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Abstract

BK-based matching exploits external background knowledge resources (BK) to fill the semantic gap between the on-
tologies to align. Existing BK-based matchers implement the indirect matching approach in their internal architecture,
which makes any adaptation or reuse of the code difficult. Indeed, to improve a particular step in the BK-based matching
process, it is necessary to code the whole process from scratch which requires a lot of time and effort. To overcome this
issue, we propose a flexible framework called Generic BK-based Matcher (GBKOM). GBKOM is an extension that can
be added to any existing matcher. It is a configurable framework that implements the BK-based matching process, with
a rich set of parameters making it customizable and suitable for performing experimental evaluations.

GBKOM has participated, with YAM++ as a direct matcher, in the OAEI 2017 and OAEI 2017.5 campaigns, where
it has been successful on the biomedical benchmarks, and top ranked in several tasks. Furthermore, we have performed
experiments with two other direct matchers (i.e., LogMap and LogMapLite) to show that the effectiveness of GBKOM
is independent of the direct matcher used.

Keywords: Ontology matching, Ontology alignment, Background knowledge, Indirect matching, External resource,
Anchoring, Derivation, Background knowledge selection.

1. Introduction

Ontology matching is an active area of research because
of its multiple applications [1]. Original ontology matching
methods are based only on the exploitation of the lexical
and structural content of the ontologies to align, which is
known as direct matching or content-based matching. How-
ever, direct matching is less effective when the ontologies
to align are highly heterogeneous: (i) use different labels
to describe equivalent concepts, or (ii) are structured ac-
cording to different modeling points of view [2, 3].

To overcome this semantic heterogeneity, the commu-
nity has turned to the exploitation of external knowledge
resource(s), commonly called background knowledge re-
sources (BK), as a semantic bridge between the ontolo-
gies to align. In contrast to direct matching, this ap-
proach is known as indirect matching, BK-based matching
or context-based matching [4]. We note that the objective
of BK-based matching is to complement direct matching,
but not to replace it. Indeed, direct matching may identify
mappings that are missed by the BK-based matching and
vice-versa.

Fig. 1 shows a realistic example in the context of life-
sciences, originally presented in [5]. When directly match-
ing the ontology CRISP to the ontology MeSH, no rela-
tion is found between the two concepts CRISP:Brain and
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MeSH:Head because there is no syntactic similarity be-
tween the concept labels. MeSH ontology contains the
concept Brain but it is classified under the concept Cen-
tral nervous system, which is no way related to the con-
cept Head (different modeling views). To overcome this
semantic heterogeneity, we may exploit an external knowl-
edge resource, the FMA ontology in our example, in or-
der to discover, in an indirect manner, a mapping be-
tween these two concepts. For that purpose, the concept
CRISP:Brain is anchored (i.e., matched) to the concept
BK:Brain and the concept MeSH:Head is anchored to the
concept BK:Head. Inside the BK (i.e., FMA ontology), the
concepts BK:Brain and BK:Head are related via the rela-
tion is part of. Hence, we can derive the correspondence:
CRISP:Brain is part of MeSH:Head.

Fig. 2 provides another example of how the exploita-
tion of external knowledge resources reduces heterogeneity
between the ontologies to align. The BK concept UBERON:atlas
has multiple synonyms that allow to discover the mapping
between MA:Atlas and NCIT: C1 Vertebra.

BK-based matching has two main steps: (i) BK se-
lection that determines the external resources to be used
among the available ones, (ii) BK exploitation that ex-
ploits the selected resources to discover mappings. Evalu-
ating BK selection is tightly related to the results of BK
exploitation. Indeed, the benefit of exploiting a given BK
can be assessed only at the end of the BK-based matching
process by comparing the alignments obtained with and
without this BK. Therefore, to perform experiments, one
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Figure 1: Example of BK-based matching.
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Figure 2: Example of BK-based matching.
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has to deal with the whole BK-based matching process,
even if she/he wants to focus on a specific step (i.e., BK
selection or BK exploitation). Indirect matching modules
that are implemented in existing matchers such as AML or
LogMapBio are tightly related to their internal architec-
tures. Hence, reusing these modules requires a study and
an adaptation of their code, which is not always an easy
task. The unique existing generic BK-based matcher is
Scarlet [6], however, according to the corresponding author
– Marta Sabou –, the Scarlet code is heavily outdated and
no more functional. In this paper, we present a Generic
BK-based ontology Matcher (GBKOM). It implements our
BK selection and exploitation methods described in [7]. In
addition, GBKOM has been enriched with new modules to
improve the derivation efficiency (see Section 6) and gen-
erate mappings with relations other than equivalence (see
Section 5). Furthermore, our framework provides a rich
set of parameters that enables different configurations, and
may be easily coupled with any existing matcher. This is
particularly interesting to perform experiments.

We have participated in OAEI 2017 and OAEI 2017.5
campaigns with GBKOM using YAM++ [8] as a direct
matcher, that we called YAM-BIO. YAM-BIO obtained
good results and was top ranked in several tasks. More-

over, we performed experiments with other direct match-
ers (LogMap and LogMapLite), to show that GBKOM is
generic, and its effectiveness is independent of the direct
matcher used.

To wrap up, the contributions of this paper are as fol-
lows:
• A novel and efficient derivation algorithm ;
• An algorithm to generate mappings with relations

other than equivalence ;
• Empirical evaluation over openly available bench-

marks to show that GBKOM is generic, and its effective-
ness is independent of the used direct matcher ;
• An open source implementation of our system pro-

viding the possibility to use only a subset of modules.
Outline. The rest of this paper is organized as follows.

In Section 2, we provide the basic notions used herein.
Then, before presenting our approach, in Section 3, we pro-
vide a summary of BK-based matching approach. We give
an overview of GBKOM architecture and explain its vari-
ous parameters in Section 4. Then, we present the method
dealing with BK building with internal exploration in Sec-
tion 5. We present the new derivation algorithm in Section
6. After that, we evaluate the proposed algorithms, and
GBKOM with different matchers in Section 7. Finally, we
conclude in Section 8.

2. Preliminaries

In this section, we define the main terms that we will
use in the following sections. Most of these definitions were
adopted from [9, 1].

A Similarity measure is a function f : Es × Et →
[0..1] where Es is the set of Os entities and Et is the set of
Ot entities. For each pair of entities (es, et), a similarity
measure computes a real number, generally between 0 and
1, expressing the similarity between the two entities by
comparing their syntactic or structural information [10,
11]. Other similarity measures use external resources such
as WordNet to compute the similarity between the two
entities [12].

A Mapping (or a correspondence) between an entity
es (e.g., concept, relation) belonging to ontology Os and
an entity et belonging to ontology Ot is a four-tuple of the
form: m = 〈es, et, r, k〉 where:

• r is a relation between es and et such as equivalence
(≡), subsumes (w), subsumed by (v), etc.

