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Abstract

Embedded processors have been used in a diversity of applications, such as consumer electronics, home appliances,
and automation systems. Another area that embedded processors can be adopted is space systems, which demand
fault-tolerant components to deal with the environmental hostility. This work presents a low-cost fault-tolerant implemen-
tation of the RISC-V architecture, an emerging open industry standard for the building of embedded processors. The
proposed implementation employs physical and information redundancy to reduce error propagation, with competitive
silicon and power overheads when comparing with other RISC-V implementations.

Index Terms

Spatial Systems, RISC-V, Digital Systems, Fault Tolerance

I. INTRODUCTION

Space systems operate in a harsh environment and are exposed to space radiation and extreme temperatures,
as well as vacuum and lack of gravity. This hostility of the space environment can lead to transient, permanent, or
intermittent faults that can affect the functioning of computational systems [1]. Single and multiple bit upsets, per
example, may lead to catastrophic failures in critical systems. Therefore, these systems must be designed to deal
with the characteristics of the space environment using fault tolerance techniques.

In order to improve the reliability of space systems, several techniques can be used to protect systems against
radiation effects. The utilization of redundancies [2] is crucial to reliable systems and has three classification types.
Spatial redundancy is considered the replication of the same module seeking to compare the results. Temporal
redundancy is the reuse of the same module repeatedly in order to compare the results and get the right result.
Information redundancy is the addition of redundant bits to data to detect and even correct when it has been affected
by an error.

There are several processors designed for use in the space environment, notably synthesizable soft-cores. The
designs of these processors apply fault tolerance techniques to protect their circuits. LEON4-FT [3] employs error-
correcting code (ECC) to protect its RAM blocks against SEU (single-event upset) transient faults. CFTP (configurable
fault-tolerant processor) [4] uses triple-modular redundancy (TMR) in the entire processor core. MIPS Crypto [5]
applies TMR and matrix encoding techniques to protect its memory buffer units. In [6], the authors employed Hamming
code to protect registers and TMR for providing fault tolerance to the messaging interface. These examples illustrate
how fault tolerance techniques have been employed in SPARC- and MIPS-based processors.

One emerging processor architecture that is becoming an industry standard is RISC-V [7]. Its design is similar to
MIPS and is an optimized instruction-set architecture (ISA) that aims at simplifying the processor implementation.
Although there are already several RISC-V soft-cores available [8]–[17], there are just a few RISC-V fault tolerant
processors: the RISC-V-based SoC (system on chip) developed by [18] contains a pipelined RV32I core and protects
the internal core architecture using Hamming ECC at the memory elements and NMR (N-modular redundancy) at
combinational elements that cannot be protected by ECC. The work from [19] adapted the Taiga processor [15] to
improve its reliability, for that they used the BL-TMR [20] software, which identifies the most critical elements from
the netlist and applies TMR with a voter as needed.

This work presents an implementation with the combination of spatial and information redundancies to improve
processor reliability. Our RISC-V soft-core implementation employs Hamming code to protect the memory elements
and TMR to protect the arithmetic and logic unit (ALU) and the control unit. We are focusing on SEU and SET (single-
event transient) single-event effects (SEE) at the processor core, disregarding the instruction and data memories.
The dose-effect of radiation is not treated in this work.

The remainder of this paper is organized as follows. Section II presents the primary features of this ISA. Section III
describes the proposed fault-tolerant implementation of the RISC-V processor. Section IV describes the materials



and methods employed for this work. Section V discusses the results obtained and Section VI presents the final
remarks.

II. RISC-V

RISC-V is an open ISA developed by Waterman et al. [7]. Currently, the architecture specification is still under
development [21], but its 32-bit integer instruction set (RV32I) is already in its final version.

A. Features

This architecture has three base instruction sets: (i) RV32I, a set of 47 instructions complete enough to satisfy
the basic requirements of modern operating systems; (ii) RV32E resembles the previous set, but is designed to use
only 15 registers; and (iii) RV64I, similar to the RV32I set, differs only in the width of integer registers and program
counter (PC) [22].

RISC-V architecture is designed to simplify processor implementation. Instruction coding is extremely regular
because the memory model is straightforward, and it has no complex instructions for accessing data memory.

