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Abstract. The hierarchical overlap graph (HOG for short) is an over-
lap encoding graph that efficiently represents overlaps from a given set
P of n strings. A previously known algorithm constructs the HOG in
O(||P || + n2) time and O(||P || + n × min(n,max{|s| : s ∈ P})) space,
where ||P || is the sum of lengths of the n strings in P . We present a
new algorithm of O(||P || logn) time and O(||P ||) space to compute the
HOG, which exploits the segment tree data structure. We also propose
an alternative algorithm using O(||P || logn

log logn
) time and O(||P ||) space

in the word RAM model of computation.

Keywords: hierarchical overlap graph, segment tree, word RAM model

1 Introduction

Genome sequencing is limited by sequencing technologies that yield sequencing
reads which are orders of magnitude shorter than the entire genome. Hence,
obtaining a whole genome sequence from sequencing reads resorts to DNA as-
sembly. This problem consists in recovering the target sequence from the overlaps
of reads by inferring their order and relative positions in the target sequence. It
translates into seeking a maximal path in a graph that encodes suffix-prefix over-
laps between pairs of reads [7,22,25,26]. The development of DNA sequencing
goes along with several proposals of overlap encoding graphs, usually classified
into two categories of digraphs:

– Overlap Graph [25] and its variants (like String Graph [22]), in which each
input read is a node and an arc connecting a pair of reads represents the
longest overlap between them, and

? Supported by Institute for Information & communications Technology Promo-
tion(IITP) grant funded by the Korea government (MSIT) (No. 2018-0-00551,
Framework of Practical Algorithms for NP-hard Graph Problems).

?? ER thanks funding Labex NUMEV, GEM project (ANR 2011-LABX-076).

https://orcid.org/0000-0002-3255-9752
https://orcid.org/0000-0001-5225-0907
https://orcid.org/0000-0002-1761-4354
https://orcid.org/0000-0003-3791-3973


2 S.G. Park et al.

– “assembly” de Bruijn Graph [26], in which for a length k, each node rep-
resents a k-long substring (termed k-mer) and an arc connects two k-mers
whenever the suffix of one matches the prefix of the other over length k− 1.

The overlap relation is not symmetrical, which explains why directed, rather
than undirected, graphs should be used in DNA assembly. Moreover, a pair of
reads can have several overlaps (in the same direction), in which case a shorter
overlap is necessarily nested into a longer one.

Recently, Cazaux and Rivals [9,8] proposed an alternative graph in which the
input reads and substrings corresponding to suffix-prefix overlaps are nodes in
the graph. This digraph, called Extended Hierarchical Overlap Graph (EHOG),
encodes both the longest suffix relationship and the longest prefix relationship
between nodes by using two kinds of arcs. To compact the EHOG even more,
the Hierarchical Overlap Graph (HOG) which includes only maximal overlaps
between reads was defined. A maximal overlap is a longest overlap for at least
one pair of reads. By definition, therefore, the HOG is a subgraph of the EHOG.
See Figure 1 for examples of EHOG and HOG. Even if the EHOG and the
HOG can be identical for some instances, the ratio of the EHOG size over the
HOG size (in the number of nodes) can tend to infinity for some families of
instances [9]. Thus, efficient algorithms to build the HOG are important from
both practical and theoretical viewpoints. The advantages of the HOG/EHOG
for storing overlaps compared to other graphs are discussed in [9].

Given a set of strings, the shortest superstring problem is the problem of
finding a shortest superstring of the given strings. The shortest superstring prob-
lem has applications in DNA assembly and data compression [6,29]. Since the
problem is MAX SNP-hard, there has been extensive research to get better ap-
proximation ratios, e.g., 3 in [6], 22

3 in [3], 2 1
2 in [29], and more recently 2 11

23 [21]
and 2 11

30 [23]. These approximation algorithms are based on the overlap graph (or
equivalent distance graph). In the overlap graph (or the distance graph), many
distinct arcs may encode the same overlap, but this fact is not specified in the
graph. In the HOG, all identical overlaps are encoded into a unique node, i.e.,
this fact is specified. Hence, the HOG has structurally more information than
the overlap graph, and thus it has a great potential in studying DNA assembly
and the shortest superstring problem.