• k is a confidence score (typically in the [0, 1] range)
holding for the correspondence between the entities
es and et. The k value is the score returned by one
similarity measure, or a combination of several ones.

Ontology matching can be formally defined as a
function that takes two ontologies Os and Ot, a set of
parameters P , and a set of resources R, and returns an
alignment A between Os and Ot. An Alignment between

2



Os and Ot is a set of mappings between their entities (con-
cepts and properties).

A Matcher is an algorithm that implements one sim-
ilarity measure or combines several ones to discover map-
pings between the input ontologies. In addition, a matcher
includes a decision function that selects which mappings
will be kept in the produced alignment [13]. For instance
the decision function may be based on a threshold value:
only mappings that have a score equal to or greater than
the threshold value are returned.

Background knowledge In the context of ontology
matching, there is no commonly accepted or strict defini-
tion of what background knowledge is. We define it as any
set of external knowledge resources that provides lexical or
semantic information about the domain(s) of the ontolo-
gies to align or some of the entities therein. It could be
any datasets related to the ontologies to align, other on-
tologies than the ones to align, other previously generated
mappings, lexical sources, the Web, etc.

In this paper, we use the acronym BK to refer to a non
empty set of background knowledge resources used within
the matching process. For instance, if such a resource
is an ontology, we will call it a BK ontology. Similarly,
the expression BK-based method denotes a method that
exploits a set of background knowledge resources within
the matching process.

OAEI. Organizing and evaluating the growing number
of ontology alignment systems (or methods) needs unified
rules and organization. Ontology Alignment Evaluation
Initiative (OAEI) is a coordinated international initiative
to fill this need [14]. It has held an annual evaluation of
ontology alignment systems since 2004.1 The OAEI has
different tracks such as Anatomy, Conference, MultiFarm,
etc. The results of the participating systems are published
for further analysis.

YAM++ is a matcher previously developed by our
team at LIRMM2 [8]; it does not rely on a specialized BK
to match ontologies. YAM++ combines several syntactic
and structural similarity measures. It is considered as one
of the state-of-the-art ontology matchers, and was the top
ranked matcher in OAEI 2013.

3. Ontology matching systems using BK

3.1. Overview of BK-based ontology matching

The idea of using background knowledge for enhanc-
ing ontology matching task is not new and has been suc-
cessfully adopted in several matching systems (see Section
3.2).

Fig. 3 summarizes the whole process of BK-based on-
tology matching approach with its main steps: (i) BK se-
lection and (ii) BK exploitation. In the literature, several
works have addressed these two issues jointly or separately.

1http://oaei.ontologymatching.org/.
2http://www.lirmm.fr/.

BK selection is the process that attempts to select ef-
fective background knowledge resources, for a given match-
ing task, from the set of available resources that we call
knowledge resource pool [15, 16, 17, 4]. Effective back-
ground knowledge resources, to be used in the matching
process, are those containing knowledge beyond that con-
tained in the ontologies to match but which is relevant
to match them. However, there is no measure that allows
evaluating the effectiveness of a given BK before exploiting
it. Indeed, currently, the evaluation is based on the com-
parison between the alignments obtained with and without
the exploitation of a given BK.

BK exploitation consists in using the BK selected
during the previous step to enhance the matching result.
It has three main steps: the first step, called anchoring
consists in retrieving correspondences between the entities
of the ontologies to align, and the BK entities that we call
anchors. This is usually done by matching source and tar-
get ontologies to the selected BK. Then, the second step
called derivation consists in deducing semantic relation-
ships between entities of ontologies to be aligned according
to the relationships linking the source and target anchors
in the used BK e.g., deducing that CRISP:Brain is part
of MeSH:Head in Fig. 1. Finally, the last step is called
mapping selection; it relies in selecting the most relevant
correspondences among the candidate ones, which is par-
ticularly challenging in the context of indirect matching.
Indeed, the use of background knowledge resources in on-
tology matching is a double-edged sword: though these re-
sources provide information to discover new correct corre-
spondences, they also generate new incorrect mappings [4].

For more details about the BK-based matching process
please refer to [18], chapter Foundations.

3.2. Related work

As we have discussed before, to the best of our knowl-
edge, currently there is no flexible framework for BK-based
ontology matching. However, several systems implement
the BK-based approach in their internal architecture. We
summarize here the main BK-based ontology matching
systems, and we discuss the added value of GBKOM com-
pared to existing systems.

GOMMA-BK (Generic Ontology Matching and MAp-
ping management). To the best of our knowledge, it is the
first system that has implemented BK-based approach in
2012 by using mapping composition [19]. GOMMA-BK al-
lows the improvement of matching quality by using domain
knowledge resources (i.e., domain-specific hub ontologies)
namely: UMLS [20], UBERON [21] and FMA [22].

AML-BK is a BK-based version of AgreementMak-
erLight ontology matching system [23]. AML-BK used the
UBERON ontology as BK in 2013. Since 2014, AML-BK
takes as a BK: (i) the Lexicon file of the Medical Subject
Headings (MeSH ontology), and (ii) ontologies that are au-
tomatically selected for each matching task from a knowl-
edge resource pool composed of two ontologies UBERON
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Figure 3: General workflow of BK-based ontology matching.
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and DOID (Human Disease Ontology). The automatic
selection is based on the Mapping Gain measure [15].

LogMap-BK/LogMapBio. They are two versions of
the LogMap ontology matching system that use BK [24].
LogMap-BK uses UMLS Lexicon while LogMapBio in-
cludes an extension for selecting dynamically a set of biomed-
ical ontologies as BK from NCBO BioPortal [17].

Note that, from 2016 on, AML does not use anymore
the suffix BK in its name although it actually uses BK
(the same thing for LogMap since 2012).

Indirect matching modules that are implemented in ex-
isting matchers such as AML or LogMapBio are tightly re-
lated to their internal architectures. Hence, reusing these
modules requires a study and an adaptation of their code,
which is not an easy task. The single generic BK-based
matcher was Scarlet [6], which is no more functional. Our
framework GBKOM has been designed to be used with
any matcher, and offers many configurations thanks to its
multiple parameters. All the systems discussed previously
exploit several BK ontologies for a given matching task.
However, each BK ontology is exploited independently of
the others (i.e., one BK ontology at time). GBKOM allows
to combine and derive mappings over several BK ontolo-
gies, which is more effective [6].

4. GBKOM framework

GBKOM is the implementation of our BK-based match-
ing approach described in [7]. For the sake of clarity, we
start by giving an overview of our approach. Then, we
present the different modules composing GBKOM.

