
HAL Id: lirmm-03031823
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03031823

Submitted on 30 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cell-Aware Defect Diagnosis of Customer Returns Based
on Supervised Learning

Safa Mhamdi, Patrick Girard, Arnaud Virazel, Alberto Bosio, Eric Faehn,
Aymen Ladhar

To cite this version:
Safa Mhamdi, Patrick Girard, Arnaud Virazel, Alberto Bosio, Eric Faehn, et al.. Cell-Aware Defect
Diagnosis of Customer Returns Based on Supervised Learning. IEEE Transactions on Device and
Materials Reliability, 2020, 20 (2), pp.329-340. �10.1109/TDMR.2020.2992482�. �lirmm-03031823�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03031823
https://hal.archives-ouvertes.fr

b

Abstract— In this paper, we propose a new learning-guided
approach for diagnosis of intra-cell defects that may occur in
customer returns. In the first part of the paper, only static defects
modeled by stuck-at faults have been assumed. Several
supervised learning algorithms were considered, with various
levels of efficiency. In the second part of the paper, we have
extended the previous work by dealing with more sophisticated
(i.e. dynamic) defects. This time, we concentrated on a Bayesian
classification method used for predicting the nature (likelihood to
be a good candidate) of each new data instance (defect) that has
to be evaluated during the diagnosis process. Results obtained on
benchmark circuits, and comparison with a commercial cell-
aware diagnosis tool, demonstrate the efficiency of the proposed
approach in terms of accuracy and resolution.

Index Terms—Diagnosis, Machine Learning, Customer returns

I. INTRODUCTION
oday’s electronic systems are composed of complex
Systems on a Chip (SoCs) that consist of heterogeneous

blocks that comprise memories, digital circuits, analog and
mixed-signal circuits, etc. To fit a critical application standard
requirement, SoCs pass through a set of test phases at the end
of the manufacturing process. The goal is to achieve near-zero
Defective Parts Per Million (DPPM) so as to ensure the
quality level required by the standard.

Despite the quality level (in percentage of fault coverage) of
the test sequences generated by industrial or in-house tools
and used during manufacturing test, SoCs may fail in mission
mode due to occurrence of i) a defect not covered during the
manufacturing test phase, or ii) early-life failures or failures
due to various wear-out mechanisms. Early-life failures, also
called infant mortality, are caused by defects that are not
exposed during manufacturing tests, but that are degraded due
to electrical and thermal stress during in-field use, and lead to
a failure in functionality. Wear-out (or aging) manifesting as
progressive performance degradation, is induced by various
mechanisms such as Negative-Bias Temperature Instability
(NBTI) or Hot-Carrier Injection (HCI).

Manuscript submitted on January 2020. Revision submitted on April 2020.
This work has been funded by the French National Research Agency

(ANR) under the framework of the ANR-17-CE24-0014-01 EDITSoC
(Electrical Diagnosis for IoT SoCs in automotive) project.

S. Mhamdi, P. Girard and A. Virazel are with the Laboratory of Computer
Science, Robotics and Microelectronics of Montpellier (LIRMM), University
of Montpellier / CNRS, Montpellier, 34095 France (e-mail:
firstname.lastname@lirmm.fr).

A. Bosio is with the Lyon Institute of Nanotechnology (INL), Ecole
Centrale de Lyon, Lyon 69000 France (e-mail: alberto.bosio@ec-lyon.fr)

E. Faehn and A. Ladhar are with STMicroelectronics, Crolles, 38920
France (e-mails: eric.faehn@st.com, aymen.ladhar@st.com).

Such failures that occur during the mission mode are the
most critical as they may result in catastrophic consequences.
Thus, in an attempt to identify the source of these failures and
avoid their re-occurrence in next generation products, the
defective SoC (referred to as “customer return”) is always sent
back to the manufacturer who is in charge of analyzing the
device to determine the root cause of failures [1]. In this
scenario, failures are not easy to reproduce in the company lab
as the real mission conditions and executed workload are
generally unknown and cannot be exhaustively modeled.
Therefore, efficient diagnosis methods to locate and assess
failures at different system levels are of vital importance.

Diagnosis is usually followed by Physical Failure Analysis
(PFA), a time-consuming process for exposing the defect
physically in order to characterize the failure mechanism. Due
to the high cost and destructive nature of PFA, diagnosis
resolution is of critical importance. In practice, it is very
uncommon to perform PFA on any defect with more than five
candidates [2]. Ideally, resolution is one, that is, a single
location is identified when a defect is diagnosed. This ensures
that the likelihood for uncovering the root-cause of failure is
maximized when performing PFA. However, with the advent
of very deep submicron technologies, such a resolution is not
always reachable by today’s intra-cell logic diagnosis tools
based on conventional methods (effect-cause / cause-effect).
In this context, machine learning can be viewed as an efficient
mean to exploit data (logical or physical) other than that used
by conventional methods to improve diagnosis resolution [3].

In this paper, we present a learning-guided approach for
diagnosis of intra-cell defects that may occur in customer
returns. In the first part of the paper, simple (static) defects
modeled by stuck-at faults have been assumed. We have
considered static cell-aware test sequences generated by a
commercial cell-aware Automatic Test Pattern Generation
(ATPG) tool assuming a standard (low speed) scan-based
testing scheme. This sequence targets all cell-level stuck-at
faults plus cell-internal static defects, considering that these
defects are not covered by a standard stuck-at fault ATPG.
Several supervised learning algorithms were considered, with
various levels of efficacy. Results obtained on combinational
benchmark circuits, and comparison with a commercial cell-
aware diagnosis tool, show the feasibility and accuracy of this
approach [4]. In the second part of the paper, the previous
work has been extended by dealing with more sophisticated
(i.e. dynamic) defects. We have considered cell-aware
transition test sequences generated by a cell-aware ATPG
assuming a Launch-Off-Capture scan-based testing scheme. A
new cell-aware defect diagnosis method is thus proposed, this
time concentrating on a Bayesian classification method for
predicting the nature (likelihood to be a good candidate) of

Cell-Aware Defect Diagnosis of Customer
Returns Based on Supervised Learning

Safa Mhamdi, Student Member, IEEE, Patrick Girard, Fellow, IEEE, Arnaud Virazel, Member, IEEE,
Alberto Bosio, Member, IEEE, Eric Faehn, and Aymen Ladhar

T

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDMR.2020.2992482

each new data instance (defect) that has to be evaluated. As
for diagnosis of static defects, the efficiency of the proposed
Bayesian method for diagnosis of intra-cell dynamic defects is
demonstrated through comparison with a commercial tool.

The rest of this paper is organized as follows. Section II
presents a state-of-the-art on diagnosis methods and gives the
motivations of this work. Section III presents the proposed
learning-guided cell-aware static defect diagnosis approach.
Section IV presents the cell-aware dynamic defect diagnosis
method based on Bayesian classification. Section V presents
results obtained on two sets of benchmark circuits, as well as a
comparison with a commercial tool. Section VI concludes the
paper and discusses missing aspects as well as future work.

II. STATE OF THE ART AND MOTIVATIONS
Diagnosis is the first analysis step for a defective SoC. This

is a software-based method that analyzes the applied tests, the
tester responses, and the netlist (possibly with layout
information) to produce a list of candidates that represent the
possible locations and types of defects (or faults) within the
defective SoC [5]. The key metrics that characterize diagnosis
performance are resolution, i.e., the number of candidates
reported by diagnosis for a given defective SoC, and accuracy,
i.e., the physical defect is indeed in the list of candidates.

In the case of a customer return, the first step is to re-use the
original test program to check if the SoC fails again or not. If
not, efforts have to be made to find new test patterns and test
conditions (i.e. voltage and temperature) that will sensitize the
defect and reveal the failure. Otherwise, if the SoC fails, a
diagnosis program made of several routines is used to identify,
step by step, the failing part and, finally, the suspected defects.
Each routine corresponds to the application of a diagnosis
algorithm at a given hierarchy level. SoC level diagnosis is the
first routine used to identify the cores or interconnections in
the system that can explain the failure. Core level diagnosis
(inter-cell diagnosis) is then used to identify the possible
failing cells within a core. Intra-cell diagnosis is finally used
to pinpoint the possible defect candidates within a cell.

