposed controllers guide the
vehicle to track the desired roll and pitch with slight tracking errors as shown in Figure 7
(top right plot) and Figure 8 (top right plot). However, the roll and pitch tracking errors
for the PID are slightly bigger as shown in Figure 7 (top right plot) and Figure 8 (top right
plot), respectively. These slightly bigger tracking errors of the proposed PID controller
can also be noticed in Figures 7- 8 (middle right plot). Concerning the yaw tracking all
the proposed three controllers are able to track the desired yaw as shown in Figure 9 (top
right plot). Also, the tracking errors of the proposed controllers in all the six degrees of
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Table 2: Summary of the controllers performance indices
PID CT APD+

RMSE 3D-position Nominal Scenario 0:1133 0:0944 0:0618
[m] Combine Scenarios 0:5421 0:1382 0:1462

RMSE 3D-orientation Nominal Scenario 2:4026 0:9038 0:4618
[deg] Combine Scenarios 2:4108 0:9176 0:4629

freedom of the vehicle are shown in Figures 7- 9 (middle plots). To numerically evaluate
the tracking performances of the proposed controllers for position and orientation tracking
of the vehicle, we use a performance index in 3D known as root mean square error (RMSE)
expressed as follows:

RMSE(3D position=orientation) =

2

4 1
N

N

å
i= 1

h
e2

x=f (i) + e2
y=q(i) + e2

z=y (i)
i
3

5

1
2

(64)

whereN denotes the number of time-samples, whileex=f , ey=q andez=y are the tracking
errors in position and orientation on x, y and z axes, respectively.
Using (64) above, we compute the RMSE for both 3D position and orientation of the con-
trollers; the results of the computations are summarised in Table 2. Next, the control inputs
evolution of all the six degrees of freedom of the vehicle for all the controllers are depicted
in Figures 7- 9 (bottom plots). Then, from the control signals evolution versus time ob-
tained results, we numerically estimate the energy consumption of each controller using the
following index:

INT =
Z t2

t1




 t (t)




 dt (65)

where INT de�nes the integral of control signals,t1 = 1s andt2 = 720s
Since CT and APD+ controllers show superior tracking performances, con�rmed by Ta-
ble 2, we investigate their energy consumption using (65) as follows:

INT3D position APD+

INT3D position CT
=

7130
7005

= 1:02:
INT3D orientation APD+

INT3D orientation CT
=

209
214

= 0:98: (66)

From (66) it is worth to note, that besides the superior tracking performance of the APD+
controller, its energy consumption is approximately the same as the CT controller in both
desired position and orientation trackings. Hence, we can conclude that the APD+ con-
troller demonstrates superior tracking performance than both the CT and PID controllers
in this scenario. The uncertain parametric estimations made by the APD+ controller are
shown in Figure 11.

4.3 Combined Scenarios (Results and discussion)

To investigate the robustness of each controller in this test, we propose to combine all the
scenarios de�ned previously in one test, and the vehicle follows the same desired trajectory
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Figure 7: Trackings performances comparison of the APD+, CT and PID controllers imple-
mented on Leonard underwater vehicle in the nominal scenario: (upper plots) surge and roll
trackings, (middle plots) surge and roll corresponding tracking errors and (bottom plots) are
the evolution of the vehicle's control inputs.

as in the nominal case. The effect of sensor measurement noise can be noticed in Figures 12-
14 (bottom plots), but more ampli�ed on the roll and pitch control signals of the proposed
APD+ controller. When the vehicle reaches a depth of 2:5m, the in�uence of a 3-kg object
tied at the bottom of the vehicle becomes active as illustrated in Figure 6. We can notice
the effect of this added mass as a sudden change in the overall mass of the vehicle at 150s
along the heave axis as shown in Figure 14 (heave plots), which can also be visualised in
3D as shown in Figure 15; however, the vehicle yaw tracking is less affected as illustrated
in Figure 14 (yaw plots).

In the case of CT controller, the vehicle deviates slightly from the desired trajectory,
while the APD+ controller compensates for the effect within a short time (about 4s) and
keeps the vehicle around the desired trajectory; on the other hand, it takes the PID controller
about 40s to compensate for the same effect. Also, the vehicle tracking is less affected on
the surge, roll and sway in the case of the proposed APD+ controller as compared to the
remaining controllers, as shown in Figure 12 and Figure 13 (sway plots). However, the
pitch tracking of the proposed APD+ controller is slightly affected as shown in Figure 12
(pitch plots).