4.1. Overview of our approach

Our approach follows the general BK-Based matching
presented in Section 3:

4.1.1. BK selection/BK building

BK selection in our approach is called BK building.
Unlike existing works that select a subset of resources from
the knowledge resource pool [6, 25, 16, 15], our approach
builds a novel BK from the knowledge resource pool, which
allows to improve effectiveness and efficiency. The knowl-
edge resource pool is composed of a set of ontologies of the
same domain as that of the ontologies to align that are
manually identified. Furthermore, when available, map-
pings between the preselected ontologies may be added
to the knowledge resource pool, in particular those that
are manually created or human-curated. For instance,
in the biomedical domain, cross-references between OBO
(Open Biological and Biomedical Ontology) Foundry on-
tologies3 [26] may be considered as equivalence mappings
that are manually curated. The manual identification
of ontologies that compose the knowledge resource pool
among all the existing ones may be seen as a preselection,
this is why we refer to these ontologies as “preselected
ontologies”. BK building has three main substeps (see
Fig. 4): (i) mapping extraction that extracts all possible
mappings between the preselected ontologies, (ii) mapping
filtering that returns only mappings that are directly or
indirectly related to the source ontology, which we refer
to as “filtered mappings” and (iii) mapping combination
that merges the filtered mappings into one graph that we
call the built BK. The built BK is a graph where nodes
are concepts coming from the preselected ontologies, and
edges are mappings (i.e., filtered mappings) linking these
concepts. The built BK is the output of the BK building
step, and will be used in the BK exploitation step.

4.1.2. BK exploitation

BK exploitation comprises the three classical steps: (i)
anchoring consists in matching source and target ontolo-
gies to the built BK, (ii) derivation: consists in retriev-
ing all paths that link source concepts to target concepts
through the internal structure of the built BK, and (iii)
mapping aggregation and selection. Several paths may
represent the same mapping (i.e., several paths link the
same source and target entities), hence the need of aggre-
gating them, then selecting the most relevant ones. Map-
ping scores are computed at this step, namely when using
the rule-based selection method. The score of each path
is the multiplication of its intermediate scores. Then, the
score of a given mapping is the maximum of the different
path scores representing that mapping. When using the
machine-learning based method, each mapping is classified
into True (i.e.selected) or False (i.e., not selected) without
a specific score. Please, refer to [7] for more information
about the aggregation and selection methods.

3http://www.obofoundry.org/.
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Figure 4: BK building: BK selection in our approach.
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4.2. GBKOM modules and parameters

Fig. 5 shows the five main modules that compose
GBKOM: (i) BK building, (ii) Anchoring, (iii) Derivation,
(iv) Mapping aggregation and selection, and (v) Semantic
verification. We grouped the input parameters in cate-
gories (e.g., derivation parameters, selection parameters,
etc.). In the following, we will present these modules and
their parameters.

4.2.1. Direct matcher

During BK building and Anchoring steps, a matcher
is required to generate alignments between ontologies. In
our framework, any existing direct matcher that imple-
ments a basic function Align, which takes as input two
ontology URLs (i.e., source and target URL) and returns
the URL of the generated alignment could play the role
of a direct matcher. In this paper, we performed exper-
iments with three different matchers: YAM++, LogMap
and LogMapLite. Moreover, the matcher should store the
generated alignment in RDF format with the API align-
ment [27] to be parsed correctly. Systems that have partic-
ipated in the OAEI campaigns, may use GBKOM directly
without any adaptation. Indeed, OAEI participants have
to wrap their tools as SEALS packages, and the wrap-
ping procedure includes the implementation of the func-
tion Align.4 Basically, the direct matcher does not exploit
BK resources, and GBKOM is an extension to improve
its results. However, there is no restrictions and even BK
based matchers may be used as a direct matcher.

4.2.2. Knowledge resource pool

In GBKOM, the knowledge resource pool is a set of
knowledge resources provided by the user. More precisely,

4http://oaei.ontologymatching.org/2017/.

GBKOM supports two resource types: (i) ontologies, and
(ii) existing mappings (i.e., precomputed mappings). Since
we use Jena API to load and parse ontologies, all ontology
formats supported by Jena API, such as RDF and OWL,
are supported by GBKOM. However, the format of the
background knowledge ontologies should be supported by
the direct matcher too. Existing mappings may be pro-
vided in two formats: (a) RDF format: alignments stored
using the alignment API [27] or (b) CSV format where
each row has a value for the different attributes illustrated
in Fig. 6. The attribute “source” refers to the name of
matcher that generated the mapping, or the resource that
includes it. Once GBKOM is launched, the set of resources
is fixed. However, the user is free to add or remove any
resource before launching the matching process.

4.2.3. Alignment repository

Alignment repository is a folder that includes several
subfolders, where each one is dedicated to a given matcher
(e.g., logmap folder or YAM++ folder). Each subfolder
contains alignments that are generated by its matcher in
RDF format. The idea is to avoid aligning the same pair
of ontologies with the same matcher more than once to
gain in efficiency. Hence, before performing any matching
task for BK building or anchoring, GBKOM verifies if an
alignment between the input ontologies exists to reuse it.
Otherwise, a new alignment is generated and saved in the
alignment repository.

4.2.4. BK building

The BK building module is the implementation of the
approach of BK selection described in Section 4.1.1. It
takes two parameters: (i) direct matcher to generate the
required alignments and (ii) source ontology to filter the
extracted mappings.

As we have experimentally showed in [7], following our
approach, the built BK has a very reduced size comparing
to that of the preselected ontologies, which improves the
efficiency of the BK selection process. Furthermore, the
built BK interconnects concepts from different preselected
ontologies via mappings, thereby allowing deriving map-
pings across several intermediate ontologies. In addition,
we propose a new method that allows to enrich the built
BK with internal relations that offers new parameters (see
Section 5).

4.2.5. Anchoring

As we have explained previously, anchoring is a direct
matching between the ontologies to align and the built
BK. Its main parameter is the direct matcher. Anchoring
mappings are added to the built BK.

4.2.6. Candidate mapping derivation

Our framework provides two mapping derivation strate-
gies. The first one assumes that the built BK is stored as a
Neo4j graph database. It consists in searching all possible
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Figure 5: GBKOM architecture.

Alignment
Alignment 
repository

BK building (BK selection in our approach)

Anchoring
Candidate mapping 

derivation

Mapping 
aggregation and 

selection

Semantic 
verification

BK building 
parameters

Derivation 
parameters

Mapping selection 
parameters

Semantic verification 
parameters

Target ontologySource ontology

Direct matcher 
parameter

Ontologies 
+

Existing mappings

Knowledge resource pool

BK exploitation

Figure 6: Example of an existing mapping format.