Suppose that an input instance P consists of n strings, where no string is
a substring of another. The norm of P , denoted by ||P ||, is defined as the sum
of lengths of the strings in P . Computing an overlap graph from P is equiv-
alent to solving the all-pair suffix-prefix problem, which is studied extensively
[12,14,20,27]. The best asymptotic bound for this problem is O(||P ||+ n2) [14],
which is optimal. Computing the EHOG from P takes linear time in the norm
of P [9]. However, further limiting the set of overlap nodes to maximal overlaps,
which enables us to build the HOG, is more challenging. A previously known al-
gorithm achieves O(||P ||+n2) time with O(||P ||+n×min(n,max{|s| : s ∈ P}))
space [9], which has the same time complexity as the all-pair suffix-prefix prob-
lem. The question of an optimal algorithm for computing the HOG remains open.
In this paper we present an algorithm taking O(||P || log n) time with O(||P ||)
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space in the standard RAM model, which exploits the segment tree data struc-
ture (Section 3). We also propose an alternative algorithm using O(||P || logn

log logn )

time and O(||P ||) space in the word RAM model of computation [15] (Section
4). Throughout the paper, we assume that the size of the alphabet is constant.

2 Preliminaries

In this paper we consider strings over a finite alphabet Σ. Given a string s, the
length of s is denoted by |s|. For any two integers 1 ≤ i ≤ j ≤ |s|, the substring
of s which starts from i and ends at j is denoted by s[i..j]. Substring s[i..j] is a
prefix of s if i = 1, and a suffix of s if j = |s|. A prefix (suffix) of s is a proper
prefix (suffix) of s if it is different from s. Given two strings s and t, string u is
an overlap from s to t if u is a proper suffix of s and also a proper prefix of t. The
longest overlap from s to t is denoted by ov(s, t). Given a set P = {s1, s2, ..., sn}
of strings, the sum of |si|’s is denoted by ||P ||.

2.1 Hierarchical overlap graph

We use definitions of extended hierarchical overlap graph and hierarchical overlap
graph in [9].

Definition 1. Given a set P = {s1, s2, . . . , sn} of strings, let Ov+(P ) be the
set of all overlaps from si to sj for 1 ≤ i, j ≤ n. The Extended Hierarchical
Overlap Graph of P , denoted by EHOG(P ), is a directed graph (V +, E+) where
V + = P ∪Ov+(P )∪{ε} and E+ = E+

1 ∪E
+
2 , where E+

1 = {(x, y) ∈ V +×V + | x
is the longest proper prefix of y} and E+

2 = {(x, y) ∈ V +× V + | y is the longest
proper suffix of x}.

Definition 2. Given a set P = {s1, s2, . . . , sn} of strings, let Ov(P ) be the set of
the longest overlap from si to sj for 1 ≤ i, j ≤ n. The Hierarchical Overlap Graph
of P , denoted by HOG(P ), is a directed graph (V,E) where V = P ∪Ov(P )∪{ε}
and E = E1 ∪E2, where E1 = {(x, y) ∈ V ×V | x is the longest proper prefix of
y} and E2 = {(x, y) ∈ V × V | y is the longest proper suffix of x}.

For example, Figure 1 from [9] shows an Aho-Corasick trie [1], EHOG, and
HOG built with P = {aabaa, aacd, cdb}. Note that EHOG is a contracted form
of the Aho-corasick trie and HOG is a contracted form of EHOG, as described
in [9]. Consequently, both EHOG and HOG, without failure links, are trees.

