
HAL Id: lirmm-03018543
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03018543

Submitted on 22 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mapping Computations in Heterogeneous Multicore
Systems with Statistical Regression on Inputs

Junio C R da Silva, Lorena Leão, Vinicius Petrucci, Abdoulaye Gamatié,
Fernando Pereira

To cite this version:
Junio C R da Silva, Lorena Leão, Vinicius Petrucci, Abdoulaye Gamatié, Fernando Pereira. Mapping
Computations in Heterogeneous Multicore Systems with Statistical Regression on Inputs. SBESC
2020 - 10th Brazilian Symposium on Computing Systems Engineering, Nov 2020, Virtual, Brazil.
�10.1109/SBESC51047.2020.9277863�. �lirmm-03018543�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03018543
https://hal.archives-ouvertes.fr

Mapping Computations in Heterogeneous Multicore
Systems with Statistical Regression on Inputs

Junio C. R. da Silva∗, Lorena Leão∗, Vinicius Petrucci†, Abdoulaye Gamatié‡, Fernando M. Q. Pereira∗
∗Universidade Federal de Minas Gerais
†University of Pittsburgh & UFBA

‡LIRMM, CNRS & Université de Montpellier, France

Abstract—Heterogeneous multicore systems, such as ARM
big.LITTLE, use different types of processors to conciliate high
performance with low energy consumption. A question that con-
cerns such systems is how to find the best hardware configuration
(type and frequency of processors) for a program. Current solu-
tions are either completely dynamic, based on in-vivo profiling, or
completely static, based on supervised machine learning. Whereas
the former approach can bring unwanted runtime overhead, the
latter fails to account for diversity in program inputs. In this
paper, we design and evaluate a compilation strategy, JINN-C,
that perform statistical regression on function arguments, so as to
match parameters with ideal hardware configurations at runtime.
We show that JINN-C, implemented in the Soot compiler, can
predict the best configuration for a suite of Java and Scala
programs running on an Odroid XU4 board, while outperforming
prior techniques such as ARM’s GTS and CHOAMP, a recently
released static program scheduler.

Index Terms—Regression, Function, Heterogeneous Multicore
Architectures, Scheduling, big.LITTLE

I. INTRODUCTION

Modern multicore platforms provide developers with a
suite of technologies to produce code that is more energy-
efficient [1]. Among these technologies, two stand out today:
dynamic voltage & frequency scaling [2] and heterogeneous
architectures in which different processors are combined into
the same chip. The ARM big.LITTLE design, typically found
in smartphones, exemplifies the latter technology [3]. As an
example, the Samsung Exynos 5422 chip has eight processors,
four fast, but power-hungry (the “big” cores), and four slow,
but more power efficient (the“LITTLE” cores). Additionally,
processors have up to 19 different frequency levels, going from
200MHz to 1.5GHz in LITTLE cores, and up to 2.0GHz in big
cores [4]. The combination of heterogeneous processors, each
one featuring multiple frequency levels, gives programmers
a vast suite of configurations to choose from when running
their applications. However, performing this choice is chal-
lenging [5]–[10].

A recent solution to this problem is CHOAMP, a compila-
tion technique designed by Sreelatha et al [11]. CHOAMP uses
supervised machine learning to map program functions to the
configuration that best fits them. Sreelatha et al. try to capture
characteristics of the target architecture’s runtime behavior.
They use this knowledge to predict the ideal configuration
to a program, given its syntactic characteristics. The beauty
of Sreelatha et al.’s approach is the fact that it is fully
static: interventions on the program remain confined into the

compiler, and no extra runtime support is required from the
hardware. Such modus operandi has been made popular by
Shelepov et al [12]’s HASS system, a scheduler for same-ISA
heterogeneous systems.

We observe that CHOAMP and HASS share a fundamen-
tal shortcoming: they do not consider program inputs when
performing scheduling decisions. As we explain in Section II,
there exist programs for which the best hardware configuration
for a given function varies depending on the function’s inputs.
Program inputs, thus, have the potential to be explored in
determining good mappings between programs and hardware
configurations on heterogeneous multicore systems.
Our Solution. In this paper, we introduce a compilation
approach to map program parts to hardware configurations that
can optimize resource usage. In contrast to prior work, our
technique explicitly takes function inputs into consideration
when deciding which hardware configurations to schedule.
As we discuss in Section III, our idea is based on statistical
regression. Given a function foo, a collection of its inputs
{t1, t2, . . . , tm} available for training, plus a set of hardware
configurations {h1, h2, . . . , hn}, we run foo(ti), 1 ≤ i ≤ m,
onto a sample of the configuration space {hj | 1 ≤ j ≤ n}.
Training gives us the ideal configuration for each input,
in terms of a measurable goal, such as runtime or energy
consumption. When producing code for foo, we augment its
binary representation with this knowledge to predict the best
configuration for potentially unseen inputs.
Our Results. We have implemented our technique onto
SOOT [13], a bytecode optimizer, and have evaluated it onto
an Odroid XU4 big.LITTLE architecture. SOOT lets us use
the knowledge built during training to generate code that,
at runtime, changes the hardware configuration per program
function. We call this code generator the JINN-C compiler, a
tool that reads and outputs Java bytecodes. Although we work
at the granularity of functions, nothing hinders our approach
from being applied onto smaller (or larger) program parts.
As we explain in Section IV, we have evaluated JINN-C on
the subset of the Program Based Benchmark Suite [14] used
by Acar et al [15], and on programs from Renaissance –a
benchmark suite introduced in 2019 [16]– that we have been
able to port to the embedded board that we use. We have evalu-
ated JINN-C with two objective functions: runtime and energy
consumption. We measure energy for the entire board using
physical probes, following Bessa et al’s methodology [17].

II. OVERVIEW

The term hardware configuration is used with different
meanings by different researchers, thus we shall restrict our-
selves to the following definition. Let Π = {π1, π2, . . . , πn}
be a set of n processors, and let Freq be a function that
maps each processor to a list of possible frequency levels.
A hardware configuration is a set of pairs h = {(π, f) | π ∈
Π, f ∈ Freq(π)}. If (πi, fj) ∈ h, for some fj ∈ Freq(πi),
then processor πi is said to be active in h with frequency fj ,
otherwise it is said to be inactive.

For example, the Odroid XU4 has four big
cores {b0, b1, b2, b3} and four LITTLE cores
{L0, L1, L2, L3}. Big cores have 19 frequency levels
(200MHz , 300MHz , . . . , 1.9GHz , 2.0GHz). LITTLE cores
have 14 (200MHz , . . . , 1.5GHz). This System-on-Chip (SoC)
supports any number of active processors; however, big cores
must always use the same frequency level. The same is true
for LITTLE cores. An example of hardware configuration is
{b0, b2} × 2.0GHz , {L1, L2, L3} × 1.3GHz .