Attribute Value

URI source http://bioontology.org/projects/ontologies/fma/fmaOwlDlComponent_2_0#Abdominal_aorta

Ontology source http://bioontology.org/projects/ontologies/fma/fmaOwlDlComponent_2_0

URI target http://purl.obolibrary.org/obo/UBERON_0001516

Ontology target http://purl.obolibrary.org/obo/uberon.owl

Score 0.99

Relation =

Source YAM++

paths between source and target concepts. This derivation
strategy is complete, i.e., it returns all possible candidate
mappings, however it is not scalable for large built BK
graphs. Furthermore, it depends on Neo4j. We tried to
address these issues by implementing Algorithm 2, which
represents the second derivation strategy. Algorithm 2 re-
turns paths between source concepts and target concepts
too, but it implements some constraints that reduce the
number of returned paths, which improves efficiency and
consumes less memory and computational resources with-
out decreasing effectiveness. In Section 6, we explain in
detail and evaluate this Algorithm.

In both cases, the user has to specify the Maximum
path length parameter, which is the maximum length of
paths to be returned by the derivation process (by default
it is 4). The length of a given path is the number of its
nodes (see Table. 1).

Table 1: Mapping derivation parameters.

Parameter Possible values
Derivation strategy All paths or Algorithm 2
Maximum path length Integer > 0, by default 4

4.2.7. Mapping aggregation and selection

GBKOM implements two mapping aggregation and se-
lection methods: (i) Machine Learning (ML) based selec-
tion and (ii) Rule-based selection methods, which were
proposed and evaluated in [7]. The former is based on su-
pervised machine learning using RandomForest algorithm,
while the later is based on a set of rules.

To enable the use of a classification ML algorithm, we
designed a set of 27 attributes (or features) that describes
each candidate mapping. Most of these attributes (21 at-
tributes) are computed using the intermediate scores of
paths representing candidate mappings. For instance, the
max-multiplication attribute is computed as follows: (i)
for each path returned from the derivation step, we com-
pute the multiplication-value of its intermediate scores,
(ii) then, for each candidate mapping, we compute the
maximum multiplication-value of the paths representing
that candidate mapping. Using the same method we com-
pute other attributes such as max-average, min-sum, max-
variance, etc. Other attributes are taken into account such
as the number and length of paths representing each can-
didate mapping. When choosing the ML-based selection,
the user has to provide one or several datasets, such that
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each dataset is a folder that contains two ontologies and
their validated alignment. These datasets will be used for
training the classifier. When using Rule-based selection,
the user may specify a threshold value to select only the
mappings that have a score equivalent to or higher than
this threshold value, by default its value is set to zero (see
Table. 2).

Table 2: Mapping selection parameters

Parameter Possible values
Mapping selection ML based or Rule based
Threshold a real value ∈ [0..1]
Datasets a folder for each dataset

4.2.8. Semantic verification

Currently, GBKOM reuses the LogMapRepair mod-
ule [28] to verify the consistency of the generated align-
ment.

LogMapRepair takes as parameter the reasoner to use
as parameter that may be Hermit or Alcomo. The seman-
tic verification is optional and the user may disable it using
the Semantic verification parameter (see Table. 3).

Table 3: Semantic verification parameters

Parameter Possible values
Semantic verification Yes or No
Reasoner Hermit or Alcomo

5. Discovering richer relations with internal explo-
ration

5.1. BK building with internal exploration

Most ontology matching systems generate only equiv-
alence mappings. Hence, using these matchers, the built
BK can be exploited to derive only equivalence mappings
too.

To enable deriving mappings with other relations than
equivalence such as subClassOf, we have to enrich the built
BK with this kind of relations. To that end, we have ex-
tended our BK selection approach to explore the internal
structure of the preselected ontologies and extract frag-
ments rather than only concepts from these ontologies [7].
The structure exploration is controlled by two parameters:

• Exploration relations. They are the mapping rela-
tions that the user wants to generate in addition
to equivalence mappings such as subClassOf, and
partOf relations. In GBKOM, we assume that the
relations provided by the user are transitive.

• Exploration length. This parameter limits the in-
ternal exploration within a given preselected ontol-
ogy to a number of steps. For instance, an explo-
ration with the relation subClassof and length of 1

returns for each concept that has a mapping in the
set of filtered mappings its parents and children (see
Fig. 7(b)). If we change the length parameter to 2,
the structure exploration returns for each concept its
parents, grandparents, children, grandchildren (see
Fig. 7(c)).

These parameters are similar to those proposed in [4]
for the local inference step. However, in their work, the
authors proposed to reload each BK ontology in the BK
exploitation step to explore its structure, which is time
consuming. Here, we propose to extract the potentially
effective fragments from the preselected ontologies in the
BK selection step to avoid dealing or reasoning with com-
plete ontologies in the BK exploitation step.

The result of the structure exploration is a set of triples
〈ei, ej , r〉, such that ei and ej belong to the same prese-
lected ontology, and r belongs to the exploration relations
R. These triples are merged with the concepts of the built
BK. Originally, each edge has a score in the built BK,
which is the confidence value of the mapping that the edge
represents. However, the extracted triples have no confi-
dence values. To have a uniform graph, we have assigned
the value of 1 to edges with exploration relation. In the
following, we use the term enriched BK to refer to a BK
built with internal exploration.

Note that a large exploration length parameter may re-
turn large fragments or whole BK ontologies, which limits
the benefit of our BK selection approach. Indeed, our ap-
proach aims at extracting the effective BK ontology frag-
ments – as small as possible – rather than returning whole
BK ontologies.

In Algorithm 1, we present the pseudo code of the
BK building with internal exploration. First, we run the
BKbuilding method that builds a BK according to the pro-
cess described in Section 4.1.1, then selects a subgraph of
the built BK which is related to the list of sourceConcepts.
sourceConcepts may be all the source concepts or a sub-
set of them. However, we believe it is more efficient to
only consider source concepts for which there is no equiv-
alent target concept when exploiting the BK without in-
ternal exploration. Indeed, building an enriched BK for
the whole source ontology may generate a large graph,
which decreases the derivation efficiency and the precision
of the generated alignment. Then, we enrich the built BK
with the triples returned by the getTriples method. This
method returns a set of triples of the form 〈ei, ej , r〉 such
that ei or ej belongs to newConcepts, and r is the ex-
ploration relation given as input. ei and ej belong to the
same ontology given as input. To retrieve these triples, we
run two SPARQL queries for concepts in newConcepts be-
longing to the input ontology. The first query looks for all
triples where ei belongs to newConcepts, while the second
query returns all triples where ej belongs to newConcepts.
We present an example in Fig. 8 where the exploration
relation is rdfs:subClassOf, and newConcepts is the set
of URIs used to filter ej values. getConcepts method re-
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turns the set of unique concepts belonging to its input
(i.e., builtBK or triples)

