A Look Into Physical Modeling and Design for Carbon Nanotube based Circuits
Aida Todri-Sanial

To cite this version:

HAL Id: lirmm-03025221
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03025221
Submitted on 26 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Title: A Look Into Physical Modeling and Design for Carbon Nanotube based Circuits

Speaker: Aida Todri-Sanial
Director of Research, CNRS
Microelectronics Department
LIRMM, University of Montpellier, France

Abstract: This talk aims to give an in-depth look into using carbon nanotubes as back-end-of-line interconnects from process, modeling to physical design. The talk is organized into two parts. The first part provides an in-depth overview of the process and growth of carbon nanotubes and their resistance measurements. In the second part, the talk is dedicated to investigating carbon nanotubes for digital logic cells such as interconnects for signal, power and ground interconnect material. Due to the low-temperature growth, carbon nanotubes inherit a lot of defects that worsen its electrical resistance and ballistics transport. We investigate the doping of CNTs and show both experimental and simulations results of doped CNTs and their improved resistance. We compare the performance, power and area metrics of digital logics cells with conventional copper and carbon nanotube interconnects (undoped and doped) to highlight the advantages and limitations of carbon nanotube BEOL interconnects. Extended references highlighted in this work are listed below.

Video: https://www.youtube.com/watch?v=vZ6fwIMhUAg

References:
Interconnect Technology Conference (IITC), Santa Clara, CA, USA, 2018, pp. 16-18. doi: 10.1109/IITC.2018.8430411.