By definitions of EHOG and HOG, each node u in a graph represents a string,
which is the concatenation of labels on the path from the root to u. If (u, v) is a
tree arc (an edge in E+

1 or E1, solid line in Figure 1) in an EHOG (resp. HOG),
the string represented by u is the longest proper prefix of the string represented
by v in the EHOG (resp. HOG). If (u, v) is a failure link (an edge in E+

2 or
E2, dotted line in Figure 1) in an EHOG (resp. HOG), the string represented
by v is the longest proper suffix of the string represented by u in the EHOG



4 S.G. Park et al.

u1

u2

u4

u6 u7

u8

u3

u5

1

2

3

a

a

b

a

a

c

d

c

d

b

u1

u2 u5

u4 3

1 2

a

a

baa cd

cd

b

u1

u4 u5

aa cd

1 2

baa cd

3

b

(a) (b) (c)

Fig. 1. Data structures built with P = {aabaa, aacd, cdb}. Dotted lines represent failure
links of the nodes. (a) Aho-Corasick trie. (b) Extended hierarchical overlap graph. (c)
Hierarchical overlap graph.

(resp. HOG). In this paper we use term ‘node’ to mean a node in EHOG or
HOG, or a string represented by the node.

We can build an EHOG of P = {s1, s2, ..., sn} in O(||P ||) time and space [9].
Furthermore, if we know EHOG(P ) and Ov(P ), we can compute HOG(P ) in
O(||P ||) time and space [9]. Therefore, the bottleneck of computing HOG(P ) is to
computeOv(P ), which costsO(||P ||+n2) time andO(||P ||+n×min(n,max{|si|}))
space in [9].

3 Main Algorithm

In this section we describe an algorithm to compute HOG from the given set
P = {s1, s2, . . . , sn} of strings in O(||P || log n) time.

3.1 New approach to compute HOG

First, we build an Aho-Corasick trie of P and renumber the strings (i.e., leaves)
in lexicographic order. This can be done in O(||P ||) time, assuming that the
size of the alphabet is constant. Next, we build EHOG(P ) in O(||P ||) time [9].
Furthermore, for each node u in EHOG(P ), we define an interval I(u) that
contains every leaf node that is in the subtree of u (i.e. I(u) = {i ∈ [1..n] | u is
a prefix of si}). Since P is renumbered in lexicographic order, we can see that
I(u) forms one interval.
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Algorithm 1 Computing HOG using interval encoding

1: procedure Build-HOG-Interval-Encoding(EHOG(P ))
2: for i← 1 to n do
3: Initialize B[1..n] to false

4: u← leaf corresponding to si in EHOG(P )
5: Mark u as included in HOG(P )
6: while u 6= root do
7: u← failure link of u in EHOG(P )
8: if ∃ j ∈ I(u) such that B[j] is false then
9: Mark u as included in HOG(P )

10: for j ∈ I(u) do
11: B[j]← true

12: Build HOG(P ) with marked nodes

Given EHOG(P ), we computeOv(P ) by discarding nodes that are not longest
overlaps. If a string s is included in Ov(P ), s is a proper suffix of si and a proper
prefix of sj for some i and j by definition of Ov(P ). To compute all longest over-
laps from si, we start from the i-th leaf si, follow the failure links repeatedly up
to the root, and check whether the node we are looking at is the longest prefix of
sj for some j. (Note that every overlap between two strings in P is represented
as a node in EHOG(P ), and thus we can iterate through all overlaps from si by
following the failure links starting from si.) While traversing the nodes through
failure links (namely v0 = i-th leaf → v1 → · · · → vk = root), vx (1 ≤ x ≤ k)
is ov(i, j) if and only if vx is the first node that is a prefix of sj during the
traversal. More specifically, vx should be the prefix of sj and vy’s (1 ≤ y < x)
should not be the prefixes of sj . To check whether there exists such j efficiently,
we maintain a bit vector B of length n defined as follows. At the end of the
iteration with vx (1 ≤ x ≤ k), B[j] = true if and only if there exists 1 ≤ y ≤ x
such that vy is a prefix of sj . We can maintain B as defined by marking B[j]
for every j ∈ I(vx) as true during the iteration with vx. Note that v0 is always
included in HOG(P ) by definition and is not considered.