Algorithm 1: BK building with internal exploration

Require: explorationRelations, explorationLength,
knowledgeResourcePool, sourceOntology,
sourceConcepts

1: builtBK ← BKbuilding(KnowledgeResourcePool,
sourceOntology, sourceConcepts)

2: enrichedBK ← builtBK
3: newConcepts← getConcepts(builtBK)
4: oldConcepts = {}
5: for all ontology ∈ knowledgeResourcePool do
6: for all relation ∈ explorationRelations do
7: for i← 0; i < explorationLength; i + + do
8: triples ← getTriples(ontology, relation,

newConcepts)
9: oldConcepts ← oldConcepts ∪ newConcepts

10: enrichedBK ← enrichedBK ∪ triples
11: newConcepts ←

getConcepts(triples)− oldConcepts
12: end for
13: end for
14: end for
15: return enrichedBK

Figure 7: Example: concept selection with structure exploration.
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The implementation of Algorithm 1 offers three new
parameters summarized in Table. 4. When the user as-
signs yes to the parameter Internal BK ontology explo-
ration, GBKOM builds a BK enriched with BK ontology
relations among the Internal relations to explore param-
eter and the concepts related to these relations within a
distance – number of edges – less than the Exploration
length parameter.

5.2. BK exploitation with internal exploration

The derivation process when exploiting an enriched BK
follows the same schema: retrieving paths between source
and target concepts. The difference is that the retrieved
paths may include relations, other than equivalence, that
belong to the exploration relations provided by the user.
Hence, it is important to define a strategy to combine these
relations. In GBKOM, we only consider paths with at

Figure 8: Example: SPARQL query to get sub-concepts.

PREFIX            rdfs:<http://www.w3.org/2000/01/rdf-schema#> 

SELECT           ?ei      ?ej   

WHERE            {?ei        rdfs:subClassOf       ?ej}   

VALUES  ?ej    {<http://purl.obolibrary.org/obo/UBERON_0000003>  

                          <http://purl.obolibrary.org/obo/UBERON_0000114>  

              <http://purl.obolibrary.org/obo/UBERON_0000115>  

   ......} 

Figure 9: Derivation algorithm: all paths vs. Algorithm 2.
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most one type of relation in addition to equivalence. Then,
we combine relations according to the following rules. Let
R = {r1, r2, . . . , rn} be the set of exploration relations ri
– transitive relations–, 〈 ci, cj , ri 〉 a mapping belonging to
a retrieved path, then for each ri in R:

• 〈 c1, c2, ri 〉 ∧ 〈 c2, c3, ri 〉 =⇒ 〈 c1, c3, ri 〉: this rule
may be applied because ri is transitive.

• 〈 c1, c2, ri 〉 ∧ 〈 c2 ≡ c3 〉 =⇒ 〈 c1, c3, ri 〉

• 〈 c1, c2,≡〉 ∧ 〈 c2, c3,≡〉 =⇒ 〈 c1, c3,≡〉

With these rules, we assume it is not possible to combine a
given semantic relation with another relation except equiv-
alence. However, in particular cases, the user may want
to define its own relation combination rules. For instance,
in [5], the authors showed that for their matching task, the
combination of the two relations: is part of and is a, in a
specific order, gives interesting results. In the future, we
plan to give possibility to the user to define the rules used
for combining relations in GBKOM.

6. Candidate mapping derivation

To participate in the OAEI 2017.5 campaign, we had
to execute our algorithms on the Hobbit platform [29] (see
Section 7). This platform offers limited memory and com-
putational time resources for each execution. Searching
all possible paths between source and target concepts –
i.e., the first derivation strategy – in a cyclic graph is a
complex task which requires significant resources, espe-
cially when the graph has a large size. In Algorithm 2, we
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Table 4: BK Building parameters

Parameter Possible values
Internal exploration Yes or No
Exploration relations transitive relations
Exploration length an integer > 0

attempted to reduce the complexity of the all path algo-
rithm. The main idea is to exploit each BK concept once
for a given source concept, which reduces the number of
paths to explore during the derivation process, and conse-
quently the final returned paths. In Fig. 9, we present an
example to illustrate the difference between the two deriva-
tion algorithms. We suppose that all the mappings mi are
equivalence mappings. The all-paths algorithm (case a) re-
turns four paths for the same candidate mapping between
the source concept Cs1 and the target concept Ct1, while
Algorithm 2 (case b) returns only one path between the
two concepts. Indeed, in case b, CBK2 and CBK3 have
been exploited to derive the first path. Hence, they can-
not be reused to derive other paths. While in case a, we
go through the same BK concepts several times, which
requires more time, memory and returns more paths to
process.

Algorithm 2 takes as input: (i) filteredMappings:
mappings that compose the built BK and the anchor-
ing mappings, (ii) sourceConcepts and targetConcepts:
lists of source concepts and target concepts respectively,
and (iii) maxPathLength: the parameter that limits the
length of derivation paths.

The algorithm starts by adding all the filtered map-
pings to a collection of type dictionary – map in java –
that is represented with the builtBK variable (lines 2 to
4). For instance, if we add the six mappings of the exam-
ple in Fig. 9 to builtBK, we obtain the dictionary in Fig.
10.

Figure 10: builtBK variable after adding the 6 mappings in Fig. 9.
 

Key Direct mappings 
Cs1 { m1,  m2} 
CBK1 {m2, m3} 
CBK2 {m1, m3, m4, m5} 
CBK3 {m6, m4, m5} 
Ct1 {m6} 

builtBK dictionary may be seen as an index of the
filtered mappings such that the access keys are the first
entities ei of these mappings. Note that the six mappings
are equivalence mappings, hence each mapping is indexed
in both directions. However, for no-equivalence mappings,
each mapping is indexed once with the provided direction.

After having added the filtered mappings to builtBK,
we look for paths leading to target concepts from each
source concept. In our algorithm, a path is an ordered list
of mappings. For each source concept, we retrieve its list

of mappings (line 6). Then, for each retrieved mapping,
we create a new path (i.e., an empty list) to which we add
this mapping. We add the created paths to the set of paths
to explore (lines 7 to 11). Note that the first entity ei of
all paths to explore belongs to the source concepts.

While there remain paths to explore, we pick up the
top path – the oldest and the shortest path in the list –,
we retrieve the last concept that is the second entity ej of
the last mapping in this path (lines 12 to 15). If the last
concept has not been exploited before, we get its mappings
from builtBK, and we add it to the list of exploited con-
cepts (lines 16 to 18). Then, for each of these mappings,
we extend the current path by adding this mapping at the
end of the path list (line 20). Finally, we verify whether
the last concept of the extended path belongs to the list
of target concepts. If it does, we add the path to the list
of the found paths. Otherwise, we add it to the list of the
paths to explore if its size is less than the maxPathLength
parameter (lines 22 to 28).