A. Program Inputs and Hardware Configuration

Compilers, such as GCC or CLANG, do not try to capitalize
on differences between cores when producing binary pro-
grams: the same executable runs on both cores. Nevertheless,
we know of research artifacts that take these differences into
consideration; for example, CHOAMP is a recent technique in
this direction [11].

The CHOAMP scheduler matches program features, such as
branches, barriers, reductions and memory access operations
with the ideal configuration for each function. After CHOAMP
trains a regression model, the same configuration decision
applies for a function, regardless of its actual inputs. Purely
static approaches are known to fall short in adapting to
a variety of user inputs, which can negatively impact the
program execution [18]. Example 1 illustrates this point by
showing that it is possible to find different programs for
which the ideal hardware configuration varies according to
their inputs.

Example 1: Function TASK in Figure 1 inserts into a
global map all the values stored in a stream. Values are
associated with a key, whose size varies according to the
formal parameter KEYSIZE. TASK has a synchronized block;
hence, it can be safely executed by multiple threads. The
number of threads is an implicit input. These three values:
size of input stream, size of keys, and number of threads,
form a three-dimensional space, which Figure 1 illustrates. The
ideal hardware configuration for TASK varies within this space.
Figure 2 illustrates this variation for 3×25 different input sets.
The notation XbYL denotes X big cores, and Y LITTLE cores.
In this experiment, we have set Freq(b) = 1.8GHz, for any big
core b, and Freq(L) = 1.5GHz, for any LITTLE core L.

The construction of a key, at line 5 of Figure 1 is a CPU-
heavy, synchronization-free task. The larger the key, the more
incentive we have to use the big cores. However, the updating
of GLOBALMAP at line 9 is a synchronization-heavy task:
the more threads we have, the less they benefit from the

// The number of threads is a hidden input
void task(Stream<Value> s, long keySize) {
 while (!s.empty()) {
 // Get a key of the proper size:
 BigInteger key = getNextKey(keySize);
 // Use key to update globalMap
 synchronized(globalMap) {
 Value value = s.next();
 globalMap.put(key, value);
 }
 }
}

T	=	4	

T	=	8	

T	=	16	
T	=	32	

0	

2000	

4000	

6000	

8000	

10000	

10^2	
10^3	

10^3	
10^4	

T
hr

ea
ds

s.size()

ke
yS

ize

Fig. 1. A program, and its input space.

oox 2b0Lx

4b0Lox ox

4b0Lx o ox

o o 4b0Lo o

4b0Loooo

keySize

s.
si

ze
 (

)

1 2 3 4 5

5

4

3

2

1

4T

xxx 2b0Lx

4b4L4b4Lx x-

4b4Lx 4b4L 4b4Lo

4b4L 4b4L 4b4L4b4L 4b4L

4b4L4b4L4b4L4b4L4b4L
8T

xxx 2b0Lx

oox -x

ox o ox

o o ox o

ooooo
16T

0b2L, 0b4L, 2b0L, 4b0L, 4b4L

0b4L, 2b0L, 4b0L, 4b4L

10
10
10

10
10

10 10 10 10 10

4b0L, 4b4Lo
-

x

Fig. 2. The ideal configuration for different parameters of the TASK function
seen in Figure 1, for 4, 8 and 16 threads, measured on an Odroid XU4 with
the userspace governor, and default configuration 4b4L. Names inside boxes
indicate the best configuration(s) for that input. ’X’ indicates setups with three
or more configurations tied as best. Notice that even considering 4 threads,
there is benefit to enable more than four processors, as the Java virtual machine
creates threads for garbage collection and JIT compilation, for instance.

big cores. Indeed, as already observed by Kim et al [19],
context switches are more expensive in the big than in the
LITTLE cores. So are memory accesses: on the Odroid XU4,
L2 latency for big cores is 21 cycles while for LITTLE cores
it is 10 [4]. Furthermore, the larger the input streams, the more
often we access the synchronized region between lines 7 and
10 of Figure 1. We can observe results similar to those seen in
Example 1 in algorithms like Integer Sort, a benchmark used
by Sreelatha et al [11], which we re-evaluate in Section IV.

B. Accounting for Energy Efficiency

If we consider energy as a dimension of efficiency, then
choosing good hardware configurations becomes more chal-
lenging. Because low-frequency cores tend to be more power-
efficient than high-frequency processors, we end up having
more incentive to use them. However, low-frequency cores
tend to take longer to finish tasks; possibly, using more energy
to perform a job. This observation is critical in battery-powered
devices, such as smartphones. The next example analyzes
such power-performance tradeoffs. In this experiment, we are
measuring the actual power consumed in the entire board,
which includes not only its CPUs but also its peripherals, such
as memory and cooling. To this end, we use the measurement
apparatus described by Silva et al [20], which samples power
at 20KHz.

Example 2: We have used the power measurement ap-
paratus shown in Figure 3(a) to plot runtime and energy
consumption for the function TASK earlier seen in Fig. 1,
considering two different input sets. Figure 3(b) shows the
power profile of TASK for a synchronization-free set of inputs

2

(top) and for a synchronization heavy set (bottom). Following
Silva et al [20], we call the chart relating runtime and energy
a constellation. The constellation in Figure 3(c) shows the
behavior of TASK for the synchronization-free input. In this
case, the size of keys is very large, and the number of
insertions in the GLOBALMAP is very low, thus conflicts
seldom happen. On the other hand, if we make the size of
keys very small, and the size of the stream very large, then
we obtain a rather different constellation, which Figure 3(d)
outlines. This constellation shows how TASK performs in a
synchronization-heavy environment.

30	

60	

90	

120	

150	

4	 8	 12	 16	 20	 24	 28	 32	 36	

20	

40	

60	

80	

100	

120	

4	 8	 12	 16	

E
ne

rg
y

(J
)

E
ne

rg
y

(J
)

Time (s) Time (s)

1B4L

0B4L

2B4L
2B3L
2B2L
2B1L
2B0L

3B4L
3B3L
3B2L
3B1L
3B0L

4B4L

1B3L

0B3L
4B3L

0B2L

4B2L

0B1L

4B0L
4B1L

1B0L
1B1L
1B2L

4B4L
4B3L

4B2L4B1L

4B0L

0B1L

0B4L

3B4L
3B3L
3B2L
3B1L

3B0L

0B3L

1B0L

1B2L
1B3L
1B4L

1B1L
0B2L

2B3L

2B0L
2B1L

Best time and energy

Worst time
and energy

Odroid
XU4

Synchronization
circuit

Power
meter

// This function is still multi-threaded
void syncFreeTask(Stream<Value> s, long keySize,
 Map<BigInteger, Value> privateMap) {
 while (!s.empty()) {
 // Get a key of the proper size:
 BigInteger key = getNextKey(keySize);
 // Use key to update the map (private per thread)
 Value value = s.next();
 privateMap.put(key, value);
 }
}