We can check whether vx should be included in HOG(P ) by using B. Suppose
that there exists j such that B[j] = false and j ∈ I(vx) at the beginning of the
iteration with vx. By the definition of B[j] and I(vx), vx = ov(i, j) and it should
be included in HOG(P ). On the other hand, if B[j] = true at the beginning of
the iteration with vx, there exists a longer overlap from si to sj than vx and it
should not be included in HOG(P ). If we do this process for every leaf node,
we can get the list of nodes that we should include in HOG(P ). Algorithm 1
describes an algorithm to compute HOG(P ).

For example, let’s consider the example in Figure 1(b). First, we consider
the case with i = 1 in line 2. After we mark leaf 1 to be included in HOG(P )
in line 5, we begin the loop with u = u4, which is the failure link of leaf 1. We
consider I(u4) = {1, 2} in array B. Since B[1] and B[2] are false, we mark u4
to be included in HOG(P ) and set B[1] and B[2] as true. We continue the loop
with u = u2 by following the failure link. Since there is no j ∈ I(u2) = {1, 2}
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Fig. 2. Segment tree structure with n = 6. (a) The intervals that each node represents.
(b) The values min and add that each node initially stores. (c) The values that each
node stores after query 2 on A[1..5]. (d) The values that each node stores after query
1 on A[3..4]. Red arrows show that add values of the nodes are propagated to min and
add values of their children.

such that B[j] is false, we don’t include u2 in HOG(P ). We continue the loop
with u = u1. We consider I(u1) = {1, 2, 3} in array B. Since B[3] is false, we
mark u1 to be included in HOG(P ) and set B[3] as true. Since u = u1 is the
root, we finish the loop.

3.2 Improvement using segment tree

To speed up Algorithm 1, we have to process these two types of queries efficiently.

i) Given an interval [a..b], check whether there is any index j ∈ [a..b] such that
B[j] = false (Lines 8-9).

ii) Given an interval [a..b], set B[j] as true for every j ∈ [a..b] (Lines 10-11).

In order to process these queries, let’s consider the following two types of queries
on an integer array A. For an index j, A[j] > 0 means that B[j] = true, while
A[j] = 0 means that B[j] = false.

1. Given an interval [a..b], compute the minimum value among A[a..b] (and
check whether it is zero or not).
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Algorithm 2 Computing minimum of an interval using segment tree

1: procedure SegTree-Min(cnode, cinterval)
2: if cnode.int ⊆ cinterval then
3: return cnode.min

4: if cnode.int ∩ cinterval = ∅ then
5: return ∞
6: left, right← two children of cnode

7: left.min += cnode.add, left.add += cnode.add

8: right.min += cnode.add, right.add += cnode.add

9: cnode.add = 0
10: return min(SegTree-Min(left, cinterval), SegTree-Min(right,

cinterval))

Algorithm 3 Add 1 to an interval using segment tree

1: procedure SegTree-Update(cnode, cinterval)
2: if cnode.int ⊆ cinterval then
3: cnode.min += 1, cnode.add += 1
4: return
5: if cnode.int ∩ cinterval = ∅ then
6: return
7: left, right← two children of cnode

8: left.min += cnode.add, left.add += cnode.add

9: right.min += cnode.add, right.add += cnode.add

10: cnode.add = 0
11: SegTree-Update(left, cinterval)
12: SegTree-Update(right, cinterval)
13: cnode.min = min(left.min, right.min)
14: return

2. Given an interval [a..b], add 1 to each element of A[a..b].

We can see that one could use queries 1 and 2 to solve queries i and ii, respec-
tively.