Algorithm 2 should be called twice when the parame-
ter internalExploration is set to ”Yes”. Indeed, when the
built BK contains only equivalence relations, paths link-
ing source concepts to target concepts are the same linking
target concepts to source concepts. Hence, it is sufficient
to only look for paths from source concepts to target con-
cepts. However, when dealing over several types of rela-
tions, the direction matters. We need to look for paths in
both directions: from source to target concepts, and also
from target to source concepts. For that, we call Algorithm
2 twice by interchanging the lists of source and target
concepts: (i) Algorithm 2 (filteredMapping, sourceCon-
cepts, targetConcepts, maxPathLength): returns paths
from source to target concepts. (ii) Algorithm 2 (filteredMap-
ping, targetConcepts, sourceConcepts, maxPathLength):
returns paths from target to source concepts.

7. Evaluation

In the following, we present an evaluation of the pro-
posed algorithms as well as the alignments generated by
GBKOM. We have used Anatomy and LargeBio tracks of
OAEI.

Anatomy. It consists in finding an alignment of 1,516
mappings between the Adult Mouse Anatomy (MA: 2,744
concepts) and a subset of the National Cancer Institute
Thesaurus (NCIT: 3,304 concepts) describing human anatomy.
In the following, we refer to MA as source ontology and
NCIT as target ontology.

Large Biomedical (LargeBio) 5. It aims at find-
ing alignments between several large and semantically rich
biomedical ontologies: the Foundational Model of Anatomy
(FMA) [22], National Cancer Institute Thesaurus (NCI) [30]
and SNOMED Clinical Terms (SNOMED-CT) [31], which
contain 78,989, 66,724 and 306,591 concepts, respectively.

5http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/.
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Algorithm 2: Derivation function

Require: filteredMappings, sourceConcepts,
targetConcepts, maxPathLength

1: builtBK={}, pathsToExplore={},
exploitedConcepts={}, foundPaths={}

2: for all mapping ∈ filteredMappings do
3: addMapping(mapping, builtBK)
4: end for
5: for all sc ∈ sourceConcepts do
6: mappings ← builtBK.get(sc)
7: for all m ∈ mappings do
8: path ← {}
9: path.add(m)

10: pathsToExplore.add(path)
11: end for
12: while pathsToExplore.size() > 0 do
13: path← pathsToExplore.get(0)
14: pathsToExplore.remove(0)
15: lastConcept ←

path.getLastMapping().getSecondEntity()
16: if lastConcept 6∈ exploitedConcepts then
17: mappings← builtBK.get(lastConcept)
18: exploitedConcepts.add(lastConcept)
19: for all m ∈ mappings do
20: path.add(m)
21: lastConcept ← m.getSecondEntity()
22: if lastConcept ∈ targetConcepts then
23: foundPaths.add(path)
24: else
25: if path.size() < maxPathLength then
26: pathsToExplore.add(path)
27: end if
28: end if
29: end for
30: end if
31: end while
32: pathsToExplore.clear()
33: exploitedConcepts.clear()
34: end for
35: return foundPaths

In Table. 5, we present the six matching tasks of Large-
Bio corresponding to the different sizes of input ontologies
(small fragments/whole ontology of FMA and NCI and
small/large fragments of SNOMED-CT). The last column
shows the number of mappings in the reference alignment.
The Unified Medical Language System (UMLS) [20] has
been used as the basis to produce the reference align-
ments [32].

We have performed our experiments with the following
parameter values:

• Direct matcher: YAM++

• Knowledge resource pool: (i) UBERON and DOID
ontologies, and (ii) cross-references extracted from
these ontologies as equivalence mappings that we call
“OBO mappings”. We have assigned a score of 1 for
OBO mappings as they have been manually curated.

• Derivation strategy: Algorithm 2

• Maximum path length: 4

• Internal exploration: No (except in Section 7.1)

• Mapping selection strategy: Rule based

• Threshold: 0.0

• Semantic verification: True

• Reasoner: Hermit

7.1. BK exploitation with internal exploration

To the best of our knowledge, there is no biomedi-
cal benchmark to evaluate a matcher tool that returns
other kind of mappings than equivalence. Evaluating the
BK building with internal-relation enrichment requires the
production of such a benchmark by experts. Therefore, we
present here only a preliminary evaluation.

Setup of experiments
We performed our preliminary evaluation on the Anatomy

track [33]. We chose Anatomy because it is the smallest
and the single biomedical OAEI track that has a manually
validated gold standard.

We executed the matching process as follows: (i) GBKOM
starts by looking for the equivalence mappings according
to the process illustrated in Fig. 5 until the derivation step;
(ii) then, it builds an enriched BK only for the source con-
cepts that do not have any candidate mapping at the end
of the derivation step.

We have assigned the value 1 to the internal exploration
length parameter, and rdfs:subClassOf as the relation to
explore parameter.

Result
At the end of the derivation step using the built BK

without enrichment, 1,269 MA concepts (46% of all MA
concepts) had no mapping candidates i.e., no derivation
path starts with one of these 1,269 concepts. An enriched
BK has been built for these 1,269 mouse concepts (i.e., the
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Table 5: Matching tasks of OAEI LargeBio.

Task # Task name #Source #Target #Mappings
Task 1 FMA-NCI small fragments 3,696 6,488 2,686
Task 2 NCI-FMA Whole ontologies 66,724 78,989 2,686
Task 3 FMA-SNOMED small fragments 10,157 13,412 6,026
Task 4 FMA whole with SNOMED large fragment 78,989 122,464 6,026
Task 5 NCI-SNOMED small fragments 23,958 51,128 17,210
Task 6 NCI whole with SNOMED large fragment 66,724 122,464 17,210

list of source concepts in Algorithm 1). The derivation us-
ing the enriched BK returned 965 candidate mappings with
rdfs:subClassOf relation. 517 MA concepts are included
in these candidate mappings, which represents 41% of the
initial set of concepts (i.e., 1,269 concepts) for which no
candidate mapping was found using the built BK without
enrichment.

The difference between the two numbers 965 and 517 is
explained by the fact that some source concepts belong to
several mappings. We present an example in Fig. 11. The
directed edge are subClassOf relations, while undirected
edges are equivalence edges. From this subgraph three
mappings are derived that have the same source concept.
Currently, all the derived no-equivalence mappings are re-
turned. Note that a high value of the explorationlength
parameter generates a larger enriched BK, and may re-
turn more no-equivalence and less precise mappings if the
maxpathlength parameter has a high value too. In the
future, we plan to define a new method for selecting the
most relevant no-equivalence mappings, and develop a new
benchmark to perform an advanced evaluation of the BK-
based matching with internal exploration.