1
2
3
4
5
6
7
8
9

10
11(a)

(c)

(b)

(d)

8 Threads 8 ThreadsOdroid

35

45

55

65

75

85

7 8 9 10 11 12 13 14

En
er

gy
 (J

)

Time (s)

10

30

50

70

90

2 7 12 17 22

En
er

gy
 (J

)

Time (s)

1b0L

0b1L1b1L2b0L
1b2L
0b2L

4b1L

3b2L
3b3L
4b2L
4b3L

0b3L
1b3L
2b1L

0b4L

2b2L

1b4L
3b1L
4b0L

3b0L

2b3L

2b0L

3b0L

1b0L
0b3L 0b2L

0b1L

0b4L

1b1L
3b2L
3b1L4b0L

4b4L
4b1L

4b2L

4b3L 3b4L
3b3L

2b1L

2b3L
2b3L
1b4L
1b3L
1b1L

 (b)

8 Threads

0 1 2 3 4 5

0
5

10
15

20

Time (s)

iP
ow

er
 (W

)

0 2 4 6 8 10 12

0
5

10
15

20

Time (s)

iP
ow

er
 (W

)

0
6

10
16
20

0
6

10
16
20

0 2 4 6 8 10 12

0 1 2 3 4 5

 P
ow

er
 (W

)
 P

ow
er

 (W
)

Time (s)

Time (s)

Odroid
XU4

Power
MeterSynchronization

Circuit

(b)

8 Threads

(c) (d)

En
er

gy
 (J

)

10

30

50

70

90

35
45
55

65

85

75

2 7 12 17 22 7 9 11 1312108 14
Time (s)Time (s)

2b4L

3b4L

4b4L 1b2L

(a)

Fig. 3. (a) The energy measurement apparatus. (b) Power charts for
configuration 4b4L when running with different inputs. (c) Constellation for
synchronization-free input set. (d) Constellation for synchronization-heavy
input set. Big cores run at 2.0GHz and LITTLE cores run at 1.5GHz.

Example 2 shows how changes in inputs modify the disposi-
tion of hardware configurations in the constellations. The best
energy and time configuration in the CPU-heavy setting, 4b4L,
is one of the worst configurations in the synchronization-
heavy setting. Such dramatic changes make it very difficult
for a completely static approach to find good hardware con-
figurations for program parts. The size and type of program
inputs are only known at runtime. To handle the lack of
information at compile time, existing prior work [9], [10],
[21] resorts to online monitoring; however, this may pose a
potential overhead on the system as the number of programs
and hardware configuration increase.

III. SOLUTION

We apply statistical regression on the arguments of a
function to determine the ideal hardware configurations for
different inputs of that function. The implementation of this
idea asks for the modification of programs. The pipeline in
Figure 4 summarizes our code transformation techniques. To
ease our presentation, we shall be using source code in our
examples, as seen in Figure 4. However, our solution works at
the Java bytecode level and our interventions happen within
the compiler; more precisely in the program’s intermediate
representation. Working at the bytecode level lets us optimize
programs written in different languages that run on the Java
Virtual Machine. In Section IV we shall validate our tech-
niques using Java and Scala benchmarks.

void task(Stream<Value> s, long keySize) {
 Bundle b = new Bundle(0xA33F0251);
 b.addConfig(Env.getCurrentConfig());
 b.addVar((double)s.size());
 b.addVar((double)keySize);
 b.addVar((double)Thread.activeCount());
 b.startTimer();
 while (!s.empty()) {
 BigInteger key = getNextKey(keySize);
 synchronized(globalMap) {
 Value value = s.next();
 globalMap.put(key, value);
 }
 }
 b.endTimer();
}

Soot
add profiling
instrumentation

.jar/.class
instrumented
for training Bash+Java

Driver (java)
I/O hooks

List of
inputs

Training result:
(inputs, configs)

Python
Regression
Analysis

Soot
add prediction
instrumentation

.jar/.class
instrumented
for production

Regression
Coefficients

(matrix !)

@AdaptiveMethod
@HiddenInput (expr=“Thread.activeCount()”)
void task(Stream<Value> s, long keySize) {
 while (!s.empty()) {
 BigInteger key = getNextKey(keySize);
 synchronized(globalMap) {
 Value value = s.next();
 globalMap.put(key, value);
 }
 }
}

void task(Stream<Value> s, long keySize) {
 …
 config = // predicted configuration for
 // (s.size(), keySize, Thread.activeCount());
 Regression.changeConfig(config);
 while (!s.empty()) {
 BigInteger key = getNextKey(keySize);
 synchronized(globalMap) {
 Value value = s.next();
 globalMap.put(key, value);
 }
 }
 // Restore original configuration (See Fig.14)
}

Annotated
.jar/.class

Annotated
.java/.kt

Javac/Scalac
Pre-process
annotations

Fig. 4. The execution pipeline of JINN-C.

A. Multiple Linear Regression

The key ingredient of our work is the application of mul-
tivariate regression onto the arguments of functions. Linear
regression empowers a prediction model that matches function
parameters with resource-efficient hardware configurations.
We extend our regression model to a multivariate system, as
the output is a vector (of ideal configurations). In this model,
we define a number of dependent variables, grouped into a
matrix C, plus a number of independent variables, grouped
into a matrix A. The goal of the regression model is to deter-
mine a matrix Θ that approximates the product C = σ(AΘ).
In this case, σ is the softmax function, applied on the lines of
the matrix product AΘ. If Z is a 1× n vector, e.g., a line of
AΘ, then σ(Z) is also an 1 × n vector, whose jth element
is defined as: σ(Z)j = eZj/

∑n
1 e

Zk . The softmax function
receives a vector of real numbers, and produces a vector of
the same size normalized over a probability distribution. Every
σ(Z)j is a number between 0.0 and 1.0, and the sum of all
the elements within σ(Z) is 1.0.
The matrix A of independent variables. The matrix A
encodes known values of function arguments. These values are
called the training set of our regression. If we are analyzing
a function with n arguments, and our training set contains m
function calls, then A is a matrix with m lines, and n + 1
columns. The extra column is the all-ones vector 1m, which
represents intercepts – constants that allow us to handle a
scenario in which the training set contains only null values.