Except industrial in-house SoC diagnosis tools, very few
comprehensive diagnosis approach able to deal with a full SoC
and providing reliable information about fault localization
exist. To the best of our knowledge, the only work targeting
SoC-level diagnosis is reported in [6]. The key concept is that
diagnosis consists in a comparison between a set of pre-
computed SoC failures and the set of failures observed during
test. This type of approach was formerly proposed in [7] and
[8] but only for full-scan circuits. In [6], authors propose to
extend it to the case of SoC. The main advantages of this
approach w.r.t. the state-of-the-art are (i) the capability to
manage both full-scan and sequential logic cores, (ii) to deal
with several fault models at a time (both static and dynamic)
and (iii) to address both single and multiple fault occurrences.

Regarding core-level diagnosis, a considerable amount of
work can be found in the literature. Dedicated techniques have
been proposed to target specific cores: logic cores (logic
diagnosis) [7]–[9], memory cores (memory diagnosis) [10–11]
and analog cores (analog diagnosis) [12–13]. Considering
logic diagnosis, the result is either an interconnection between
gates or a suspected gate. Faults can hence occur either in the

interconnection between gates (inter-cell faults) or inside the
gate (intra-cell faults). When the observed failure is inside the
gate, cell-aware diagnosis is applied to locate the cause of this
failure at the transistor level [14]. An intra-cell diagnosis
method used for mission mode failures in customer returns has
been proposed in [15]. It uses a Critical Path Tracing (CPT)
algorithm applied at transistor level and works as follows.
First, the test determines which are the failing and passing test
patterns for a given Circuit Under Test (CUT). Then, logic
diagnosis exploits this information to determine a list of
suspected gates (candidates). Any available logic diagnosis
tool can be used. For each suspected gate, we have to know
the logical values applied to it when failing and passing test
patterns are applied to the CUT. This step amounts to
determine the actual set of failing/passing test patterns at the
cell level. Finally, intra-cell diagnosis is executed for each
suspected gate and its related failing /passing test patterns. The
result is a list of suspected nets at transistor level with a set of
fault models able to explain the observed failures. More
details about this flow and results obtained on industrial
circuits from STMicroelectronics (STM) are in [15].

Unfortunately, for various reasons, diagnostic resolution is
typically far from ideal due to the SoC complexity. As a result,
a lot of efforts have been dedicated for improving diagnosis
resolution. Among several types of solutions, it has been
demonstrated recently that diagnosis resolution can be
improved with Machine Learning (ML) techniques, primarily
through the derivation of characteristics that enables correct
candidates (candidates that correctly represent defect
locations) to be distinguished from incorrect ones (candidates
that do not) [16]–[21]. In [16], authors describe an approach to
identify bridge defects from a population of diagnosed defects
by using a combination of effective rules and a decision-tree-
based classifier. In [17], authors improve on-chip diagnosis
resolution with a modified k-nearest neighbors classifier that
is updated with real-time failure data. In [18], volume
diagnosis resolution is improved with a Bayesian classifier
that identifies the actual candidates based on their layout
properties. In [19], authors present a novel yield optimization
methodology based on establishing a strong correlation
between a group of fails and an adjustable process parameter.
The core of the methodology comprises three advanced
statistical correlation methods. In [20], authors use statistical
learning methods to predict the termination of tester-data
collection to ensure good resolution. In [21], a learning-based
resolution improvement approach called PADRE (Physically-
Aware Diagnostic Resolution Enhancement) is proposed.
PADRE uses a Support Vector Machine algorithm to analyze
easily available tester and simulation characteristics about the
candidates to identify those that correspond to the actual
failure locations. The capabilities of this solution have been
further extended with a novel Active Learning (AL) based
PFA selection approach [2]. AL-PADRE selects the most
useful defects for PFA so as to improve diagnostic resolution.

Despite their efficiency, a common feature of these
techniques is that they all address volume diagnosis for yield
improvement which is a different problem than fault diagnosis
of customer returns. During volume diagnosis, numerous data
collected during manufacturing test and subsequent diagnosis
phases are available, such as, e.g. hundreds of similar failed

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDMR.2020.2992482

chips with candidates correctly labeled (good or bad) obtained
in a previous stage. It is therefore possible to use these data for
failure diagnosis of a new failed chip. Conversely, during fault
diagnosis of customer returns, only one failed chip is
investigated, with no information about the defective behavior
of some other similar chips used in the same conditions
(application, environment, workload, etc.). For this reason,
learning-guided approaches used for volume diagnosis cannot
be used for fault diagnosis of customer returns.

III. CELL-AWARE STATIC DEFECT DIAGNOSIS
Despite the good resolution achievable with conventional

intra-cell diagnosis technique, in some cases (e.g. complex
cells, complex failure mechanisms) the number of candidates
is too high to allow an efficient PFA. This problem will be
exacerbated with the advent of very deep submicron (i.e., 7
nm) technologies. Improving intra-cell diagnosis efficiency is
therefore mandatory. A mean to achieve this goal is to use
supervised learning algorithms to determine suspected defects.
Supervised learning is now used in numerous classification
problems where the knowledge on some data can be used to
classify a new instance of such data. In this section, we present
a new approach that uses supervised learning instead of
traditional cause-effect and/or effect-cause analysis to identify
static defect candidates within a cell with a high accuracy.

A. Overall Diagnosis Flow
Figure 1 shows the proposed diagnosis flow [4] based on

supervised learning that takes a known set of input data and
known responses (labeled data) used as training data, trains a
model, and then implement a classifier based on this model to
make predictions (inferences) for the response to new data.

Training Data are generated for each type of cell existing in
the Circuit Under Diagnosis (CUD) during an off-line
characterization process done only once for a given cell
library. It takes as input i) the cell-level test patterns, i.e., all
possible static and dynamic combinations of values at the
inputs of a cell, ii) the list of all possible types of cell (NAND,
NOR, etc.) in the CUD, and iii) the cell netlists at transistor
level. From these inputs, intra-cell transistor-level defect
simulations using Spice are performed by iteratively injecting
all possible defects into each cell type and then simulate the
behavior of the cell. The output is a set of instances associated
to each type of cell, and representing the training data. An
example of partial training data with six instances for an
arbitrary two-input cell is shown in Fig. 2. Each instance is
associated to a static defect Di (last column), and a 1 (0)
indicates that defect Di is detectable (not detectable) at the
output of the cell when the cell test pattern Pj is applied at the
inputs of the cell. Cell test patterns are static (one input vector)
or dynamic (two input vectors). For an n-input cell, there exist
2n static test patterns and 2n.(2n – 1) dynamic test patterns. In
Fig. 2, P1 to P4 denote static patterns (00, 01, 10, 11), while
P5 to P16 denote dynamic patterns. Dynamic patterns appear
in the training dataset, as it is well known that static defects
modeled by stuck-at faults can be detected by both static and
dynamic patterns. In this later case, only the second vector of a
dynamic test pattern is considered to determine whether or not
a static defect is detectable by this pattern. Note that this way

of representing training data looks like a Defect Detection
Matrix used in cell-aware test pattern generation [22].