Let A be an integer array of length n. We use the segment tree data structure
[5] to process queries 1 and 2 on A. The segment tree is a binary tree, which
has n leaf nodes (they are 1, 2, ..., n) and has O(log n) height. Each leaf node
represents one element, and each internal node represents an interval of elements.
Figure 2(a) shows a segment tree for n = 6. For each node u in the segment tree,
we define u.int as the interval that u represents. In Figure 2(a), for instance,
u.int for the root node is [1..6].

While processing the queries, each node u stores both the minimum value
among the elements in u.int (denoted by u.min) and an added value to u.int

(denoted by u.add). Since A should be initialized to zero, every value in the
segment tree is also initialized to zero. Figure 2(b) shows an initial state of the
segment tree.
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Algorithms 2 and 3 show the algorithms to perform queries 1 and 2, respec-
tively, in the segment tree, which use the lazy propagation technique in [19],
though in [19] one computes the sum, while here we compute the minimum. If
query 1 occurs, we follow the nodes recursively from top to down, starting from
the root. Consider a node u during the recursion. If u.int is included in the
query interval, we return u.min. If u.int is disjoint with the query interval, we
return ∞ to indicate that there are no values to be considered in u.int. Other-
wise, we propagate an added value to the child nodes, continue the process with
the child nodes and return the minimum among them. Query 2 can be done in
a similar way, but in this case we have to recompute the minimum value of a
node after updating its child nodes, as shown in line 13 of Algorithm 3.

Figures 2(c) and 2(d) show an example of processing two queries, query 2
on A[1..5] and query 1 on A[3..4]. In Figure 2(c), we can see that two nodes
representing A[1..3] and A[4..5] are updated in the segment tree. Note that min
and add values of the descendant nodes are not updated yet. In Figure 2(d), we
access the two nodes representing A[3..3] and A[4..4] to compute the minimum
value among A[3..4]. Note that add values in A[1..3] and A[4..5] are propagated
to their children to ensure that appropriate min values are stored in A[3..3] and
A[4..4].

We now prove the correctness of Algorithms 2 and 3. To the best of our
knowledge, this is the first correctness proof for the folklore lazy propagation
technique in [19]. The proof is non-trivial because Algorithms 2 and 3 work to-
gether, but their recursive structures differ. First, we need an invariant that holds
for both algorithms, i.e., Invariant 1 below. Moreover, since Algorithm 2 makes
recursive calls at the end, we need a top-down sub-invariant for Algorithm 2. In
contrast, Algorithm 3 makes recursive calls in the middle, and thus we have to
come up with a bottom-up sub-invariant for Algorithm 3.

Each node u in the segment tree maintains the following invariant while
processing queries 1 and 2.

min
i∈u.int

A[i] = u.min +
∑
v

{v.add : v is an ancestor of u}, (1)

where A is the conceptual array in the definitions of queries 1 and 2, and u is
not an ancestor of itself.

Lemma 1. Invariant 1 holds after Algorithm 2 or 3 is called with cnode = root

and cinterval = [a..b] for query 1 or 2, respectively.

Proof. We prove the lemma by induction. Initially, Invariant 1 holds because
A[i] = 0 for every index i, and u.min = 0 and u.add = 0 for every node u in the
segment tree.

First we show that Invariant 1 holds after Algorithm 2 is called for query 1.
The left-hand side (LHS) of Invariant 1 is unchanged since Algorithm 2 performs
a query on A, but does not change it. However, the propagation of the add values
in the segment tree may update the min and add values of other nodes in it. So
we must prove that the right-hand side (RHS) of Invariant 1 remains the same
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too. When Algorithm 2 is called with cnode = root, it recurses through nodes
in the segment tree (i.e., it goes down) until it reaches the base cases of recursion
(which are handled in lines 2 and 4), and then it goes up by computing minima
(in line 10). When Algorithm 2 goes down, we will show inductively that the RHS
of Invariant 1 remains the same for every node in the segment tree after each
execution of lines 6-9 (i.e., top-down sub-invariant for Algorithm 2). Consider
one execution of lines 6-9. Since left, right, and cnode have their min and add

changed, we show that the RHS of Invariant 1 remains the same for every node
u in the subtree rooted at cnode.