A feature of RISC-V implementations is the small footprint of the minimal cores, which are much smaller compared
to similar ones, such as Advanced RISC Machine (ARM) and x86. However, the difference is not significant in larger
capacities [23].

B. RISC-V distributions

There are several RISC-V processors available for use. Examples include Ibex [8] and PicoRV32 [9] processors,
which are implementations focused on low utilization of logical resources, and Ariane [10] processors, Berkeley Out-
of-Order Machine (BOOM) [11], and RI5CY [12], which are more complete implementations of RISC-V, targeting
devices with higher computing power.

III. FAULT-TOLERANT RISC-V

Our proposal of processor is based on the RISC-V unprivileged specification [24]. We implemented the RV32I
instruction set, except the synchronization instructions and environment calls. We focus our work on using the least
amount of resources possible. For this reason, our processor uses a single-cycle organization (or micro-architecture)
[22], which allows us to reduce the required registers. Thus, the developed processor has five primary units: (i)
instruction fetch; (ii) instruction decode; (iii) execution; (iv) memory access; and (v) write-back.

A. Hardware Design

The instruction fetch unit has in its structure the PC register, a 32-bit adder, and the logic circuits for the conditional
and unconditional branches. The adder increments the program counter in case of a sequential execution or adds
the offset when a conditional branch is executed.

The control unit integrates the instruction decode unit and is responsible for decoding the instruction and defining
the operation to be performed by the datapath. We implemented both the main and ALU control units as a single
component, simplifying the subsequent implementation of fault tolerance techniques.

The execution unit performs reading and writing from/into the register file, as well as the arithmetic operations.
The arithmetic and logical operations executed by the ALU are: add, shift (left/right logical and right arithmetic), set
on less than, AND, OR, and XOR.

The memory access unit performs read and write operations from/into data memory. The RISC-V specification
describes that accesses with 8-, 16-, and 32-bit data word widths can be performed, and all readings resulting in
32-bit width data. According to the instruction executed, the data signal can be extended or not.

Writing into the register file is done by the write-back unit. This unit selects the value to be written to the specified
register, which may be the result of the ALU, a variable read from the data memory, or an immediate operand of the
instruction.

B. Fault Tolerance Application

We have implemented the fault tolerance techniques at the organization level, allowing the programmer to use the
same ISA without worrying about how the processor is implemented. Our implementation focused only on SEE in
the processor organization and did not consider clock-tree and RAM issues.

The ALU and the control unit were protected using TMR. Thus, these blocks have been triplicated, and each
of their outputs goes through a bitwise simple majority voting circuit. Fig. 1 presents a diagram block with three
instances of the ALU having their outputs analyzed through the voter. The voter is susceptible to faults since it is
not hardened.



Fig. 1. TMR architecture in ALU.

For Hamming implementation, we increased the width of all registers by six bits and added the encoder and
decoder. The encoder block uses XOR operators to calculate the parity bits of the data to be written into the register
and concatenates them to the encoded data. The decoder block is responsible for verifying the parity of the encoded
data, and when it detects an error, it fixes it by inverting its value.

Figs. 2 and 3 present the Hamming implementations in the instruction fetch unit and register file, respectively. In
the instruction fetch unit, we protected the PC register with an encoder and a decoder. In the register file, we placed
an encoder at the write port and a decoder at each read port.

Fig. 2. Instruction Fetch unit using Hamming.

Fig. 3. Register file using Hamming.



IV. MATERIALS AND METHODS

Implementation was performed using VHDL and a platform-independent approach; no vendor-specific Intellectual
Property (IP) blocks were used. This approach allows a designer to reuse the processor on devices from different
manufacturers. We first implemented a non-hardened RISC-V soft-core to be used as a baseline to evaluate the
resource overhead and as a golden model to evaluate the improved resilience obtained through the fault tolerance
techniques.

To collect synthesis data, we used the Xilinx Vivado Design Suite 2019.1 and the Zynq ZC7020 SoC device. The
metrics used include the number of LUTs (Look-up Tables) and flip-flops (FFs), the maximum operating frequency
(Fmax), and the dynamic power dissipation (Pdyn) with all the processors running at 50 MHz.