Figure 11: Several subClassOf mappings for the same source concept.
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We observed that some derived mappings could be in-
ferred from the equivalence mappings without exploiting
the enriched BK. For instance, in the mouse anatomy on-
tology, the concept (MA 0002028;pudendal artery) is a
subclass of the concept (MA 0000064;artery). The con-
cept (MA 0000064;artery) has an equivalent concept in
the NCIT ontology (NCI C12372; artery), while the con-
cept pudendal artery does not. Thus, it is possible to de-
rive that (MA 0002028; pudendal artery) is subClassOf
(NCI C12372; artery) without exploiting the enriched BK.
In the future, we plan to implement techniques to select
only the concepts for which no mapping can be inferred.

We manually evaluated 40 subClassOf mappings that
we have randomly selected. All the evaluated mappings

were correct. We present some examples in Table. 6. The
list of the generated candidate mappings wit their paths,
as well as the 40 mappings validated are available in the
file SubClassOfMappings.xls on GitHub https://goo.gl/

gmGJey.

7.2. Mapping derivation algorithm

Fig. 12 and 13 show the results of our two derivation
strategies on Task 1 and Task 2 of the OAEI LargeBio
track. More particularly the figures show the number of
returned paths, correct and incorrect candidate mappings
resulted from the derivation step. In addition, we com-
puted a ratio by dividing Algorithm 2 values by the All-
paths values to compare the results of the two derivation
algorithms.

As we can see, comparing to the All-paths derivation
strategy, Algorithm 2 generates (i) much less paths (37%),
(ii) almost the same number of correct candidate mappings
(99%), and (iii) slightly less incorrect candidate mappings
(82% and 93% in Task 1 and Task 2, respectively). We
obtained similar results for the rest of LargeBio tasks and
Anatomy.

The difference in the number of correct and incorrect
mappings is explained by the fact that Algorithm 2 does
not return paths that includes target ontology concepts as
intermediate concepts, while the all path derivation using
Neo4j does.

Figure 12: Task 1: derivation strategy comparison.
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7.3. GBKOM with different direct matchers

To verify the effectiveness of GBKOM, we have per-
formed experiments with different direct matchers namely:
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Table 6: Example of mappings with subClassOf relation between mouse and NCI ontologies.

concept code preferred label concept code preffered label
MA 0000061 arterial blood vessel NCI C12679 Blood Vessel
MA 0001871 right atrium valve NCI C12729 Cardiac Valve
MA 0000111 annulus fibrosus NCI C32599 Fibrocartilage
MA 0000554 thoracic cavity blood vessel NCI C12679 Blood Vessel
NCI C53161 Hyoglossus Muscle MA 0002296 extrinsic tongue muscle
NCI C53174 Pronator Teres Muscle MA 0000615 forelimb muscle
NCI C53180 Transversus Thoracis MA 0000548 chest muscle
NCI C53180 Transversus Thoracis MA 0000561 thorax muscle

Figure 13: Task 2 : derivation strategy comparison.
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YAM++, LogMap and LogMapLite. Our choice is mo-
tivated by the different strategies implemented in these
matchers, which almost cover all the strategies implemented
in direct ontology matchers. Indeed, (i) YAM++ combines
several similarity measures and rules, (ii) LogMap incor-
porates sophisticated reasoning and repair techniques, and
(iii) LogMapLite, a lite matcher that essentially applies di-
rect string matching techniques. Moreover, YAM++ and
LogMap are state-of-the-art ontology matchers that had
successfully participated in previous OAEI campaigns, and
they do not implement a BK based approach as described
in Section 3.

In Table. 7, 8 and 9, we present the original results
of the three matchers and their results with GBKOM i.e,
when each matcher is used as a direct matcher in GBKOM.

LogMap and LogMapLite. Comparing to the orig-
inal results of LogMap, GBKOM shows slightly better re-
sults (F-measure) in almost all tasks, except in Task 2
because of a low precision. This low precision may be ex-
plained by the use of the preselected ontology UBERON.
Indeed, NCI Thesaurus includes a small branch on mouse
anatomy in addition to the human anatomy branch. Using
the cross-references extracted from UBERON (considered
as manual mappings), GBKOM returns mappings between
human and mouse anatomy. However, UMLS, the source
from which the reference alignment is extracted, is focused
only on human health, and does not include mappings be-
tween the NCI mouse anatomy branch and MA (the Mouse
Anatomy ontology); therefore, these mappings are consid-

ered as incorrect, which affects precision [15].
Note that LogMap exploits UMLS lexicon, a rich biomed-

ical lexicon, as external knowledge resource, which reduces
the benefit of using other external biomedical knowledge
resources. Indeed, the improvement is more significant
with LogMapLite, especially in Tasks 3 and 4 (see Table.
8).

As it was expected, the BK-based matching consumes
more time than the direct matching. However, in many
applications, the matching task is performed only once
(e.g., integrating the data of two datasets structured using
two different ontologies), and the most important thing is
the quality of the generated alignment independently of
the matching run time.

Fig. 14 shows two series: (1) diff1: the difference be-
tween the LogMap F-measure values and the LogMapLite
F-measure values; (2) diff2: the difference between our
framework results when using LogMap and LogMapLite.
As we can see, in all matching tasks diff1 is less than diff2,
which means that exploiting the BK allowed to reduce the
gap between the two matchers (a sophisticated matcher
and a simple matcher). However, this difference still exist
which shows that the quality of GBKOM results depend
on the quality of the direct matcher results.

Figure 14: F-measure difference: original results vs. our framework
results.
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YAM++. We participated in the OAEI 2017 [34]
and OAEI 2017.5 [29] campaigns in Anatomy and Large-
Bio tracks with YAM-BIO as a system, which is GBKOM
with YAM++ as a direct matcher.

In OAEI 2017, we participated with a basic version of
GBKOM that does not implement all the components de-
scribed in Section 4. For more details about this participa-
tion, please refer to [34]. In OAEI 2017.5, we participated
with the last version of GBKOM – the one described in this
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Table 7: LogMap: original results vs. results with GBKOM.

TASK Original results Results with our framework
Measure Precision Recall F-measure T (s) Precision Recall F-measure T (s)
Anatomy 0.918 0.846 0.880 4 0.900 0.947 0.923 42
Task 1 0.944 0.897 0.920 7 0.945 0.896 0.920 53
Task 2 0.856 0.808 0.831 53 0.763 0.851 0.804 174
Task 3 0.947 0.690 0.798 43 0.924 0.735 0.819 104
Task 4 0.840 0.645 0.730 302 0.798 0.695 0.743 465
Task 5 0.947 0.69 0.798 192 0.924 0.705 0.800 332
Task 6 0.868 0.597 0.707 622 0.795 0.683 0.735 923

Table 8: LogMapLite: original results vs. results with GBKOM.