– If u = cnode, cnode.min is not changed, and so the RHS of Invariant 1
remains the same.

– If u = left (similarly for u = right), left.min is increased as much as
cnode.add is decreased, so the RHS of Invariant 1 remains the same.

– If u is a descendant of left (similarly for a descendant of right), left.add
is increased as much as cnode.add is decreased. Since both left and cnode

are u’s ancestors, the RHS of Invariant 1 remains the same.

Therefore, the RHS of Invariant 1 remains the same for every node u in the
segment tree when Algorithm 2 goes down.

When Algorithm 2 goes up (including the base cases of recursion), the RHS
of Invariant 1 does not change for any node in the segment tree. Therefore,
Invariant 1 holds after Algorithm 2 is called for query 1.

Now we show that Invariant 1 holds after Algorithm 3 is called for query 2.
When Algorithm 3 is called with cnode = root, it goes down by recursion and
then it goes up, like Algorithm 2. When Algorithm 3 goes down, one can show
inductively that the RHS of Invariant 1 does not change after each execution of
lines 7-10, in a way similar to Algorithm 2.

When Algorithm 3 goes up, we will show inductively that Invariant 1 holds for
every node in the subtree rooted at cnode at the moment when SegTree-Update
(cnode, cinterval) returns (i.e., bottom-up sub-invariant for Algorithm 3). We
first consider two base cases which are handled in lines 2 and 5.

– If cnode.int⊆ cinterval, SegTree-Update(cnode, cinterval) performs
line 3 and returns in line 4. After line 3 is done, the RHS of Invariant 1 for
cnode and its descendants increases by 1. Since every A[i] for i ∈ cnode.int

increases by 1, the LHS of Invariant 1 for them also increases by 1 and
Invariant 1 holds.

– If cnode.int ∩ cinterval = ∅, SegTree-Update(cnode, cinterval) does
nothing and returns in line 6, and thus the RHS of Invariant 1 remains the
same for cnode and its descendants. Since every A[i] for i ∈ cnode.int

remains the same, Invariant 1 holds.

Next, we consider the induction step, where we assume that Invariant 1 holds
for left, right and their descendants by the bottom-up sub-invariant. Now we
need to show that Invariant 1 holds for cnode when SegTree-Update(cnode,
cinterval) executes line 13 and returns. Suppose that left.min ≤ right.min
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Algorithm 4 Algorithm to compute HOG in O(||P || log n) time

1: procedure Build-HOG(EHOG(P ))
2: for i← 1 to n do
3: Initialize the segment tree
4: u← leaf corresponding to si in EHOG(P )
5: Mark u as included in HOG(P )
6: while u 6= root do
7: u← failure link of u in EHOG(P )
8: if SegTree-Min(root, I(u)) = 0 then
9: Mark u as included in HOG(P )

10: SegTree-Update(root, I(u))

11: Build HOG(P ) with marked nodes

(similarly for the case left.min > right.min). Consider Invariant 1 for left

and right. Since left and right share the same ancestors, the summation parts
of Invariant 1 for left and right are the same. So if left.min ≤ right.min,

min
i∈left.int

A[i] ≤ min
i∈right.int

A[i] holds. Since cnode.int = left.int ∪ right.int,

the LHS of Invariant 1 for cnode is the same as that of left. The RHS of
Invariant 1 for cnode is also the same as that of left because cnode.min =
left.min by line 13 and cnode.add = 0 by line 10.

Therefore, Invariant 1 holds for every node in the segment tree after Algo-
rithm 3 is called with cnode = root.

Using Lemma 1, we can show the correctness of Algorithms 2 and 3 to solve
queries 1 and 2.