Example 3: Figure 5 shows how ten different samples of
function TASK, from Fig. 1, are organized into a matrix A of
independent variables.
The matrix C of dependent variables. C represents the ideal

3

1 4 10 100,000

1 4 100 1,000

1 4 10,000 100

1 8 100 100

1 8 1,000 10,000

1 8 10,000 10

1 16 1 10,000

1 16 10 1,000

1 16 100 10

1 16 10,000 100,000

T"="4"

T"="8"
T"="16"
T"="32"

1.E+00"

1.E+01"

1.E+02"

1.E+03"

1.E+04"

1.E+05"

10^1" 10^2" 10^3" 10^3"
10^4"

Th

re
ad

s

s.size()

ke
yS

ize
Threads

s.siz
e()

keyS
ize

intercepts

1b0L

4b0L

4b2L

4b0L

4b4L

4b4L

1b0L

4b0L

4b2L

4b4L m
atrix A

 w
ith training inputs

Fig. 5. Training set for the TASK method (Fig. 1). The table on the right is
matrix A of independent variables.

hardware configuration for each input in the training set. If
we admit k valid configurations, and our training set has m
samples, then C is an m×k matrix. Each row of C is a unitary
vector ei, which has all the components set to zero, except its
ith index, which is set to one. If Cji = 1, then i is the best
configuration for input j. The next example illustrates these
notions with actual data.

Example 4: Figure 6 reuses the ten samples seen in Exam-
ple 3 to build the matrix of dependent variables. This matrix
has one line per sample, and one column per configuration
of interest. This example considers only 10 out of the 4,654
possible configurations of the Odroid XU4 board. This need
for bounding the search space might prevent us from discover-
ing good optimization opportunities; however, it ensures that
our methodology is practical. Section IV discusses the criteria
used to build the search space of allowed configurations.

T"="4"

T"="8"
T"="16"
T"="32"

1.E+00"

1.E+01"

1.E+02"

1.E+03"

1.E+04"

1.E+05"

10^1" 10^2" 10^3" 10^3"
10^4"

Th

re
ad

s

s.size()

ke
yS

ize

1b0L

4b0L

4b2L

4b0L

4b4L

4b4L

1b0L

4b0L

4b2L

4b4L

m
atrix C

 w
ith ideal configurations

1b0L 4b0L 4b2L 4b4L
1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 0

0 0 0 1

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Fig. 6. Matrix of independent variables built for ten different invocations of
function TASK in Figure 1.

Finding the parameter matrix Θ. The problem of con-
structing a predictor based on multivariate linear regression
consists in finding a matrix Θ that maximizes the quantity
of correct predictions on the training set. The underlying
assumption is that if Θ approximates the behavior of the
training set, then it is likely to yield also good results on the
test set. There exist efficient techniques to find Θ –gradient
descent being the best well-known [22]. Because our model
involves only searches over a linear space, gradient descent
converges quickly to a global optimum. By a linear search
space, we mean that, for each element (i, j) in C, we have
that: Cij = Θ0j + αi1Θ1j + . . . + αimΘmj . Therefore, non-
linear expressions such as αipαiq bear no impact on Cij .

Example 5: Figure 7 shows a possible matrix Θ that
gradient descent finds for the TASK function, when given the
training set seen in Figures 5 and 6. Once we apply the softmax
function onto the product AΘ we obtain a predicted matrix C ′,
which approximates the target matrix C, e.g., C ′ = σ(AΘ).
Each line of C ′ adds up to 1.00. We are using only two decimal
digits; hence, rounding errors prevent us from obtaining 1.00
in every line. The largest value in each line i of C ′ determines
the ideal configuration for the input set Ai. The matrix Θ seen
in Figure 7 led us into a C ′ that correctly matches the target C
in all but two inputs. Some misses are expected. If we resort to
more complex regression models, for instance, with non-linear
components, then we might find a Θ that correctly predicts
every row of C. However, this matrix, which fits too well the
training set, might not yield good predictions on unseen inputs.

1b
4L

4b
0L

4b
2L

4b
4L

!=

Goal matrix C Matrix A

Matrix ϴ
1b

4L
4b

0L
4b

2L
4b

4L
Predicted matrix C’

×

✔

✘

✔

✔

✔

✔

✔

✔

✘

✔

1.00 0.00 0.00 0.00

0.00 0.67 0.01 0.33

0.00 0.00 0.22 0.78

0.00 0.57 0.30 0.13

0.00 0.06 0.00 0.94

0.00 0.00 0.39 0.61

1.00 0.00 0.00 0.00

0.01 0.89 0.01 0.09

0.00 0.59 0.37 0.05

0.00 0.00 0.00 1.00

-0.0125 0.0114 0.0006 -0.6481

-0.1964 0.0472 0.0166 -0.0759

-0.1763 -0.0008 0.0000 0.0002

0.0010 -0.0003 -0.0050 0.0000

1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 0

0 0 0 1

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Fig. 7. The result of multivariate linear regression produced by the training
set seen in Examples 3 and 4.

Using Θ to carry out predictions. The single output of
regression is the matrix Θ. Once we find a suitable Θ, we can
use it to predict the ideal configuration for inputs that we have
not observed during training. To this effect, as we shall better
explain in Section III-C, the constants in Θ are hardcoded
into the binary text that we generate for the function f under
analysis. If f is invoked with a set of inputs Ai, then the
expression σ(AiΘ) is computed on-the-fly. The result of this
evaluation determines the active configuration.

Example 6: Figure 8 uses the matrix Θ found in Figure 7 to
guess the best configuration for four unseen input sets. These
inputs appear as dark spheres in Figure 8. In this example, Θ
correctly predicts the ideal configuration for three out of four
samples. In one case, the last input in Figure 8, we wrongly
predict the best configuration as 4b2L, whereas empirical
evidence suggests that it should be 4b4L.

!(× ϴ) =

!(× ϴ) =

!(× ϴ) =

!(× ϴ) =

T"="4"

T"="8"
T"="16"
T"="32"

1.E+00"

1.E+01"

1.E+02"

1.E+03"

1.E+04"

1.E+05"

10^1" 10^2" 10^3" 10^3"
10^4"

Th

re
ad

s

s.size()

ke
yS

ize

4b0L

4b4L

4b4L

1b0L

4b0L

4b2L

4b4L

1b4L 4b0L

4b4L

1b4L

1b0L

4b0L

4b2L

1.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00

0.01 0.68 0.26 0.05

0.00 0.00 0.57 0.43

✔

✘

✔

✔

1b
4L

4b
0L

4b
2L

4b
4L

Unseen inputs Predictions

1 4 1 10000

1 8 10 1E+05

1 16 1 100

1 16 10000 10

Fig. 8. The matrix Θ found in Figure 7 used to predict the ideal configuration
for four unseen input sets. Inputs used in the training set are the light-grey
points, whereas inputs in the test set are dark-grey.

4

B. Training Phase

Users of JINN-C specify which methods must be optimized.
For each one of these methods, JINN-C singles out its inputs,
and instrument them to produce regression data. The following
are considered inputs: the formal parameters of methods, the
global variables used within these methods and the number of
active threads. Regression data consists of the size of these
inputs. The technique used to obtain these sizes depends on
the type of input. Currently, we use the following heuristics:
Primitive types: the size of a primitive type is its own value.