TASK Original results Results with our framework
Measure Precision Recall F-measure T (s) Precision Recall F-measure T (s)
Anatomy 0.962 0.728 0.829 1 0.929 0.921 0.925 24
Task 1 0.967 0.819 0.887 1 0.963 0.860 0.909 25
Task 2 0.673 0.820 0.739 7 0.674 0.841 0.748 59
Task 3 0.968 0.209 0.344 2 0.942 0.394 0.555 29
Task 4 0.852 0.209 0.336 12 0.822 0.393 0.532 92
Task 5 0.892 0.567 0.693 6 0.924 0.667 0.774 62
Task 6 0.797 0.567 0.663 12 0.818 0.658 0.730 116

paper (see Section 4) – with UBERON and DOID as pres-
elected ontologies on the HOBBIT platform.6 The Hobbit
platform is a generic, modular and distributed platform for
Big Linked Data systems. It was designed with the aim of
providing an open-source, extensible, FAIR and scalable
evaluation platform [29].

In Table. 9, we report the original results of YAM++,
and its results with GBKOM in OAEI 2017.5 campaign.7

We do not present the time required to obtain the origi-
nal results because we do not have this information. In-
deed, we did not run YAM++ on the Hobbit platform.
Presenting the time obtained on another platform is not
comparable to the one that is obtained on Hobbit.

As we can see, there is a significant improvement of the
quality of generated alignments with GBKOM comparing
to the original ones. More particularly, we observe a real
increase in recall and a slight drop in precision.

OAEI 2017.5 campaign was aiming to test the Hobbit
platform by the matching systems. Hence, most of partici-
pants such as AML or LogMap have reused the OAEI 2017
versions. Additionally, because of the technical constraints
imposed by this evaluation platform such as the maxi-
mum computation time, some systems, such as LogMap-
Bio, have not participated since it requires much time to
select background knowledge ontologies from NCBO Bio-
Portal. Therefore, we compare our OAEI 2017.5 results to
the participant results in OAEI 2017.

With an F-measure of 0.929, YAM-BIO is the third

6https://master.project-hobbit.eu/home.
7Results may be consulted on the HOBBIT platform https://

goo.gl/A496ug.

top-ranked system in Anatomy (the best system had an
F-measure of 0.943), and with an average F-measure of
0.832, YAM-BIO is the top-ranked system in LargeBio
(see Table. 10).

Finally, we may observe that there is no ideal ontology
matching strategy. Choosing a particular strategy (or the
system that implements that strategy) depends on the user
needs in terms of precision, recall and computation time.
For instance, even if YAM-BIO has almost the same F-
measure (0.763) as AML in Task 6, AML has a higher
precision 0.904 – OAEI 2017 – vs. 0.842, while YAM-BIO
has a higher recall 0.697 vs. 0.668.

Discussion on the OAEI evaluation. We be-
lieve, it would be interesting, when possible, to publish
participant results with and without exploitation of spe-
cialized background knowledge resources. On one hand,
it allows to better assess the benefit of exploiting back-
ground knowledge resources on the matching results and
computation time. On the other hand, it enables a fair
comparison with the systems that do not use background
knowledge resources.

Some components are common in all ontology matcher
architectures; others do not always exist — such as back-
ground knowledge resource selection or semantic verifica-
tion. This makes the comparison of computation time par-
ticularly cumbersome and not always fair. We believe that
it would be more appropriate to evaluate execution times
for each separate component. For example, YAM-BIO
used a predefined background knowledge while LogMap-
Bio made a dynamic selection from an online repository
necessarily taking additional time. Splitting running time
by components will also help the community to identify
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Table 9: YAM++: original results vs. results with GBKOM.

Task Original results Results with GBKOM (OAEI 2017.5)
Measure Precision Recall F-measure Precision Recall F-measure T(s)
Anatomy 0.967 0.744 0.841 0.946 0.913 0.929 176
Task1 0.906 0.864 0.884 0.971 0.902 0.935 197
Task2 0.828 0.859 0.843 0.818 0.894 0.855 518
Task3 0.646 0.713 0.678 0.962 0.741 0.837 244
Task4 0.658 0.707 0.682 0.879 0.738 0.802 755
Task5 0.875 0.641 0.740 0.927 0.703 0.800 478
Task6 0.839 0.623 0.715 0.842 0.697 0.763 962

Table 10: Comparison of GBKOM (YAM-BIO*) results in OAEI
2017.5 to average LargeBio results in OAEI 2017.

Measure Precision Recall F-measure
AML 0.896 0.774 0.827
LogMap 0.900 0.721 0.797
LogMapBio 0.871 0.734 0.794
LogMapLite 0.858 0.532 0.610
Tool1 0.869 0.367 0.454
YAM-BIO 0.894 0.770 0.824
YAM-BIO* 0.900 0.779 0.832

less efficient components to improve them, and most effi-
cient ones to reuse them.

8. Conclusion

In this paper, we have presented a generic framework
for BK-based Ontology Matching, called GBKOM, which
offers a great flexibility in different aspects: (i) the mod-
ules could be used independently and (ii) several parame-
ters are provided and may be easily customized according
to the user needs. The framework can be used with any
direct matcher, and the BK selection could be used sepa-
rately from the BK exploitation. Indeed, the BK selection
module generates two files: (i) an OWL file containing all
the selected concepts with their labels; it may be seen as a
fictional ontology that is created to enable anchoring to the
target ontology by matching systems, and (ii) a CSV file
containing all the filtered mappings in the following for-
mat (URI source, URI ontology source, URI target, URI
ontology target, score, relation, manualMapping). Man-
ualMapping is a boolean property that takes “true” or
“false” as value”. Therefore, a user willing to test its new
method of BK exploitation, she/he could reuse the result
of the BK selection (both files) without going through the
exploitation step of GBKOM. If she/he is only interested
by the BK selection module without worrying about the
exploitation, it is enough to generate these two files as
inputs for the module BK exploitation.

GBKOM is publicly available to the community in a
GitHub project.8 It has been evaluated in two OAEI

8https://github.com/AminaANNANE/GenericBKbasedMatcher.

campaigns. Indeed, we have used YAM-BIO – GBKOM
with YAM++ – matcher to participate in the OAEI 2017
and OAEI 2017.5 campaigns in two tracks: Anatomy and
LargeBio. The results obtained in those tracks were very
close to top-ranked state-of-the-art systems, thanks to the
different content matching techniques implemented in YAM++,
the BK used and our BK selection and exploitation meth-
ods. Furthermore, we performed experiments with two
other matchers LogMap, and LogMapLite. In both cases,
GBKOM improved the original alignments generated by
these matchers. This shows that the effectiveness of GBKOM
is independent of the direct matcher used.
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