Fig. 1. Learning-guided intra-cell diagnosis flow

Besides training data, the Learning-Guided Intra-Cell
Diagnosis (LGICD) module receives New Data. Each
instance of the new dataset is associated to one suspected cell
in the CUD (customer return) and represents a features vector
that characterizes the real behavior of the cell during test
application. From each features vector, we can further extract
one or more defect candidates that have to be classified as
good or bad candidate with a corresponding probability to be
the root cause of failure. New data are generated after post-
processing of so-called instance tables describing the behavior
(pass / fail) of each suspected cell in presence of an intra-cell
defect (in one of the suspected cells) when a test pattern is
applied to the cell. An example of a dynamic instance table is
given in the next section. As shown in Fig. 1, these instance
tables are obtained from i) the list of suspected cells provided
by a logic diagnosis tool and ranked according to their score to
be the source of failure (to contain the real defect), ii) the
netlist of each suspected cell, and iii) the cell failing/passing
test patterns. These patterns are obtained by performing a
simple logic simulation of the CUD with the failing/passing
test patterns identified by the tester.

Fig. 2. Example of partial training data for static defects in a two-input cell

The format of a new data instance is quite similar to that of a
training data instance, but has a different meaning. In each
instance, the value 1 (respectively 0) is associated to a failing
(respectively passing) cell test pattern Pi for a given defect
candidate, meaning that the candidate is indeed detectable
(respectively undetectable) by the cell test pattern Pi at the
circuit output. In such instance, the value 0.5 is associated to a
cell test pattern for a given defect candidate when this pattern
does not exist in the list of cell failing/passing test patterns

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDMR.2020.2992482

(i.e., the cell test pattern cannot appear at the inputs of a
suspected cell during test application). The median value 0.5
has been chosen to avoid missing information in new data
instances while not biasing the features of these data. An
example of a new data instance for a two-input cell is given in
Fig. 3. R stands for rising (0 to 1) transition on a cell input,
and F stands for falling (1 to 0) transition on a cell input.

Fig. 3. Example of a new data instance for a two-input cell

Finally, from the training and new dataset, LGICD provides
a set of good transistor-level defect candidates with the
corresponding probability to be the root cause of the failure.

B. Details of the LGICD Module
The first phase of the LGICD consists in data preparation.

Since learning algorithms learn from data, it is essential to use
data that perfectly match the problem to be solved. Data have
to be in a useful format and include meaningful features. In
our case, the process for getting data ready for machine
learning algorithms can be summarized in three phases [23]:
1) Data Selection. It consists in selecting the subset of all
available data that will be used to build a model and classify
new data. In our case, available data are the training data
obtained from the off-line characterization process. Each
instance of the training data is associated to a defect, and
corresponds to the behavior of the cell (fault-free or faulty) in
presence of such defect and for all possible combinations
(static and dynamic) of the cell inputs. Some defects lead to
the same cell behavior. These defects are called equivalent
defects. Some others are undetectable by any cell test pattern.
In our selection process, 70% to 90% of the available data
were randomly selected and this operation was repeated
several times to obtain training data with good randomness.
2) Data Preprocessing. Once training data have been selected,
we need to consider how they will be used. Training data are
first stored in a CSV file. Then, they are sampled and grouped
by considering equivalent defects. All equivalent defects are
thus associated to a given Defect Class i (DCi). Training data
instances of undetectable defects are removed.
3) Data Transformation. The final phase is to transform the
preprocessed data ready for learning in a format manageable
by the classifiers (or models). In this format, each instance of a
training data contains m+1 columns, where m = 2n + 2n.(2n –
1) for an n-input cell (e.g. 16 for a 2-input cell). Columns 1 to
m correspond to the exhaustive cell test patterns. Column m+1
corresponds to each defect class. The names of each column
are specified when transforming data. This will help to explore
these data in a later stage of the process.

In the second phase of the LGICD, we build models based
on different classification algorithms (called classifiers). As
we preliminary do not know which algorithm will be efficient
for our problem, evaluating the performance of the selected
algorithms is an important step. These evaluations are most
often based on prediction accuracy (the percentage of correct
prediction divided by the total number of predictions). There
are many techniques used to calculate the accuracy of a
classifier. The technique used in this work is known as cross-

validation. The training data is divided into mutually exclusive
and equal subsets. For each subset, the classifier is trained on
the union of all the other subsets [24].

Finally, once we have selected the models, we make
predictions on new data instances with all of the available
data. In our case, the expected results correspond to a defect’s
class probability of being the root-cause of failure. Each
model returns the best defect’s class candidate and the
probability for each class has a value between 0 and 1.

C. Selected Supervised Learning Algorithms
In this work, suspected defects were classified using a

publicly available machine learning software package called
Scikit-learn [25]. Scikit-learn is an integrated development
environment with a suite of ML tools. Various tools of Scikit-
learn with supervised learning algorithms for classification
have been used in this work. The selected algorithms are the
following: Logistic Regression (LR), K-Nearest-Neighbors
(KNN), Naive Bayes (NB) Classifier, and Support Vector
Machines (SVM). These algorithms represent a mixture of
linear (LR) and nonlinear (KNN, NB, SVM) algorithms.

IV. CELL-AWARE DYNAMIC DEFECT DIAGNOSIS
As indicated at the beginning of the paper, we have extended

the previous work by dealing with dynamic (open and short)
defects. A new cell-aware dynamic defect diagnosis method is
thus presented in this section. This time, we concentrated on a
Bayesian classification method for predicting the nature
(likelihood to be a good candidate) of each new data instance
(defect) that has to be evaluated. This choice comes from the
results obtained in [4] after experimenting several learning
algorithms and observing their prediction accuracies. These
results are partially reported again in Section VI.A.

Except those that may lead to stuck-open faults, dynamic
defects are mainly due to resistive opens or shorts that prevent
signals to propagate within a circuit at the normal speed.
Dynamic defects induce delayed signals that may prevent
good logic values to be captured in flip-flops during functional
mode of operation, and hence lead to circuit failure. With the
advance of deep submicron technologies, the occurrence of
dynamic defects is constantly increasing, not only during the
manufacturing process of ICs, but also during the lifetime of
the circuit where latent or wear-out defects may appear due to
various stress conditions (functional, environmental, etc.).

Dynamic defects can be modeled by delay or transition
faults. Testing for delay faults is often done through at-speed
scan testing for logic circuits. At-speed scan testing consists of
using a rated system (nominal) clock period between launch
and capture for each delay test pattern, while a longer clock
period is normally used for scan shifting. In order to test for
transition faults, two different testing schemes are used in
practice during at-speed scan testing: Launch-off-Shift (LOS)
and Launch-off-Capture (LOC). Although LOS and LOC have
different but complementary delay fault coverage, LOC is the
preferred scheme in industry due to its easier implementation.
LOC requires two-pattern tests, where the first vector is used
for initialization and the second is used to generate transitions.

Here, we assume that a LOC scheme (also called “Fast
Sequential”) has been used during test application. A cell-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDMR.2020.2992482

aware ATPG has been used to generate tests for gate-level
transition faults plus cell-internal dynamic defects not covered
by a conventional transition fault ATPG. Though (cell-aware)
transition test patterns are used for delay faults, and hence
detect dynamic defects, they can detect static defects as well.
For this reason, both static and dynamic defects could be
considered by our diagnosis method, although only dynamic
defects have been investigated in this part of our work.

Fig. 4. Proposed intra-cell dynamic defect diagnosis flow

Figure 4 shows the flow of the proposed cell-aware dynamic
defect diagnosis method. Training data are generated as
described in Section III.A and have the format shown in Fig.
2. They are extracted from cell-aware views provided by a
commercial Computer-Aided-Design (CAD) tool that contain
all characterization results for a given cell type. These results
are provided in the form of a fault dictionary containing, for
each defect within a cell, the cell input patterns detecting (or
not) this defect. New data are generated after post-processing
of instance tables describing the behavior (pass / fail) of each
suspected cell in presence of an intra-cell dynamic defect (in
one of the suspected cells) when a transition test pattern is
applied to the cell. The format of an instance table looks like
the one illustrated in Fig. 5 for a given three-input AndOr cell
and two test patterns. In this example, the first part of the file
gives information on how the cell is linked to other gates in
the circuit, while the second part represents, respectively, the
pattern number, the pattern status (failing, passing), and the
cell output with the associated fault model for which the
exercising conditions are reported. Exercising conditions
shown right below each pattern represent the stimulus arriving
at the cell inputs during the shift phase (before ‘-’) and applied
during launch & capture cycles (after ‘-’). For example,
Pattern 1 consists in applying a falling transition on input A ;
B and C be equal to static 1 and 0 respectively ; and failing in
detecting a falling transition on output Z.