We used the Mentor Graphics ModelSim simulator to verify the developed processor and evaluate its resiliency. To
simulate a fault injection, we employed the scripts proposed in [25]. The codes used in the execution of all algorithms
were compiled with a GNU Compiler Collection (GCC) adapted for the RISC-V processor [26].

The efficiency of the fault tolerance techniques implemented was assessed by injecting SEU and SET faults. We
ran each experiment 100 times, and, in each of them, we injected a predefined number of faults (1 or 10) into the
non-hardened and hardened versions. The non-hardened version consists of the processor without Hamming and
TMR, while the hardened version applies Hamming to the PC register and the register file and TMR in the ALU and
control unit.

The script was run on the different configurations, applying fault tolerance to component combinations, and then
verifying the number of errors propagated in each configuration. This approach allowed obtaining an analysis of the
most critical components for processor operation.

The benchmark algorithms, which were used for verification and testing of the processor, are the following ones: (i)
vector addition, an algorithm that adds two 300-element one-dimension arrays and stores the result in a third array;
(ii) CCSDS-123, a hyperspectral image compression algorithm based on the Consultative Committee for Space
Data Systems (CCSDS) standard and similar to that implemented by [27]; (iii) the Coremark benchmark, which
tests several processor components and is considered efficient for fault tolerance testing [28].

SET events affect combinational logic. Therefore, in order to simulate an error caused by a SET event, the external
and internal signals from the entire processor core were filtered out. The injection of this fault consists in inverting
and freezing the signal of a random bit at a random moment.

SEU events affects data stored in registers. So each fault injection for this effect was made by inverting one bit of
the data stored in a random register between PC and the 31 registers of the register file.

V. EXPERIMENTAL RESULTS

A. Synthesis results
Using fault tolerance techniques increases the number of logical resources used by the processor. Table I compares

four different configurations. It is worth noting that in the configuration applying only TMR to the ALU and control
unit, the number of LUTs is almost 1.5 times higher than in the non-hardened processor. At the same time, the
use of FFs remains the same, given these circuits are purely combinational. In the configuration in which only the
Hamming technique is applied, the number of FFs increases due to the addition of six parity bits to each one of the
32 processor registers, and the extra LUTs are due to the encoding and decoding blocks.

TABLE I
SYNTHESIS RESULTS

Configuration LUTs FFs Fmax (MHz) Pdyn (mW)

Non-hardened 1 613 1 024 74.65 146
TMR 2 387 1 024 66.50 151
Hamming 1 854 1 216 54.77 162
TMR and Hamming 2 748 1 216 49.99 171

The maximum operating frequency decreases as additional circuits increase the critical path. In the non-hardened
configuration, the processor can operate at 74.65 MHz. When applying TMR, there is a drop of approximately 10%
in the maximum frequency. On the other hand, when applying only the Hamming technique, the degradation is 26%
when compared to the non-hardened processor. Finally, by combining the two techniques, the maximum operating
frequency is about 50 MHz, 33% lower than the non-hardened configuration.

Regarding power dissipation, there is a gradual increase ranging from 3% when applying TMR to 17% when
combining the two techniques. It is worth noting that all processors are operating at 50 MHz, which is the maximum
operating frequency of the slowest configuration.



Table II presents costs in terms of resources related to ours and other low-cost non-hardened RISC-V soft-cores.
For a fairer comparison with these processors, their control and status registers (CSR) were disregarded as our
implementation does not address these registers.

TABLE II
COMPARISON WITH LOW-COST RISC-V PROCESSORS

Soft-core LUTs FFs Pdyn (mW)

Ibex [8] 1 680 1 339 135
PicoRV32 [9] 1 580 1 432 119
mRISCV [16] 2 460 2 014 116
DarkRISCV [17] 2 470 2 262 145
This Work 1 613 1 024 146

Given that the processor proposed in this work was developed with a focus on low resource occupancy, especially
for sequential logic, the number of LUTs is lower than most of the other processors, and the use of FFs is lower
than all the other RISC-V implementations. Regarding all soft-cores operating at 50 MHz, our implementation is the
one that dissipates the most power, however, at a similar level to another processor.