We do not allow annotations on booleans and characters,
as their values do not have a direct conversion to a real
(e.g., a double) number.

Wrappers: types such as Integer or Double, which work as
wrappers of primitive types, give us a size through their
value() methods, e.g., intValue() for Integer, double-
Value() for Double, etc.

Arrays and Strings: we derive the size of such types via the
length property.

Collections: we derive the size of collections by invoking their
size() method.

Other classes: we search within the declaration of the type,
or in any of its super-types, for a method called size();
otherwise, we search for a property called length. If such
names are not to be found, an error ensues.

Example 7: Figure 9 shows two instrumented programs.
Profiling code is inserted in the programs’ intermediate rep-
resentation; source code is used only for readability. Instru-
mentation is performed by a singleton object Instrumenter,
which stores “bundles” of data. Each bundle contains an
identifier, a hardware configuration, the independent variables
of the adaptive method, and the runtime for those variables.
Identifiers map methods to bundles. Multiple invocations of
the same method will produce one bundle per call.

void visit(final int NT) throws ... {
 Bundle b = new Bundle(0xFF4AC08D);
 b.addConfig(getCurrentConfig());
 b.addInt(visited.length); // array
 b.addInt(graph.size()); // class has size()
 b.addInt(NT); // primitive type
 Instrumenter.save(b);
 b.startTime();
 Vector<Visitor> bots = new Vector<Visitor>(NT);
 for (int i = 0; i < NT; i++) {
 bots.add(new Visitor(graph, i));
 }
 for (Visitor v : bots) { v.start(); }
 for (Visitor v : bots) { v.join(); }
 b.stopTime();
}

void count(final int START, final int END) {
 Bundle b = new Bundle(0xFF4AC08E);
 b.addConfig(getCurrentConfig());
 b.addInt(START); // primitive type
 b.addInt(END); // primitive type
 b.addInt(forkJoinPool.getActiveThreadCount());
 Instrumenter.save(b);
 b.startTime();
 for (int j = START; j <= END; j++) {
 SingleCounter aux = counters[elements[j]];
 synchronized (aux) {
 aux.value += 1;
 }
 }
 b.stopTime();
}

Fig. 9. Instrumented version of two programs. Grey code is from the original
method. (Left) Breadth-first search. (Right) Sorting application.

1) Profiling, Logging and Training: Currently, we use a
profiling infrastructure written as a combination of Java code
and bash scripts. The part implemented in Java consists of
a service that runs the program that we want to optimize
in a controlled environment. This driver has two responsi-
bilities: warming up the target program and changing hard-
ware configurations before every profiling experiment. JINN-

C receives an annotated program P , a set of different inputs
I = {ι1, ι2, . . . , ιm} of P , and a set of acceptable hardware
configurations H = {h1, h2, . . . , hn}. It will test the program
a pre-determined number of times for each pair (h, ι), h ∈
H, ι ∈ I . The best configuration for each input ι is chosen
among the most frequent winner. The objective function that
determines the winner is configurable. Currently, we consider
time, energy consumption and energy-delay product. In case
of ties, we choose the configuration with the least resources.
Resources are ordered according to the number of big cores,
the number of LITTLE cores, the frequency of the big cores
and the frequency of the LITTLE cores, in this sequence.

C. Code Generation

The product of training is a matrix Θ of floating-point
numbers. The matrix Θ is hardcoded into the production code
that we want to optimize. Such step happens in the phase
labeled “add prediction instrumentation” in Figure 4. The
instrumentation that we add into a function f of interest
evaluates the expression σ(AiΘ), where Ai is a 1× n vector.
The size of Ai is one plus the number of inputs of the
target function. The expression σ(AiΘ) yields a 1× k vector
of probabilities, whose elements add up to 1.0. The largest
element within σ(AiΘ) determines the next configuration that
will be used during the current invocation of f .

IV. EVALUATION

This section demonstrates the effectiveness of our technique
when optimizing bytecodes that run on top of the Java Virtual
Machine. We compare JINN-C with two approaches: Sreelatha
et al [11]’s CHOAMP, and ARM’s GTS [23]. GTS, short
for Global Task Scheduling, is Linux’ heterogeneity-aware
scheduler in our big.LITTLE system.

A. Experimental Setup

The Hardware. Experiments were performed in an Odroid
Xu4 development board. This device is powered by a Samsung
Exynos 5422 SoC with four ARM Cortex A15 cores, running
at up to 2.0GHz, and four Cortex A7 cores running at up
to 1.5GHz. The board features 2GB of LPDDR3 RAM. We
use the energy measurement framework proposed by Bessa et
al [17]. Power is measured by a National Instruments DAQ
USB 6009 device, at a rate of 12,000 samples per second.
The Software Stack. We use Oracle’s OpenJDK/JRE 11 LTS
and Soot 3.2.0 to analyze, instrument and run bytecodes.
No modifications have been made in the Java Virtual Ma-
chine. Code transformations performed by either JINN-C or
CHOAMP happen at the bytecode level, and are carried out
via Soot. To mitigate the effect of JIT compilation in the
execution time of benchmarks, each application has a warm-up
stage before actual execution (see Figure 10). We have used
Python 3.4 and Scikit Learn [24] to implement regression. The
Operating System in the Odroid XU4 used in our experiments
is the GNU/Linux Ubuntu 18.04 LTS with kernel 4.17.
The Benchmark Suite. This paper uses the 18 benchmarks
shown in Figure 10. Eight of them were taken from Acar et

5

Source Benchmark TTime Lang. LoC W

[14] bfs 42m33s J 353 4
[14] radixSort 20m51s J 501 4
[14] sampleSort 26m17s J 414 3
[14] suffixArray 30m12s J 316 3
[14] removeDuplicates 30m31s J 174 4
[14] convexHull 56m30s J 499 5
[14] nearestNeighbors 30m29s J 715 3
[14] spanningForest 21m40s J 410 4
[16] als 80m12s S/J 97 1
[16] philosophers 21m15s S/J 146 1
[16] futureGenetic 26m8s S/J 115 1
[16] finagleHTTP 225m10s S/J 119 1
[16] chiSquare 27m15s S/J 101 1
[16] decTree 64m22s S/J 129 1

JINN-C collinearPoints 32m1 J 565 3
JINN-C hashSync 94m7s J 73 3
JINN-C insertAndAdd 47m30s J 130 4
JINN-C randomNumComp 26m7s J 89 6

Fig. 10. Benchmarks used for evaluating JINN-C. Column TTime shows
time to train each benchmark. To train JINN-C, we follow the methodology
described in Section III-B1. JINN-C’s training time depends on the target
application’s run time, and on the number of available inputs. Lang. contains
the source language of benchmarks, where J stands for Java and S stands for
Scala. The W column shows the number of warm-up executions performed
by each application. COLLINEARPOINTS finds three points on the same line;
HASHSYNC inserts in a concurrent table; RANDOMNUMCOMP has several
long sequences of branches that are hard to predict; and INSERTANDADD
implements parallel operations on a Database.

al [15], who had selected nine programs from Problem Based
Benchmark Suite (PBBS) [14] to evaluate concurrency models.
The version of PBBS used by Acar et al [15] was implemented
in C/C++, so we had to reimplement all the benchmarks in
Java. We used six programs from the Renaissance benchmark
collection, which was recently released by Prokopec et al [16].
Our criterion when picking up the six programs was simplicity:
we selected benchmarks that were easy to modify. We have
opted for Scala programs to demonstrate that JINN-C can deal
well with languages other than Java.