The way to generate instance tables in our diagnosis flow is
illustrated in Fig. 6. First, cell-aware transition test patterns are
applied to the failing CUD (customer return). Remember that
in our method, each test sequence is obtained from a
commercial cell-aware test pattern generation tool that targets
intra-cell defects. We then obtain a datalog containing
information on the failing test patterns and corresponding
failing primary outputs. From this information and the circuit
netlist, we perform a logic diagnosis (by using the same
commercial tool used for test generation) that gives the list of
suspected cells. By using datalog information, we can finally
generate an instance table for each suspected cell.

Fig. 5. Example of a dynamic instance table for an AndOr cell

As mentioned earlier, all instance tables are post-processed
to provide a number of new data instances, each representing
one or more defect candidates that have to be classified
according to their likelihood to be the root cause of failure.
The format of a new data instance has been described in the
previous section.

Fig. 6. Generation flow of instance tables

The core block in Fig. 4 depicts the two main steps of the
supervised learning process used for intra-cell dynamic defect
diagnosis. As indicated at the beginning of the paper, we use a
Bayesian classification method for predicting the nature of
each new data instance. So, the first main step consists in
generating a NB model and to train it by using the training
dataset. The second main step consists in constructing the NB
classifier by using a Gaussian distribution to model the
likelihood probability functions, and use this classifier to make
probabilistic prediction (or inference) when a new data
instance has to be evaluated. These two main steps are detailed
in the next section. Note that an important preliminary step
before the above two ones is training data preparation, already
detailed in subsection III.B.

V. PREDICTION MODEL BASED ON A BAYESIAN
CLASSIFICATION METHOD

The goal of classification is to classify an instance of a class
based on the value of several attributes (or features). Many
classification approaches attempt to explicitly construct a
function from the joint set of values of the attributes to make
classification. Examples of such classifiers include decision
trees and neural networks. Bayesian classification takes a quite
different approach to this problem, by approximating the joint
probability distribution of the class and the attributes [26].
Therefore, learning in Bayesian classification amounts to
estimate this joint probability distribution. After constructing
such an estimate, we classify a new instance of a class by

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDMR.2020.2992482

examining the conditional probability given the particular
attribute values, and return the class that is the most probable.
Bayesian inference (prediction) has been successfully used in
analog-circuit diagnosis and board-level diagnosis [27-28].
Here, it is used for cell-aware dynamic defect diagnosis.

A. Naive Bayes Model Generation and Training
Bayesian classification is the general term defining a type of

classification algorithm based on Bayes’s theorem, which is an
equation describing the relationship of conditional
probabilities of statistical quantities. Bayesian classification
aims at finding the probability of a class C given some
observed features, which can be written as P(C|features).
Bayes's theorem expresses this in terms of quantities that can
be computed more directly:

P(C|features) = P(features|C) . P(C) / P(features)

To do that, we need a model by which we can compute
P(features|C) for a given class. Such a model is called a
generative model because it specifies the hypothetical random
process that generates the data. Specifying this generative
model is the main piece of the training of such a Bayesian
classifier. The general version of such a training step is a very
difficult task, but we can make it simpler through the use of
some simplifying assumptions about the form of this model.
Clearly, by making naive assumptions about the generative
model, we can find a rough approximation and then proceed
with the Bayesian classification.

NB classifiers make the assumption of independence among
predictors [29]. In simple terms, a NB classifier assumes that
the presence of a particular feature in a class is unrelated to the
presence of any other feature. Even if these features depend on
each other or upon the existence of the other features, all of
these properties independently contribute to the probability.
Features are those characteristics (or attributes) that affect the
results of a class label. In our training dataset, features are
represented by the cell-level test patterns associated to a given
class label, which itself represents a dynamic intra-cell defect.
Training a model is done based on labeled training data and
then can be used to assign a pre-defined class label to new
objects. In this step, training data are used to incrementally
improve the model’s ability to make inference. The training
data is divided into mutually exclusive and equal subsets. For
each subset, the model is trained on the union of all the other
subsets. Once training is complete, the performance (accuracy)
of the model is evaluated by using the part of the dataset
initially set aside.

B. Naive Bayes Classifier and Inference
Bayesian theory provides an efficient intuitive approach for

drawing inferences from observations and a priori beliefs. NB
classifiers work based on the Bayes’ probability model that
can be simply formulated as follows:

The posterior probability, in the context of our classification
problem, can be interpreted as: “What is the probability that a
new data instance D corresponds to a defect Di in a suspected
cell given its observed feature values?”. It can be expressed as:

P(D=Di | features) => P(D=Di | T1,…,Tn)
where T1,…,Tn represents the values of the cell-level test
patterns associated to the new data instance D.

The objective function in the NB probability is to maximize
the posterior probability given the training data in order to
formulate the decision rule. This decision rule can be
formulated based on the posterior probabilities as follows:

D = Di if P(D = Di | T1,…,Tn) ≥ P(D ≠ Di | T1,…,Tn)
Otherwise, D ≠ Di

An additional assumption of NB classifiers is the conditional
independence of features. Under this naive assumption, the
class conditional probabilities (or likelihoods) of the new data
instances can be directly estimated from the training data
instead of evaluating all possibilities of T. Thus, given a n-
dimensional feature vector T, the class conditional probability
P(T|Di) can be calculated as follows:

Here, P(T|Di) simply means: “How likely is to observe this
particular pattern T given that it belongs to class Di?” The
individual likelihoods for every feature in the feature vector T
can be estimated via the maximum-likelihood estimate [29].

The third element in Expression (1) is the prior probability
that can be interpreted as the prior belief or a priori
knowledge. In the context of pattern classification (a pattern
corresponds to a new data instance in our case), the prior
probabilities are also called class priors, and describe “the
general probability of encountering a particular class”. If the
priors are following a uniform distribution, the posterior
probabilities will be entirely determined by the class
conditional probabilities and the evidence term. And since the
evidence term is a constant, the decision rule will entirely
depend on the class conditional probabilities.

After defining the class conditional probability and prior
probability, there is only one term missing in order to compute
posterior probability, that is the evidence. The evidence P(T)
can be understood as the probability of encountering a
particular pattern T independent from the class label. Although
the evidence term is required to accurately calculate posterior
probabilities, it can be removed from the decision rule since it
is merely a scaling factor.

It is worthmentioning that in multi-class classification, each
new data instance may be assigned multiple class labels
(defect Di in our case). The NB algorithm is well known for
multi class prediction feature. In this work, we can predict the
probability of multiple classes of target variable.

To implement the classifier and then make inferences, we
need to use a model representing the way features are
distributed in feature vectors that correspond to new data
instances. When the probability distributions of the features
follow a normal (Gaussian) distribution, the Gaussian NB
model can be used. In this work, we use a Gaussian kernel to
calculate the class conditional probabilities.

In order to illustrate the distribution of features, and hence
demonstrate the appropriateness of the Gaussian model used
in our NB classifier, we plot in Fig. 7 the result obtained for an
AND2 cell. Unimodal and bimodal Gaussian distributions
were achieved depending on the type (static or dynamic) of

Posterior Probability = Conditional Probability . Prior Probability
Evidence

(1)

P(T|Di) = P(T1|Di) •P(T2|Di) • ...•P(Tn|Di) = P(Tk|Di)
k =1

n

∏ (2)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDMR.2020.2992482

considered cell-level test patterns (P1 to P12).