Theorem 1. For any sequences of Algorithms 2 and 3 called with cnode = root

and cinterval = [a..b], Algorithm 2 (i.e., SegTree-Min(root, cinterval)) re-
turns a correct answer for query 1 with the given interval [a..b].

Proof. By Lemma 1 Invariant 1 holds after every call on Algorithm 2 or 3.
Furthermore, if we access node u by recursion in Algorithm 2, v.add = 0 for
every ancestor v of u due to line 9 in Algorithm 2. Therefore, at the moment we
access u, min

i∈u.int
A[i] = u.min always holds from Invariant 1.

Since Algorithm 2 computes the minimum of u.min for every u whose interval
is included in the given interval [a..b], it is equal to the minimum value among
A[a..b]. Therefore, Algorithm 2 returns a correct answer for query 1.

Given the EHOG, Algorithm 4 describes how to compute the HOG using
queries on the segment tree data structure. Algorithm 4 is almost identical to
Algorithm 1. First, the condition (∃j ∈ I(u) such that B[j] is false) on line 8
of Algorithm 1 is now performed by (SegTree-Min(root, I(u)) = 0) on line 8
of Algorithm 4. Second, the update for loop of lines 10-11 in Algorithm 1 is per-
formed using a single query on line 10 of Algorithm 4: SegTree-Update(root,
I(u)).
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Since any interval [a..b] can be represented by O(log n) nodes with a segment
tree [5], Algorithms 2 and 3 can be done in O(log n) time. By using them,
we can get an O(||P || log n) time algorithm to compute HOG(P ), as shown in
Algorithm 4. Since HOG(P ) and the segment tree take O(||P ||) and O(n) space,
respectively, the space complexity of building the HOG is O(||P ||).

4 Improvement using the word RAM model

By using the word RAM model of computation [15] with w-bit machine words,
where w ≥ log n, we show that we can compute the HOG from the given set P
of n strings in O(‖P‖ logn

log logn ) time.
Indeed, by using bitwise operations, we can improve queries 1 and 2 from

O(log n) to O(logw n) = O(loglogn n) = O( logn
log logn ). To do so, we introduce the

w-segment tree, which is the w-ary version of the segment tree as in [2,11].

4.1 Algorithms with bitwise operations

Unlike the original segment tree which is a binary tree, we define the w-segment
tree as a tree with n leaves, a height of O(logw n), and each node having at most
w children. As in the segment tree, each internal node represents an interval
of elements of P (i.e., 1, 2, . . . , n), and each leaf contains a single element (the
interval of a node u is denoted by u.int). But, instead of storing for a node u

the minimum value u.min and the added value u.add, we store two bit vectors
of length w (v.Vmin and v.Vadd) for every internal node v. If a node u is the
j-th child of its parent p, the j-th value of p.Vmin is true if u.min ≥ 1; false
if u.min = 0 (same for Vadd).

To compute query 1 for a node u and an interval [a, b], we begin by comparing
the interval [L,R] = u.int with [a, b]:

– If [L,R] ⊆ [a, b], we return the j-th bit of p.Vmin, where u is the j-th child
of its parent p.

– If [L,R] ∩ [a, b] = ∅, we return true.
– Otherwise, we compute the positions ia and ib corresponding to a and b in

[0, w − 1]:

ia = b (a−L)w
R−L+1 c and ib = b (b−L)w

R−L+1c.

If the j-th position of p.Vadd is equal to 1, all the values of u.Vmin and
u.Vadd become 1, and the j-th position of p.Vadd becomes 0. At the end, we
recursively call the function on Childia and Childib and return the minimum
of two recursive calls and the values of u.Vmin between positions ia + 1 and
ib−1, where the minimum of the corresponding values of u.Vmin is computed
as the following Boolean value:

(u.Vmin AND (2ib − 2ia+1)) = (2ib − 2ia+1).