In addition to PBBS and Renaissance, JINN-C is dis-
tributed with four extra benchmarks. These programs are
typical parallel algorithms. Three of them were taken from
public repositories; the fourth, HASHSYNC, was adapted from
Butcher et al [25]’s book. Figure 10 presents an overview of
the benchmarks, as well as basic characteristics of their code.
The Available Inputs. We have augmented every one of our
benchmarks with 14 inputs. We have separated 10 of these
inputs for training. When evaluating the trained model, for
each application we used four new, unseen, and randomly
chosen inputs. Sections IV-B and IV-C further discuss the
impact of different inputs in the execution time and energy
consumption of the applications.
Choice of Regression Target. We optimize one method per
benchmark. This method is the routine invoked by the bench-
mark’s driver. This approach is equivalent to doing regression
on inputs of the whole program.
Choice of Hardware Configurations. For the sake of repro-
ducibility, when training JINN-C and CHOAMP, we follow the
methodology proposed by Sreelatha et al [11]. We consider a

bfs

radixSort

sam
pleSort

suffi
xArray

rem
oveDups.

convexHull

nearestNeighs.

spanningForest

als

philosophers

futureG
enetic

finableH
TTP

chiSquare

decTree

collinearPoints

hashSync

insertAndAdd

rdN
um

Com
p

in1

in2

in3

in4

JINN CHOMP GTS Inconclusive

Fig. 11. Summary of runtime comparisons. Boxes indicate best approaches
per test input with confidence level of 95%.

universe of six configurations: 4b4L (4 big and 4 LITTLE
cores), 4b0L, 0b4L, 2b2L, 2b0L and 0b2L. LITTLE cores run
at maximum frequency: 1.5GHz. Big cores are statically set to
run at either 1.6GHz or 1.8GHz (instead of max 2.0GHz) due
to thermal issues [26] found in our board. For more details,
see our technical report [27]. Therefore, the two adaptive ap-
proaches that we use might choose from a pool of ten different
hardware configurations: 4b4L at either 1.6 or 1.8GHz (plus
LITTLE cores at 1.5GHz), 0b4L at 1.5GHz, 4b0L at either 1.6
or 1.8GHz, etc. The GTS algorithm, however, is allowed to
choose among any possible hardware configuration involving
big and LITTLE cores, and the different frequency levels
available in the hardware.

B. Results of Performance

Figure 11 summarizes the comparison of the three dif-
ferent schedulers, when the objective function that JINN-
C and CHOAMP minimize is the execution time of target
applications. Figure 12 shows four selected samples used to
build Figure 11. We have tested each benchmark with four
input sets, adopting a significance level α = 0.05; i.e., a
confidence level of 95%. So, if the results reported by, for
instance, JINN-C and CHOAMP cannot be distinguished with
a confidence of more than 95%, then we consider them as
originating from the same population. Thus, we use Student’s
Test to measure the p-value of two populations, and consider
significant results with a p-value less than 0.05.

We notice that in 26 cases, out of 72 combinations of
[benchmarks × inputs], JINN-C achieved better results when
compared to the other techniques. In other 42 cases, JINN-
C was at least as fast as GTS or CHOAMP. CHOAMP,
in turn, accounted for 3 best results, and GTS for only
one, in HASHSYNC’s IN4. All the winning configurations,
regardless of the technique, featured the frequency of 1.8GHz
whenever at least one big core was present. The most recurring
configurations were 4b4L (16x for CHOAMP and 37x for
JINN-C), 0b4L (2x/11x), 4b0L (17x for JINN-C only), 2b0L
(4x for JINN-C only), and 0b2L (2x for JINN-C only). JINN-
C performed rather poorly in COLLINEARPOINTS. Such bad
results were due to the fact that we have not chosen good
inputs for training. Indeed, the 10 training inputs chosen
when optimizing COLLINEARPOINTS find in 4B4L their best

6

●

●

0

1

2

3

4

5

In1 In2 In3 In4

hashSync 4b4L
4b0L 4b4L 4b0L 4b4L

G

J

XX

●

● ●

●

20

40

60

80

In1 In2 In3 In4

futureGenetic 4b4L

4b0L 0b4L 0b4L 0b4L

J

J J J

●

●

●

●

10

15

In1 In2 In3 In4

chiSquare 4b4L
2b0L 4b0L 2b0L 4b0L

J

J

J J

●
●

●

●

●

●

●

2

3

4

5

In1 In2 In3 In4

collinearPoints 4b4L
4b4L

CX

4b4L 4b4L 4b4L

XX

Se
co

nd
s

Se
co

nd
s

Fig. 12. Execution time of selected benchmarks (full data is available in
technical report [27]). Y -axis shows time in seconds. X-axis shows different
experiments; each experiment uses different inputs. Boxplots are ordered by
JINN-C, CHOAMP and GTS. White boxes with letters identify the technique
which achieved the best result for a combination of benchmark and input. J
stands for JINN-C, C for CHOAMP and G for GTS; X means that the winning
systems have produced results statistically similar (p-value greater than 0.05).
Above each input set, we show the configuration that JINN-C chose for that
input. The grey box, at the right of the name of each benchmark, is the
configuration that CHOAMP chooses for that benchmark.

configuration; however, coincidentally, three of the test inputs
ask for 4B0L. It suffices to switch one of the test and training
inputs to put JINN-C on pair with the other schedulers.

This experiment shows that configurations impact in non-
trivial ways the behavior of applications. For instance, in
CHISQUARE’s first input (WORKERS = 2, SIZE = 1023464),
JINN-C prediction of the configuration 4b0L led to a mean run
time of 8.18 seconds, while CHOAMP decision led to 8.47 and
GTS to 9.00, with all values for the p-value less than 0.008.
For its second input (WORKERS = 4, SIZE = 2250467), we
observed JINN-C prediction (2b0L) leading to mean run time
of 17.00 seconds, CHOAMP to 18,70 and GTS to 17,76.