Fig. 7. Gaussian distribution of features in an AND2 cell

VI. EXPERIMENTAL RESULTS
The two versions of the cell-aware defect diagnosis method

presented in the previous sections, one for static defects, one
for dynamic defects, have been implemented separately in a
Python program. Results are presented and discussed below.

A. Results of Cell-Aware Static Defect Diagnosis
We conducted experiments on ISCAS’85 benchmarks

circuits synthesized in a 28nm FDSOI technology from STM.
A cell-aware commercial ATPG tool was used to generate test
patterns for each circuit by targeting static cell-internal defects
in addition to stuck-at faults. Test patterns were generated to
achieve 100% stuck-at fault coverage. From each circuit and
the corresponding test set, we simulated the behavior of the
tester by performing a defect injection campaign (about 500
injections per circuit) into a number of randomly selected gates
and collecting test information to build the tester data log. For
the defect injection campaign, we considered each transistor of
the selected gates and targeted all possible static defects
affecting that transistor. These defects are shown in Fig. 8 and
are as follows:
� ROi: full open defect at node i (i = [Gate, Drain, Source,
Bulk])
� RSij: full short defect between nodes i and j (i/j = [Gate,
Drain, Source, Bulk])

Fig. 8. Considered transistor defects

For example, the number of defects for a NAND2 gate is
equal to 36 defects (9 defects per transistor). However, several
defects have the same impact on the logic behavior of the gate.
So, these defects are logical-equivalent defects and hence are
grouped in defect classes. Table I shows the equivalent defects
with the corresponding defect classes for such a gate. In this
table, Dtk refers to a defect in transistor t (t ranges from 1 to
4), and k indicates the type (RO or RS) and source node (Gate,
Drain, Source, Bulk) of the defect. Labels from 1 to 4 for k
refer to open defects. Labels from 5 to 9 refer to short defects.

TABLE I. NAND2 DEFECT CLASSES
Defect Class Equivalent Defects

DC1 D11, D12, D13, D16, D21, D22, D23, D26, D38, D39, D48,
D49

DC2 D14, D24, D28, D34, D37, D44, D47
DC3 D15, D36
DC4 D17
DC5 D18, D27, D29
DC6 D19
DC7 D25
DC8 D31, D32, D33, D35
DC9 D41, D42, D43, D45
DC10 D46

From the list of failing/passing test patterns with the
corresponding failing/passing CUD outputs (datalog), a logic
diagnosis tool based on fault simulation was used to determine
a list of suspected cells ranked according to their score to be
the source of failure. We used a commercial diagnosis tool to
this purpose. For most of experiments, the list of suspected
cells contained the cell in which the defect was injected. In
very few cases, the commercial tool was unable to identify the
faulty cell as suspect. Learning-guided cell-aware diagnosis
was not done in such cases. The average number of Suspected
Cells (#aSC) for each circuit is listed in Table II, together with
information about each circuit (number of primary inputs,
primary outputs, cells, and test patterns).

TABLE II. RESULTS OF INTER-CELL LOGIC DIAGNOSIS
Circuit #PIs #POs #Cells #TP #aSC

c880 60 26 383 34 2
c1355 41 32 938 85 3
c2670 233 140 945 60 3
c3540 50 22 1504 131 2
c5315 178 123 2228 75 2
c7552 207 108 3417 83 4

For generating training data, we used the flow shown in Fig.
1. This characterization phase of the flow was done using a
commercial tool and STM libraries. For generating new data
instances, we performed post-processing of instance tables
obtained as shown in Fig. 6. From the training data and each
classifier, we make predictions on new data instances. Results
obtained are a list of defect candidates with the highest
probability to be the root cause of failure.

TABLE III. CELL-AWARE STATIC DIAGNOSIS RESULTS – C2670
Class Det #SC LR SVM KNN NB
DC1 Yes 2 DC1=0.11 DC1 DC1=0.5 DC1=1
DC2 Yes 3 DC6=0.11 / DC2=0.09 DC6 DC2=0.5 DC2=0.5
DC3 Yes 2 DC5=0.11 / DC3=0.10 DC3 DC3=0.5 DC3=1
DC4 Yes 7 DC9=0.14 / DC4=0.12 DC9 DC4=0.5 DC4=0.5
DC5 Yes 1 DC5=0.14 DC5 DC5=0.5 DC5=1
DC6 Yes 3 DC6=0.11 DC6 DC6=0.5 DC6=0.5
DC7 Yes 6 DC7=0.16 DC7 DC7=0.5 DC7=1
DC8 Yes 2 DC8=0.16 DC8 DC8=0.5 DC8=1
DC9 Yes 7 DC9=0.14 DC9 DC9=0.5 DC9=0.5

Table III illustrates the results obtained by the proposed
approach for a defect injection campaign in a two-input AND
gate of circuit c2670 (with 54 open and short defects grouped
into 9 defect classes). The first column lists the various defect
classes. The second column indicates if the defects of the
corresponding class has been detected or not by the initial
circuit-level test set. In the case such defects cannot be
detected, this means that they have no impact on the gate
output and hence cannot be the source of failure. So, they will
no longer be considered in our diagnosis process. The third

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDMR.2020.2992482

column shows the number of suspected cells obtained after
logic diagnosis. The next four columns list the best defect’s
class candidate for each learning algorithm with the
corresponding probability of being the root cause of failure.

From these results, the first comment is that KNN and NB
identify as best candidate the real (injected) defect. This is true
for all defect classes. For LR, the real defect is always
identified as a candidate, but sometimes (for DC2, DC3 and
DC4) in the second or third position. The second comment
refers to the probability given to each best candidate. For
example, for DC1, the probability given by LR to DC1 to be
the best candidate is 0.11. KNN gives a probability of 0.5
(with n-neighbors=2), which is even better. NB gives a
probability of 1 to DC1 to be the best candidate, hence do not
providing any other candidates with lower probabilities
(unlike what is done by LR and KNN). SVM is a non-
probabilistic algorithm and gives the right defect class in 7
(over 9) cases. It does not provide any other candidate
(inherent property). All these results clearly demonstrate the
feasibility, the effectiveness (in terms of resolution) and
accuracy of the proposed diagnosis flow.

Using the same characterization data, a comparison with a
commercial cell-aware diagnosis tool has been performed.
This tool is non-probabilistic and provides the list of all
suspects obtained after diagnosis with a ranking and a
matching score. Results achieved with the same defect
injection campaign in the same gate of circuit c2670 are
reported in Table IV. The first three columns are identical to
those in Table III. The fourth column gives the number of
identified defect candidates. The fifth column shows the
ranking of the injected defect (when it is in the list of
candidates – NA otherwise) and the matching score. The last
column reports the accuracy, i.e. the injected defect is or is not
in the list of candidates. From these results, the first comment
is that the commercial tool was often unable to provide a
ranking among the candidates, thus complicating the decision
before PFA. The second (more important) comment is that, in
two out nine cases, the injected defect is not in the list of
candidates provided by the commercial cell-aware tool (i.e.
results are not accurate). Conversely, our technique with LR,
KNN and NB always provides the right candidate. This
proves the superiority of our approach.

TABLE IV. DIAGNOSIS RESULTS WITH A COMMERCIAL TOOL – C2670
Class Det #SC #candidates Ranking / Matching Accuracy
DC1 Yes 2 4 No ranking / 100% Yes
DC2 Yes 3 3 No ranking / 100% Yes
DC3 Yes 2 4 No ranking / 100% Yes
DC4 Yes 7 0 NA / 100% No
DC5 Yes 1 3 No ranking / 100% Yes
DC6 Yes 3 3 No ranking / 100% Yes
DC7 Yes 6 1 1 / 100% Yes
DC8 Yes 2 1 1 / 100% Yes
DC9 Yes 7 0 NA / 100% No

Tables V and VI summarize the results obtained on a set of
ISCAS’85 benchmark circuits. Table V is about accuracy and
reports, for each learning algorithm, the percentage of cases in
which the injected defect was reported in the list of suspects
provided by the algorithm. As can be seen, the diagnosis
accuracy achieved with our technique when using LR,
KNN and NB algorithms is always 100%. Results obtained
with SVM are less accurate as this is a non-probabilistic

algorithm that gives only one suspect, which is sometimes not
the right one. The last column in Table V shows the accuracy
obtained for each circuit with the commercial cell-aware
diagnosis tool. As can be seen, for 4 out of 6 circuits, the
commercial tool is unable to achieve 100% accuracy.