When the vehicle reaches 5m of depth, its damping and �oatability are modi�ed by
+ 90% and+ 200%, respectively, to evaluate the robustness of the three controllers toward
parametric variations of the vehicle, which is clearly seen in Figure 12 (roll plots), Fig-
ure 13 (pitch plots) and Fig 14 (heave plots) at about 300s. Concerning the roll and pitch
tracking APD+ controller compensates for this effect and keeps the vehicle very close to
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Figure 8: Trackings performances comparison of the APD+, CT and PID controllers im-
plemented on Leonard underwater vehicle in the nominal scenario: (upper plots) sway and
pitch trackings, (middle plots) sway and pitch corresponding tracking errors and (bottom
plots) are the evolution of the vehicle's sway and pitch control inputs.

the desired trajectory. At the same time, it takes the CT controller about 20s and 15sto
compensate for the same effect on roll and pitch, respectively. However, the PID controller
oscillates slightly around the desired roll, while tracking the desired pitch with a slightly
bigger tracking error.

As the vehicle reaches the depth of about 7:5min 450, the 3-kgobject tied to the vehicle
touches the �oor of the testing pool at the same time the vehicle's damping and �oatability
are rechanged to their nominal values. These effects are clearly observed in Figure 12 (roll
plots), Figure 13 (pitch plots) and Figure 14 (heave plots), as well as in Figure 15 (3D plot),
while all the three controllers maintain approximately their superior performances in the
surge, sway and yaw trackings as shown in Figure 12 (surge plots), Figure 13 (sway plots)
and Figure 14 (yaw plots), respectively.

To further evaluate the ability of the controllers to reject external disturbances, when
the vehicle goes to 10m depth, we apply a water current moving at a speed of 0:35m=s to
disturb the vehicle. Even though, the controllers reject the applied external disturbance,
but as a consequence the controllers consume a slightly higher amount of energy especially
the CT controller as shown in Figure 12 (Forcesurge plot), Figure 13 (Forcesway plot) and
Figure 14 (Forceheaveplot).

Finally, it is possible to conclude that the APD+ controller demonstrates superior per-
formance as compared to the CT and PID controllers. Even though the CT controller shows
similar performance to APD+ controller in terms of 3D position tracking con�rmed by nu-
merical computation of RMSE given in Table 2, the RMSE of APD+ controller for 3D
orientation tracking from Table 2 is 50% less than the RMSE of CT controller. Moreover,
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Figure 9: Trackings performances comparison of the APD+, CT and PID controllers im-
plemented on Leonard underwater vehicle in the nominal scenario: (upper plots) heave and
yaw trackings, (middle plots) heave and yaw corresponding tracking errors and (bottom
plots) are the evolution of the vehicle's heave and yaw control inputs.

the energy consumption estimation using (65) shows that approximately the same energy is
consumed by both APD+ and CT controllers during 3D position trackings. However, con-
cerning 3D orientation tracking, the APD+ controller consumes 3:5% less energy than the
CT controller. The uncertain parametric and external disturbance estimations by the APD+
controller are depicted in Figures 16 and 17, respectively. From these �gures representing
uncertain parametric and external disturbance estimations by the APD+ controller, one can
observe the in�uence of all the effects introduced during this simulation scenario.

5 Conclusion and Future Work

In this chapter, the performances of the non-model-based (PID), the model-based (CT)
as well as the adaptive model-based (APD+) controllers have been investigated for
three-dimensional (3D) helical trajectory tracking of a low-inertia underwater vehi-
cle. The resulting closed-loop dynamics stability analysis of all the three proposed
controllers have been conducted based on Lyapunov direct method. The controllers
have then been implemented on Leonard underwater vehicle for 3D helical trajectory
tracking. Scenarios-based simulation results demonstrate the superior performance of
APD+ controller, compared to the two other controllers, for marine applications under
the in�uences of parametric variations, internal vehicle's perturbations and external
disturbances. In the near future, we will focus on implementing these control schemes in
real-time on low-inertia underwater vehicles. Also, we may integrate observers in real-time
to all the controllers for velocity estimation, since the majority of the low-inertia and
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Figure 10: Three-dimensional (3D) helical trajectory trackings performances comparison
of the APD+, CT and PID controllers implemented on Leonard underwater vehicle in the
nominal scenario.

low-cost underwater vehicles are not equipped with DVL (Doppler velocity logger) sensors.
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Figure 17: External disturbance estimation of the APD+ controller implemented on Leonard
underwater vehicle for three-dimensional (3D) helical trajectory tracking in the combined
scenario.
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