C. Results of Energy Savings

Figure 13 compares CHOAMP, GTS and JINN-C regarding
energy consumption. Selected samples appear in Figure 14.
The clock speed of 1.6GHz was the most common among
all the schedulers, except for one input set of RADIXSORT,
when CHOAMP chose to use 1.8GHz. GTS can choose any
possible frequency levels from 200MHz to 1.8GHz in the big
cluster and from 200MHz to 1.5GHz in the little one. This
flexibility may lead to performance degradation because GTS
increases frequency gradually, even in computation-intensive
programs. Even with several warm-up rounds, GTS might
take an excessively long time to achieve maximum frequency
levels for some applications. Thus, JINN-C outperforms GTS
mostly due to its ability to choose high-performance hardware
configurations, such as 4b4L at 1.6GHz, immediately. GTS,
in turn, needs a warm-up period to arrive at them.

Figure 13 shows that JINN-C achieved the best results in
20 experiments (out of 72); GTS won in 2, and CHOAMP in
6. In 44 experiments there was no clear winner –this difficulty
to pinpoint a best technique is due to the fact that we measure

bfs

radixSort

sam
pleSort

suffi
xArray

rem
oveDups.

convexHull

nearestNeighs.

spanningForest

als

philosophers

futureG
enetic

finableH
TTP

chiSquare

decTree

collinearPoints

hashSync

insertAndAdd

rdN
um

Com
p

in1

in2

in3

in4

JINN CHOMP GTS Inconclusive

Fig. 13. Summary of energy comparisons (boxes indicate best approaches).

●

●

●

●

●

●● ●

●

●
●
●

●

0

10

20

30

40

In1 In2 In3 In4

hashSync 0b4L
4b4L 0b4L 0b4L 4b4L

C

C

C X

●

●●

●

●

●

●

●

●

75

100

125

150

In1 In2 In3 In4

chi−square 0b4L
4b0L 2b0L 4b0L 2b0L

X

X

X X

●

●●

●
●

●
●

●●0

100

200

300

400

500

In1 In2 In3 In4

future−genetic 0b4L

4b0L 0b4L 0b4L 0b4L

C X X

X

●

●

●

●

●
●

●●

●●

●
●

●

20

30

40

In1 In2 In3 In4

collinearPoints 0b4L

0b4L

X

0b4L 4b4L 0b4L

X

XX

Jo
ul

es
Jo

ul
es

Fig. 14. Energy consumed by the benchmarks in Figure 10 (full data is
available in our technical report [27]). Y -axis shows energy in Joules. X-
axis shows different experiments. We follow the notation seen in Figure 12.

energy for the entire board. Therefore, peripherals like the
fan and the memory bus increase the variance of results.
CHOAMP has chosen the 0b4L configuration at 1.6GHz for
almost all the samples in this evaluation. This behavior is due
to some features, such as branching and memory operations,
dominating the others in most of the functions that constitute
a benchmark. We believe that it is possible to improve this
behavior by scaling the relative importance of the features;
however, this optimization is out of the scope of this work.

V. RELATED WORK

Our work explores a type of machine learning technique
(multivariate linear regression) to solve an instance of program
scheduling in heterogeneous architectures. For an overview of
the impact of machine learning onto compiler construction,
we recommend surveys from Wang et al [28] and Ashouri et
al [29]. For an overview of input-aware compilation techniques
in general, we refer the reader to the Related Work section of
our technical report [27]. The rest of this section focuses on
scheduling for heterogeneous multicore systems.

Much attention has been dedicated to the problem of finding
good placements of computation on heterogeneous multicore
systems, as Mittal et al [30] has summarized in a 2016 survey.
However, we emphasize that a large part of this literature

7

concerns the design of scheduling heuristics implemented at
the level of the hardware or the operating system [30]–[33].

At the compiler level, Sreelatha et al [11]’s CHOAMP, and
Krishna et al [34]’s SIAM provide solutions to scheduling in
big.LITTLE architectures. We have compared JINN-C with
CHOAMP extensively in this paper. SIAM, in turn, is a
system that targets specifically graph algorithms parallelized
via OpenMP. It consists of a prediction model that, given a
particular shape of a graph, determines the best data-structure
format and hardware configuration for that shape.

VI. CONCLUSION

This paper presented a code generation technique that
matches programs to hardware configurations in heterogeneous
multicore systems. The key insight of this work was the
observation that the values of a function’s inputs often provide
enough information to predict the best hardware configuration
that suits said function. From this observation, we showed
how to build predictors based on linear regression on function
inputs. Our technique is able to outperform, be it in energy
consumption, be it in execution time, the default Linux sched-
uler (the Global Task Scheduler), and CHOAMP, a recently
released tool that predicts the best hardware configuration to
a parallel program based on its syntax.

REFERENCES

[1] A.-C. Orgerie, M. D. d. Assunção, and L. Lefevre, “A survey on
techniques for improving the energy efficiency of large-scale distributed
systems,” ACM Comput. Surv., vol. 46, no. 4, pp. 47:1–47:31, 2014.
[Online]. Available: http://doi.acm.org/10.1145/2532637

[2] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi,
S. Dwarkadas, and M. L. Scott, “Energy-efficient processor design using
multiple clock domains with dynamic voltage and frequency scaling,”
in HPCA. Washington, DC, USA: IEEE, 2002, pp. 29–.

[3] M. Hähnel and H. Härtig, “Heterogeneity by the numbers: A study of
the odroid xu+e big. little platform,” in HotPower. Berkeley, CA, USA:
USENIX Association, 2014, pp. 3–3.

[4] P. Greenhalgh, “Big.LITTLE processing with ARM cortex-A15 &
cortex-A7,” San Francisco, CA, US, pp. 1–8, 2011. [Online]. Available:
https://www.eetimes.com/document.asp?doc id=1279167

[5] M. W. Azhar, M. Pericàs, and P. Stenström, “SaC: Exploiting execution-
time slack to save energy in heterogeneous multicore systems,” in ICPP.
New York, NY, USA: ACM, 2019, pp. 26:1–26:12.

[6] A. Jundt, A. Cauble-Chantrenne, A. Tiwari, J. Peraza, M. A. Laurenzano,
and L. Carrington, “Compute bottlenecks on the new 64-bit arm,” in
E2SC. New York, NY, USA: ACM, 2015, pp. 6:1–6:7.

[7] O. Khan and S. Kundu, “A self-adaptive scheduler for asymmetric multi-
cores,” in GLSVLSI. New York, NY, USA: ACM, 2010, p. 397–400.

[8] M. Nejat, M. Pericàs, and P. Stenström, “QoS-driven coordinated man-
agement of resources to save energy in multi-core systems,” in IPDPS.
IEEE, 2019, pp. 303–313.