TABLE V. OVERALL DIAGNOSIS RESULTS - ACCURACY

Circuit ACCURACY
LR SVM KNN NB Com. Tool

c880 100% 100% 100% 100% 100%
c1355 100% 77% 100% 100% 96%
c2670 100% 77% 100% 100% 84%
c3540 100% 62% 100% 100% 100%
c5315 100% 88.8% 100% 100% 97%
c7552 100% 77% 100% 100% 90%

Table VI is about resolution and gives, for each learning
algorithm and for each circuit considering all injection
campaigns, the average number of suspects reported by the
proposed method and the commercial tool respectively. Note
that in this case, only the cell in which the defect was injected
has been considered, the objective being to select the best
algorithm for further development of the proposed approach.
The same assumption has been done for the resolution given
by the commercial tool. We can see that LR always gives 9
candidates (with various probabilities), which corresponds to
the number of defect classes of each suspected cell. Similarly,
KNN always gives two candidates since n-neighbors is
initially set to 2. Note that in these experiments, n-
neighbors=2 was enough to get a 100% accuracy in all cases.
Increasing the value of n-neighbors would just increase
(uselessly) the number of defect candidates provided by the
learning algorithm. Decreasing n-neighbors (to 1) would no
longer lead to 100% accuracy in all experiments. Determining
the value of n-neighbors a-priori is therefore the main difficult
task when using KNN. Finally, only NB is able to provide the
best resolution with the highest accuracy, thus definitively
surpassing the commercial tool. NB was therefore selected for
further development of the cell-aware diagnosis approach.

TABLE VI. OVERALL DIAGNOSIS RESULTS - RESOLUTION

Circuit RESOLUTION
LR SVM KNN NB Com. Tool

c880 9 1 2 1.15 2.01
c1355 9 1 2 1.1 2.68
c2670 9 1 2 1.2 2.57
c3540 9 1 2 2.45 2.23
c5315 9 1 2 1.08 2.04
c7552 9 1 2 1.25 2.6

The CPU time taken by the proposed diagnosis flow to
provide a list of good defect candidates is always very low
(few seconds) and does not depend on the circuit size. Only
the number of suspected cells obtained after logic diagnosis
may have an impact on the CPU time (for the generation of
instances tables) but in a slight manner. In fact, the most time-
consuming part of the flow (few hours) is the characterization
phase, but it is done only once and is not correlated with the
circuit size.

B. Results of Cell-Aware Dynamic Defect Diagnosis
We conducted experiments on ITC’99 benchmarks circuits

synthesized using a 28nm FDSOI technology from STM.
Circuits were synthesized in a full scan manner by using a

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDMR.2020.2992482

commercial tool. A cell-aware commercial ATPG tool was
used to generate transition test patterns for each circuit by
targeting dynamic cell-internal defects in addition to gate-level
transition faults. Test patterns were generated to reach
maximum transition fault coverage. From each circuit and the
corresponding test set, we simulated the behavior of the tester
by performing a defect injection campaign (about 600 random
injections per circuit) into a number of randomly selected cells
and collecting test information to build the tester datalog. For
the defect injection campaign, we considered each transistor of
the selected cells and we targeted all possible dynamic (i.e.
resistive open and short) defects affecting that transistor. As
several defects have the same impact on the logic behavior of
the cell, and hence are logical-equivalent defects, they were
grouped in defect classes.

We used a commercial logic diagnosis tool to determine a
list of suspected cells ranked according to their score to be the
source of failure. For all experiments, the list of suspected
cells contained the cell in which the defect was injected. The
average number of suspected cells (#aSC) for each circuit is
listed in Table VII, together with information about each
circuit (number of primary inputs, primary outputs, cells, scan
flip-flops, transition test patterns, and transition fault coverage
in %).

TABLE VII. RESULTS OF LOGIC DIAGNOSIS
Circuit #PIs #POs #Cells #SFF #TP TFC #aSC

b15 41 37 2465 416 2546 88.38 1.26
b17 42 38 7960 1314 840 91.10 1.83
b18 37 35 3238 215 4155 93.46 1.5
b19 37 23 6337 430 929 93.79 1.34
b20 37 23 6733 430 5133 93.76 1.55
b22 37 23 3218 215 4031 93.78 1.73

For generating training data, we used the flow shown in Fig.
1. This characterization phase of the flow was done using a
commercial tool and STM libraries. For generating new data
instances, we performed post-processing of instance tables
obtained as shown in Fig. 6. From the training data and the
Bayesian inference model, we make predictions on new data
instances. Results obtained are a list of defect candidates with
the highest probability to be the root cause of failure.

TABLE VIII. CELL-AWARE DYNAMIC DIAGNOSIS RESULTS – B19

Defect #SC Proposed (SG=A) Proposed (SG=B) Cell-aware
tool

D61 1 (A) D64/D61=0.5 A=D61
D62 2 (A&B) D81/D62=0.5 D55/D53=0.5 0
D63 1 (A) D63/D82=0.5 A=D63
D64 2 (A&B) D61/D64=0.5 D55 A=D82/D64

B=D50
D66 2 (A&B) D66 D51/D50=0.5 A=D66 B=D52
D67 1 (A) D67 A=D67
D69 2 (A&B) D69 D55 A=D69 B=D55
D81 1 (A) D81/D63=0.5 0
D82 2 (A&B) D82/D64=0.5 D55 A=D82/D64

B=D50

Table VIII illustrates results obtained for a defect injection
campaign in an AndOr cell of circuit b19 that contains 90
potential defects including resistive and non-resistive opens
and shorts. Equivalent defects are grouped into 24 defect
classes, among which 9 of them are dynamic, with defect size
(in Ω) set to default values provided by HSpice. The first
column lists the various injected dynamic defects. The second
column shows the number of suspected cells (#SC) obtained

after logic diagnosis. Note that in this case study, the defect is
always injected in the cell called A. The next two columns list
the best defect candidates reported by the Bayesian
classification with the corresponding probability of being the
root cause of failure. Each column reports the defect
candidates provided after applying the proposed method
successively on each suspected cell A and B (when two
suspected cells exist). The last column reports the defect
candidates provided by a commercial cell-aware diagnosis tool
using the same characterization data. This tool is non-
probabilistic and provides the list of all suspects obtained after
diagnosis with a ranking and a matching score.

From these results, the first comment is that the real
(injected) defect is always identified by the proposed
diagnosis approach. Sometimes, it is the only candidate and
has a probability of 1 (e.g. D67) to be the best candidate.
Sometimes, it is reported with another candidate in suspected
cell A (e.g. D61), hence with a probability of 0.5. When two
cells are suspected (e.g. D66), some defect candidates in
suspected cell B are also reported, but the injected defect
belongs to the whole set of candidates. Conversely, we can
observe that the commercial cell-aware diagnosis tool is not
always able to report the injected defect as candidate. This is
the case for D62 and D81, for which the number of reported
candidates is 0. This is the most important observation
from these results, which demonstrates that in terms of
accuracy, our proposed solution is 100% efficient, which is
not the case of the commercial cell-aware diagnosis tool that
sometimes can provide inaccurate results. The second
comment is about resolution. In this example, not fully
representative, we can observe that in some cases (e.g. D66,
D67, D69, D82), our method provides results with the same
resolution than what can be obtained with the cell-aware
diagnosis tool. In some other (e.g. D61, D63), the resolution is
a bit lower with our solution, but the difference is really small
(3 instead of 2 candidates).