In a similar way, we can compute query 2 by using bitwise operations.
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4.2 Using a table for a compressed space

Instead of a tree structure, we can use two tables to simulate the segment tree.
Let

h =
wdlogw ne−1 − 1

w − 1
+
⌈ n
w

⌉
denote the size of these tables, and let Tmin[0..h− 1] and Tadd[0..h− 1] be two
tables of w-bit words initialized to [0, . . . ,0]. We store Vmin’s and Vadd’s of
Section 4.1 into Tmin and Tadd, respectively, in the BFS order of the w-segment
tree (i.e., top to bottom, left to right) and run the algorithm described in Section
4.1 (see Algorithm 5). In the same way, we can build the algorithm corresponding
to query 2 with bitwise operations.

Algorithm 5 Computing minimum of an interval using w-segment tree

1: procedure SegTreeMinRam(k, [a, b])
2: d← blogw((w − 1)k + 1)c . Depth of node k

3: x← k − wd−1
w−1

. Node k is the x-th node with depth d

4: Y ← wdlogw ne−d . Node k represents an interval of length Y
5: L← xY + 1
6: R← (x + 1)Y
7: p← b k−1

w
c . p is parent of node k

8: j ← (k − 1) mod w . Node k is the j-th child of p

9: ia ← max(b (a−L)w
Y
c, 0)

10: ib ← min(b (b−L)w
Y
c, w − 1)

11: if (a ≤ L) ∧ (R ≤ b) then
12: return (Tmin[p] AND 2j) = 2j

13: if (R < a) ∨ (b < L) then
14: return true

15: if (Tadd[p] AND 2j) = 2j then
16: Tmin[k]← 2w − 1
17: Tadd[k]← 2w − 1
18: Tadd[p]← Tadd[p] AND (2w − 1− 2j)

19: return SegTreeMinRam(wk + 1 + ia, [a, b])
∧ SegTreeMinRam(wk + 1 + ib, [a, b])
∧ (Tmin[k] AND (2ib − 2ia+1) = (2ib − 2ia+1))

By using a table to simulate the tree, we do not need to store the interval
of each node and we can store the segment tree by using O(n) bits. Indeed,

the tables Tmin and Tadd are of size h. As
⌈
n
w

⌉
≤ 2n

w and wdlogw ne−1−1
w−1 ≤ 2 ×

wdlogw ne−2 ≤ 2n
w , we need at most w × 4× n

w = 4n bits to store each table.

That is, the space for the segment tree is reduced to O(n) bits (i.e., O( n
logn )

words) by using the two tables, but the space complexity of building the HOG
remains O(||P ||) due to the size of the HOG itself.
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5 Conclusion

We have presented a new algorithm to compute the HOG in O(||P || log n) time
and linear space, which improves upon an earlier solution, and a version of our
algorithm using bitwise operations in the word RAM model of computation.

Several interesting questions concerning the HOG and EHOG deserve future
work. The reverse engineering of indexing data structures, also termed inference
or recognition problem, has attracted a lot of interest. The question is, for in-
stance, given a tree, can one decide whether it is the suffix tree of some string
or not? The reverse engineering problem has been studied, e.g., for the suffix
tree [16] or the longest-common-prefix array [18]. In 2014, Gevezes and Pitsoulis
investigated the reverse engineering of overlap graphs [10]: given a weighted di-
rected graph G, find an instance P such that the overlap graph of P equals G.
Clearly this question can be applied to the EHOG and HOG, where the weight
on an arc (which is the length of the label on the arc) may or may not be given.

The sizes of the EHOG and HOG (in the number of nodes) can be equal, but
they may differ considerably [9]. An average case analysis of their sizes could
help understand their differences, and predict the memory required for storing
them. Some results connected to this question exist in the literature, e.g., [24]
for tries. The notion of clusters of word occurrences [4,13,17,28] can be helpful
in investigating the number of nodes of the EHOG and HOG for a random set
of words.
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