[9] R. Nishtala, P. M. Carpenter, V. Petrucci, and X. Martorell, “Hipster:
Hybrid task manager for latency-critical cloud workloads,” in HPCA.
New York, NY, USA: IEEE, 2017, pp. 409–420.

[10] V. Petrucci, O. Loques, D. Mossé, R. Melhem, N. A. Gazala, and S. Gob-
riel, “Energy-efficient thread assignment optimization for heterogeneous
multicore systems,” ACM Trans. Embed. Comput. Syst., vol. 14, no. 1,
pp. 15:1–15:26, 2015.

[11] J. K. V. Sreelatha, S. Balachandran, and R. Nasre, “CHOAMP: cost
based hardware optimization for asymmetric multicore processors,”
Trans. Multi-Scale Computing Systems, vol. 4, no. 2, pp. 163–176, 2018.

[12] D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova, N. Perez,
Z. F. Huang, S. Blagodurov, and V. Kumar, “HASS: A scheduler for
heterogeneous multicore systems,” SIGOPS Oper. Syst. Rev., vol. 43,
no. 2, pp. 66–75, 2009.

[13] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sun-
daresan, “Soot - a java bytecode optimization framework,” in CASCON.
Indianapolis, US: IBM Press, 1999, pp. 13–.

[14] J. Shun, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, A. Kyrola, H. V.
Simhadri, and K. Tangwongsan, “Brief announcement: The problem
based benchmark suite,” in SPAA. New York, NY, USA: ACM, 2012,
pp. 68–70.

[15] U. A. Acar, A. Charguéraud, A. Guatto, M. Rainey, and F. Sieczkowski,
“Heartbeat scheduling: Provable efficiency for nested parallelism,” in
PLDI. New York, NY, USA: ACM, 2018, pp. 769–782.

[16] A. Prokopec, A. Rosà, D. Leopoldseder, G. Duboscq, P. Tůma, M. Stu-
dener, L. Bulej, Y. Zheng, A. Villazón, D. Simon, T. Würthinger, and
W. Binder, “Renaissance: Benchmarking suite for parallel applications
on the jvm,” in PLDI. New York, NY, USA: ACM, 2019, pp. 31–47.

[17] T. Bessa, G. Gull, P. Q. ao, M. Frank, J. Nacif, and F. M. Q. ao Pereira,
“JetsonLEAP: A framework to measure power on a heterogeneous
system-on-a-chip device,” Science of Computer Programming, vol. 33,
no. 1, pp. 1–37, 2017.

[18] P. Nie and Z. Duan, “Efficient and scalable scheduling for performance
heterogeneous multicore systems,” J. Parallel Distrib. Comput., vol. 72,
no. 3, pp. 353–361, 2012.

[19] J. M. Kim, S. K. Seo, and S. W. Chung, “Looking into heterogeneity:
when simple is faster,” 2014, https://news.ycombinator.com/item?id=
8714613.

[20] J. C. R. da Silva, F. M. Q. Pereira, M. Frank, and A. Gamatié, “A
compiler-centric infra-structure for whole-board energy measurement on
heterogeneous android systems,” in ReCoSoC. Washington, DC, USA:
IEEE, 2018, pp. 1–8.

[21] F. David, G. Thomas, J. Lawall, and G. Muller, “Continuously measuring
critical section pressure with the free-lunch profiler,” SIGPLAN Not.,
vol. 49, no. 10, pp. 291–307, 2014.

[22] M. A. Cauchy, “Méthode générale pour la résolution des systèmes
d’Équations simultanées,” Comptes Rendus Hebd. Séances Acad. Sci.,
vol. 25, no. 10, pp. 536–538, 1847.

[23] B. Jeff, “big.LITTLE technology moves towards fully heterogeneous
global task scheduling,” ARM, Tech. Rep., 2013, white paper.

[24] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[25] P. Butcher, Seven Concurrency Models in Seven Weeks, 1st ed. Raleigh,
NC, US: Pragmatic Bookshelf, 2014.

[26] V. J. Reddi, S. Kanev, W. Kim, S. Campanoni, M. D. Smith, G.-Y.
Wei, and D. Brooks, “Voltage smoothing: Characterizing and mitigat-
ing voltage noise in production processors via software-guided thread
scheduling,” in MICRO. USA: IEEE, 2010, p. 77–88.

[27] J. C. Ribeiro da Silva, L. Leão, V. Petrucci, A. Gamatié, and
F. M. Quintao Pereira, “Scheduling in Heterogeneous Architectures
via Multivariate Linear Regression on Function Inputs,” Sep. 2019,
working paper or preprint. [Online]. Available: https://hal-lirmm.ccsd.
cnrs.fr/lirmm-02281112

[28] Z. Wang and M. F. P. O’Boyle, “Machine learning in compiler opti-
mization,” Proc. IEEE, vol. 106, no. 11, pp. 1879–1901, 2018.

[29] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano, “A
survey on compiler autotuning using machine learning,” Comput. Surv.,
vol. 51, no. 5, pp. 96:1–96:42, 2018.

[30] S. Mittal, “A survey of techniques for architecting and managing
asymmetric multicore processors,” Comput. Surv., vol. 48, no. 3, pp.
45:1–45:38, 2016.

[31] H. Cai, Q. Cao, F. Sheng, M. Zhang, C. Qi, J. Yao, and C. Xie, “Mont-
golfier: Latency-aware power management system for heterogeneous
servers,” in IPCCC. Washington, DC, USA: IEEE, 2016, pp. 1–8.

[32] A. Garcia-Garcia, J. C. Saez, and M. Prieto, “Contention-aware fair
scheduling for asymmetric single-isa multicore systems,” IEEE Trans.
Computers, vol. 67, no. 12, pp. 1703–1719, 2018.

[33] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance impact
estimation (PIE),” in ISCA. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 213–224.

[34] J. Krishna and R. Nasre, “Optimizing graph algorithms in asymmetric
multicore processors,” Trans. on CAD of Integrated Circuits and
Systems, vol. 37, no. 11, pp. 2673–2684, 2018. [Online]. Available:
https://doi.org/10.1109/TCAD.2018.2858366

8

http://doi.acm.org/10.1145/2532637
https://www.eetimes.com/document.asp?doc_id=1279167
https://news.ycombinator.com/item?id=8714613
https://news.ycombinator.com/item?id=8714613
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02281112
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02281112
https://doi.org/10.1109/TCAD.2018.2858366

	Introduction
	Overview
	Program Inputs and Hardware Configuration
	Accounting for Energy Efficiency

	Solution
	Multiple Linear Regression
	Training Phase
	Profiling, Logging and Training

	Code Generation

	Evaluation
	Experimental Setup
	Results of Performance
	Results of Energy Savings

	Related Work
	Conclusion
	References