TABLE IX. OVERALL DIAGNOSIS RESULTS

Circuit Accuracy Resolution
Bayesian Com. Tool Bayesian Com. Tool

b15 100% 100% 2.220 2.454
b17 100% 100% 5.636 5.242
b18 100% 97.89% 4.842 4.882
b19 100% 95.89% 2.405 1.807
b20 100% 95.83% 2.603 2.373
b22 100% 100% 5.280 5.114

Table IX summarizes the results obtained on a set of ITC’99
benchmark circuits. The first part of the table is about
accuracy and gives, for each circuit, the percentage of cases in
which the injected defect was reported in the list of suspects
provided by the Bayesian diagnosis technique and the
commercial cell-aware diagnosis tool respectively. As can be
seen, for 3 out of 6 circuits, the commercial tool is unable to
achieve 100% (achieved with our technique). The second part
of the table is about resolution and gives, for each circuit and
considering all injection campaigns, the average number of
suspects reported by the proposed method and the commercial
tool respectively. As can be seen, the resolutions achieved
with both methods are very close. So, overall, these results
confirm the superiority of our approach in terms of accuracy.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDMR.2020.2992482

patrickgirard
Texte surligné

VII. CONCLUSION, DISCUSSION AND FUTURE WORK
In this paper, we have proposed a new learning-guided

approach for diagnosis of intra-cell defects that may occur in
customer returns. In the first part of the paper, we have
considered several supervised learning algorithms and dealt
with static defects modeled by stuck-at faults. In the second
part of the paper, we have extended the previous work by
dealing with more sophisticated (i.e. dynamic) defects. This
time, we used a Gaussian NB classifier for predicting the
nature (likelihood to be a good candidate) of each new data
instance that has to be evaluated during the diagnosis process.
In both case, we have compared our results with those
obtained with a commercial cell-aware diagnosis tool to
demonstrate the efficiency of the proposed approach in terms
of accuracy and resolution.

The above results show the appropriateness of a learning-
based method to solve our problem, despite the small size of
the training dataset used (only one sample for one defect
class). This will be even truer when multiple defect sizes and
test conditions will be used. In these cases, multiple samples
(one for each defect size or defect size range, one for each
PVT test condition) will be associated to a given defect class,
simply because the behavior of the defect will differ when
applying the same set of test patterns. In terms of timing and
complexity, this will just slightly impact our method, since
training dataset is extracted from characterized cell libraries
that are generated anyway for test and diagnosis purpose. So,
even with large cell libraries with a huge number of defects to
be simulated (e.g. 631 cells in a library, each with 4 to 6
inputs, 951 shorts and 749 opens on average – typical example
of an STM library), our framework will still be easily and
time-efficiently applicable.

In this work, the single defect assumption has been
considered in our experiments. However, this assumption is
not necessary as the proposed approach is able to manage
situations where multiple defects have occurred, provided that
those defects are not in the same cell. This significant feature
(also valid for commercial tools) comes from the fact that our
diagnosis flow considers all suspected cells one at a time, and
then incrementally constructs a list of suspects identified in
each of these cells. Similarly, no ranking among the suspected
cells provided after logic diagnosis has been considered in our
experiments. As a consequence, our flow has reported all
defect candidates coming from all suspected cells without any
ranking. In case a ranking of suspected cells is done after logic
diagnosis (usually the case with commercial tools), a similar
ranking among defect candidates can be done in our flow. In-
field failure mechanisms related to premature aging, such as
NBTI or HCI, essentially lead to resistive opens and shorts.
These mechanisms, that have to be considered in the context
of customer returns, can now be appropriately taken into
account in our cell-aware dynamic diagnosis flow.

The next step of this work will be to fully combine the two
proposed approaches described in this paper in order to get a
comprehensive diagnosis method able to deal with all types of
defects, i.e. static and dynamic, that may occur in customer
returns. Thought it may look simple, as just a combination of
the two previous methods, proposing such a comprehensive
method raised new problems and imposed setting up a new

framework with specific rules to achieve the same level of
efficiency in terms of diagnosis accuracy and resolution.
Further developments have also to be done to address several
missing aspects. In our study, all injected defects for
evaluation purposes were present in the training dataset. In
real silicon, especially for customer returns, actual defect
behavior may not perfectly match the fault models that are
used to train the classifier. Further work will be dedicated to
see how well the proposed method works in that scenario.
Moreover, layout information has to be used to refine the list
of defects that are considered during training data preparation.
By this way, only realistic defects will be assumed during the
whole process, thus increasing diagnosis efficiency. Then, we
need to consider multiple sensitization conditions that may
occur due to i) the fact that most of industrial designs are not
100% full scan and hence require multiple capture cycles
during test, ii) the presence of a mix of leading and trailing
edge triggered flops in a design, and ii) the fact that the clock
signal feeds into the system logic under test [30]. Another
point is that unique test conditions have been assumed in our
experiments. In the context of mission mode failure diagnosis,
multiple test conditions with various PVT corners also need to
be considered. Finally, we need to compare our results with
those obtained with an industrial in-house tool [15], and
perform experiments on customer returns provided by STM.

ACKNOWLEDGEMENTS
This work has been funded by the French National Research
Agency (ANR) under the framework of the ANR-17-CE24-
0014-01 EDITSoC (Electrical Diagnosis for IoT SoCs in
automotive) project.

REFERENCES
[1] N. Sumikawa, D. Drmanac, Li-C. Wang, L. Winemberg, and M.S.

Abadir, “Understanding Customer Returns From A Test Perspective,” in
Proc. IEEE VLSI Test Symposium, 2011, pp. 2-7.

[2] Y. Xue, X. Li, R. D. Blanton, C. Lim, and M. Enamul Amyeen,
“Diagnosis Resolution Improvement through Learning-Guided Physical
Failure Analysis,” in Proc. IEEE International Test Conference, 2016.

[3] Li-C. Wang, “Data Learning Based Diagnosis,” in Proc. ACM/IEEE
Asia and South Pacific Design Automation Conference, 2010, pp. 247-
254.

[4] S. Mhandi, A. Virazel, P. Girard, A. Bosio, E. Auvray, E. Faehn, and A.
Ladhar, “Towards Improvement of Mission Mode Failure Diagnosis for
System-on-Chip,” in Proc. IEEE International On-Line Testing
Symposium, 2019.

[5] A. Bosio, P. Girard, S. Pravossoudovitch, and A. Virazel, “A
Comprehensive Framework for Logic Diagnosis of Arbitrary Defects”,
IEEE Transactions on Computers, vol. 59, no. 3, pp. 289-300, March
2010.

[6] Y. Benabboud, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, A.
Virazel, and O. Riewer, “A Comprehensive System-on-Chip Logic
Diagnosis,” in Proc. IEEE Asian Test Symposium, 2010, pp. 237-242.

[7] L. M. Huisman, “Diagnosing Arbitrary Defects in Logic Designs Using
the Single Location At a Time (SLAT),” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 23, no.
1, pp. 91-101, Jan. 2004.

[8] S. Holst and H-J. Wunderlich, “Adaptative Debug and Diagnosis
Without Fault Dictionaries,” in Proc. IEEE European Test Symposium,
2007, pp. 7-12.

[9] S. Venkataraman and S. B. Drummonds, “Poirot: Applications of a
Logic Fault Diagnosis Tool,” IEEE Design & Test of Computers, vol.
18, no. 1, pp. 19-30, Feb. 2001.

[10] D. Appello, V. Tancorre, P. Bernardi, M. Grosso, M. Rebaudengo, and
M. Sonza Reorda, “Embedded Memory Diagnosis: An Industrial
Workflow,” in Proc. IEEE International Test Conference, 2006, pp.1-9.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDMR.2020.2992482

[11] A. Ney, A. Bosio, L. Dilillo, P. Girard, S. Pravossoudovitch, A. Virazel,

and M. Bastian, “A History-Based Diagnosis Technique for Static and
Dynamic Faults in SRAMs,” in Proc. IEEE International Test
Conference, 2008, paper 3.2.