Between the RISC-V fault-tolerant cores, our implementation has the smallest overhead ratio, as shown in Table
III. While the processor cores from [18] and [19] got a LUTs utilization overhead of 5.96x and 5.64x, respectively,
our implementation has an overhead of 1.7x. As for FFs utilization overhead, [18] achieved an overhead of 3.7x,
and [19] achieved an overhead of 3.0x, while our implementation has an FFs overhead of 1.19x. These results
were achieved because our implementation is simplified to reduce the number of elements to be hardened, such as
pipeline registers, which we do not include.

TABLE III
COMPARISON WITH FAULT-TOLERANT RISC-V PROCESSORS

Processor core LUTs overhead ratio FFs overhead ratio Fmax (MHz)

FT impl. F.W. Heida [18] 5.96x 3.70x 36.10
TMR Taiga [19] 5.64x 3.00x 227.20
TMR and Hamming 1.70x 1.19x 49.99

B. Fault Tolerance - Results

Concerning the simulated SEU faults, we consider only the effects in the processor while the effects in the FPGA
configuration memory are not treated. Table IV presents the error propagation rate when injecting SEU faults, which
affect the registers. In the first experiment, one fault was injected at each execution in moments and registers
randomly chosen. The vector addition algorithm propagated 64 errors, the CCSDS compressor propagated 71 errors,
and Coremark propagated 73 errors. By applying fault tolerance techniques, all algorithms performed without error
propagation, as Hamming can correct all single errors. By injecting ten faults at random moments and registers, all
algorithms had an error rate close to 100% in the non-hardened processor. However, in the hardened version of the
processor, Hamming was able to mask 65% of errors when performing vector addition, 97% of errors when running
CCSDS-123, and 94% when executing Coremark.

TABLE IV
ERROR PROPAGATION FOR SEU

1-fault injection 10-fault injection
Algorithm Non-hardened Hardened Non-hardened Hardened

Vector addition 64 0 99 35
CCSDS 123 71 0 98 3
Coremark 73 0 100 6

Table V presents the results of fault injection in combinational logic. When simulating the occurrence of a single
fault, we noticed that the vector addition algorithm obtained an error propagation rate reduced by approximately 60%
when the processor is hardened. When used the CCSDS-123 algorithm, the error rate was reduced by 84%, and
when used the Coremark, the error rate decreased by 78%. When simulating the injection of 10 faults, the execution



of all algorithms obtained a high error propagation rate, even when using the hardened version of the processor.
However, the hardened processor was still able to mask some errors, as the error rate in the algorithms reduced
between 13% and 21% compared to the processor without fault tolerance techniques.

TABLE V
ERROR PROPAGATION FOR SET

1-fault injection 10-fault injection
Algorithm Non-hardened Hardened Non-hardened Hardened

Vector addition 39 16 99 78
CCSDS 123 96 15 100 87
Coremark 72 16 100 87

Among the works that evaluate the efficiency of fault tolerance techniques, the work [6] presents an analysis
of fault coverage, while others do not present experimental results. In [6], the authors obtained an average error
propagation rate improvement of 11.8% when using the processor with fault tolerance techniques. In this work, we
obtained an average error propagation rate improvement of 50.4% when injecting 10 SEU or SET faults. This result
is because the developed processor does not have as many elements susceptible to faults in comparison to the
processor described in [6]. Furthermore, the reliable RISC-V core developed by [19] made a test using a neutrons
beam and reported an improvement in the mean work to failure of 24x. In comparison, our simulations estimate a
16x improvement in error propagation considering the Coremark algorithm and a 10-fault injection.

VI. CONCLUSIONS

In this work, we developed an agile RISC-V based processor with the provision of fault tolerance techniques.
We protected the components that are the most affected by SEU and SET in the space environment. The control
logic and ALU structures were protected using TMR, and all registers were protected using Hamming coding. The
proposed processor has a combinational circuit cost similar to other RISC-V processors. Because of its simplicity
and the design choices, the processor has a lower occupancy of FFs compared to the alternatives.

Compared to concurrent fault-tolerant RISC-V processors, our implementation achieved a smaller overhead. Pro-
viding processor fault tolerance has led to an increase in silicon and power costs. However, in applications that
require reliability, this overhead is justified by the improvement in reliability.

As future work, we intent to test the processor at the ISIS Neutron research center using the ChipIr microelectronics
irradiation instrument, which allows performing SEE testing with neutron beams. This test will represent the first step
of qualification for the processor for use in future computing systems embedded in nano-satellites.
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