[12] K. Huang, H. Stratigopoulos, and S. Mir, “Fault Diagnosis of Analog
Circuits Based on Machine Learning,” in Proc. IEEE/ACM Design,
Automation & Test in Europe, 2010, pp. 1761–1766.

[13] C. Zhang, Y. He, L. Yuan, and S. Xiang, “Analog Circuit Incipient Fault
Diagnosis Method Using DBN Based Features Extraction,” IEEE
Access, vol. 6, pp. 23053-23064, April 2018.

[14] A. Ladhar and M. Masmoudi, “Efficient and Accurate �Method for Intra-
gate Defect Diagnoses in Nanometer Technology and Volume Data,” in
Proc. IEEE/ACM Design, Automation & Test in Europe, 2009, pp. 988-
993.

[15] Z. Sun, A. Bosio, L. Dilillo, P. Girard, A. Todri, A. Virazel, and E.
Auvray, “Effect-Cause Intra-cell Diagnosis at Transistor Level,” in
Proc. IEEE International Symposium on Quality Electronic Design,
2013, pp. 460-467.

[16] J. E. Nelson, W. C. Tam, and R. D. Blanton, “Automatic Classification
of Bridge Defects,” in Proc. IEEE International Test Conference, 2010,
pp. 1–10.

[17] X. Ren, M. Martin, and R. D. Blanton, “Improving Accuracy of On-
Chip Diagnosis via Incremental Learning,” in Proc. IEEE VLSI Test
Symposium, 2015, pp. 1–6.

[18] Y. Huang, W. Yang, and W. Cheng, “Advancements in diagnosis driven
yield analysis (DDYA): A survey of state-of-the-art scan diagnosis and
yield analysis technologies,” in Proc. IEEE European Test Symposium,
2015, pp. 1–10.

[19] R.J. Tikkanen, S. Siatkowski, Li-C. Wang, and M.S. Abadir, “Yield
Optimization Using Advanced Statistical Correlation Methods,” in Proc.
IEEE International Test Conference, 2014.

[20] H. Wang, O. Poku, X. Yu, S. Liu, I. Komara, and R. Blanton, “Test-
Data Volume Optimization for Diagnosis,” in Proc. ACM/IEEE Design
Automation Conference, 2012, pp. 567.

[21] Y. Xue, O. Poku, X. Li, and R. D. Blanton, “PADRE: Physically- Aware
Diagnostic Resolution Enhancement,” in Proc. IEEE International Test
Conference, 2013.

[22] Z. Gao, S. Malagi, E.J. Marinissen, J. Swenton, and J. Huisken, “Defect-
Location Identification for Cell-Aware Test,” in Proc. IEEE Latin-
American Test Symposium, 2019.

[23] https://machinelearningmastery.com/
[24] S. B. Kotsiantis, “Supervised Machine Learning: A Review of

Classification Techniques,” Informatica, vol. 31, no. 3, pp. 249-268,
2007.

[25] http://scikit-learn.org/stable/user_guide.html
[26] C. Bielza, G. Li, and P. Larranaga, “Multi-Dimensional Classification

with Bayesian Networks,” International Journal of Approximate
Reasoning, vol. 52, no. 6, pp. 705-727, Sept. 2011.

[27] F. Liu, P. K. Nikolov, and S. Ozev, “Parametric Fault Diagnosis for
Analog Circuits Using a Bayesian Framework,” in Proc. IEEE VLSI Test
Symposium, 2006, pp. 277-283.

[28] Z. Zhang, Z. Wang, X. Gu, and K. Chakrabarty, “Board-Level Fault
Diagnosis using Bayesian Inference,” in Proc. IEEE VLSI Test
Symposium, 2010.

[29] M. Martinez and L.E. Sucar, “Learning an Optimal Naïve Bayes
Classifier,” in Proc. International Conference on Pattern Recognition,
vol. 3, pp. 1236–1239, 2006.

[30] M. Sharma, W.T. Cheng, T.P Tai, Y.S Cheng, W. Hsu, C. Liu, S.M.
Reddy, and A. Mann, “Faster Defect Localization in Nanometer
Technology based on Defective Cell Diagnosis,” in Proc. IEEE
International Test Conference, 2007, Paper 15.3.

Safa Mhamdi received her Master degree in Microelectronics
from the University of Montpellier, France, in 2017. She is
currently a PhD student at the University of Montpellier, and
works in the Microelectronics Department of the LIRMM
(Laboratory of Informatics, Robotics and Microelectronics of
Montpellier – France). Her main focus of research lies in Test and
Diagnosis of Digital circuits and systems and Reliability

Patrick Girard received a Ph.D. degree in Microelectronics from
the University of Montpellier, France, in 1992. He is currently
Research Director at CNRS (French National Center for

Scientific Research) and works in the Microelectronics
Department of the Laboratory of Computer Science, Robotics and
Microelectronics of Montpellier (LIRMM) - France. He is
Director of the International Associated Laboratory « LAFISI »
(French-Italian Research Laboratory on Hardware-Software
Integrated Systems). He is deputy director of the French scientific
network dedicated to research in the fields of System-on-Chip,
Embedded Systems and Connected Objects (SOC2). His research
interests include all aspects of digital and memory testing, with
emphasis on critical constraints such as timing and power. Robust
design of neuromorphic circuits as well as machine learning for
test and diagnosis are also part of his new research activities. He
has supervised 37 PhD dissertations and has published 7 books or
book chapters, 75 journal papers, and more than 250 conference
and symposium papers on these fields. Patrick Girard is a Fellow
of the IEEE.

Arnaud Virazel received the Ph.D. degree in Microelectronics
from the University of Montpellier, France, in 2001. He is
currently Associate Professor at the University of Montpellier,
and works in the Microelectronics Department of the LIRMM
(Laboratory of Informatics, Robotics and Microelectronics of
Montpellier - France) where he is leading the TEST (“Test and
dEpendability of microelectronic integrated SysTems”) team. He
has published 3 books or book chapters, 40 journal papers, and
more than 140 conference and symposium papers spanning
diverse disciplines, including DfT, BIST, diagnosis, reliability,
delay testing, power-aware testing and memory testing. He is
deputy head of the electrical engineering Master program (about
200 students) in charge of the first year and of the “Integrated
Electronic Systems” specialization at the University of
Montpellier.

Alberto Bosio received the PhD in Computer Engineering from
the Politecnico di Torino, Italy in 2006. From 2007 to 2018, he
was an Associate Professor at LIRMM - University of
Montpellier in France. Hi is now a Full Professor at the INL –
Ecole Centrale de Lyon, France. His research interests include
Approximate Computing, In-Memory Computing, Test and
Diagnosis of Digital circuits and systems and Reliability. He has
co-authored 1 book, 3 patents, 35 journals, and over 120
conference papers. He is the chair of the ETTTC. He is a member
of the IEEE.

Eric Faehn received an engineer degree in microelectronic and
radio electricity from the “Ecole Nationale Supérieure
d’Electronique et de Radioélectricité de Grenoble” in parallel
with a Master of Research degree in integrated system design
from the “Université Joseph Fourier de Grenoble” in 2004.
Employed after his studies by STMicroelectronics as design
engineer and customer support, he first developed eDRAM
controllers. In 2008, he started to work on eSRAM and oversaw
optimal test algorithms and BIST architecture definition. In 2010,
he focused his activity on memory diagnosis and worked
internally and with external tool suppliers to enhance and
automate diagnosis capabilities and precision.

Aymen Ladhar received the PhD degree in Electrical
Engineering from the University of Sfax, Tunisia, in 2010. He is
currently a senior test & yield engineer at STMicroelectronics
Crolles, France. His research interests include VLSI testing, fault
diagnosis, layout analysis, defect extraction and simulation.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TDMR.2020.2992482

