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Abstract— In this paper, we propose a new learning-guided 
approach for diagnosis of intra-cell defects that may occur in 
customer returns. In the first part of the paper, only static defects 
modeled by stuck-at faults have been assumed. Several 
supervised learning algorithms were considered, with various 
levels of efficiency. In the second part of the paper, we have 
extended the previous work by dealing with more sophisticated 
(i.e. dynamic) defects. This time, we concentrated on a Bayesian 
classification method used for predicting the nature (likelihood to 
be a good candidate) of each new data instance (defect) that has 
to be evaluated during the diagnosis process. Results obtained on 
benchmark circuits, and comparison with a commercial cell-
aware diagnosis tool, demonstrate the efficiency of the proposed 
approach in terms of accuracy and resolution. 

Index Terms—Diagnosis, Machine Learning, Customer returns 

I. INTRODUCTION 
oday’s electronic systems are composed of complex 
Systems on a Chip (SoCs) that consist of heterogeneous 

blocks that comprise memories, digital circuits, analog and 
mixed-signal circuits, etc. To fit a critical application standard 
requirement, SoCs pass through a set of test phases at the end 
of the manufacturing process. The goal is to achieve near-zero 
Defective Parts Per Million (DPPM) so as to ensure the 
quality level required by the standard. 

Despite the quality level (in percentage of fault coverage) of 
the test sequences generated by industrial or in-house tools 
and used during manufacturing test, SoCs may fail in mission 
mode due to occurrence of i) a defect not covered during the 
manufacturing test phase, or ii) early-life failures or failures 
due to various wear-out mechanisms. Early-life failures, also 
called infant mortality, are caused by defects that are not 
exposed during manufacturing tests, but that are degraded due 
to electrical and thermal stress during in-field use, and lead to 
a failure in functionality. Wear-out (or aging) manifesting as 
progressive performance degradation, is induced by various 
mechanisms such as Negative-Bias Temperature Instability 
(NBTI) or Hot-Carrier Injection (HCI). 
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Such failures that occur during the mission mode are the 
most critical as they may result in catastrophic consequences. 
Thus, in an attempt to identify the source of these failures and 
avoid their re-occurrence in next generation products, the 
defective SoC (referred to as “customer return”) is always sent 
back to the manufacturer who is in charge of analyzing the 
device to determine the root cause of failures [1]. In this 
scenario, failures are not easy to reproduce in the company lab 
as the real mission conditions and executed workload are 
generally unknown and cannot be exhaustively modeled. 
Therefore, efficient diagnosis methods to locate and assess 
failures at different system levels are of vital importance.  

Diagnosis is usually followed by Physical Failure Analysis 
(PFA), a time-consuming process for exposing the defect 
physically in order to characterize the failure mechanism. Due 
to the high cost and destructive nature of PFA, diagnosis 
resolution is of critical importance. In practice, it is very 
uncommon to perform PFA on any defect with more than five 
candidates [2]. Ideally, resolution is one, that is, a single 
location is identified when a defect is diagnosed. This ensures 
that the likelihood for uncovering the root-cause of failure is 
maximized when performing PFA. However, with the advent 
of very deep submicron technologies, such a resolution is not 
always reachable by today’s intra-cell logic diagnosis tools 
based on conventional methods (effect-cause / cause-effect). 
In this context, machine learning can be viewed as an efficient 
mean to exploit data (logical or physical) other than that used 
by conventional methods to improve diagnosis resolution [3]. 

In this paper, we present a learning-guided approach for 
diagnosis of intra-cell defects that may occur in customer 
returns. In the first part of the paper, simple (static) defects 
modeled by stuck-at faults have been assumed. We have 
considered static cell-aware test sequences generated by a 
commercial cell-aware Automatic Test Pattern Generation 
(ATPG) tool assuming a standard (low speed) scan-based 
testing scheme. This sequence targets all cell-level stuck-at 
faults plus cell-internal static defects, considering that these 
defects are not covered by a standard stuck-at fault ATPG. 
Several supervised learning algorithms were considered, with 
various levels of efficacy. Results obtained on combinational 
benchmark circuits, and comparison with a commercial cell-
aware diagnosis tool, show the feasibility and accuracy of this 
approach [4]. In the second part of the paper, the previous 
work has been extended by dealing with more sophisticated 
(i.e. dynamic) defects. We have considered cell-aware 
transition test sequences generated by a cell-aware ATPG 
assuming a Launch-Off-Capture scan-based testing scheme. A 
new cell-aware defect diagnosis method is thus proposed, this 
time concentrating on a Bayesian classification method for 
predicting the nature (likelihood to be a good candidate) of 
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each new data instance (defect) that has to be evaluated. As 
for diagnosis of static defects, the efficiency of the proposed 
Bayesian method for diagnosis of intra-cell dynamic defects is 
demonstrated through comparison with a commercial tool. 

The rest of this paper is organized as follows. Section II 
presents a state-of-the-art on diagnosis methods and gives the 
motivations of this work. Section III presents the proposed 
learning-guided cell-aware static defect diagnosis approach. 
Section IV presents the cell-aware dynamic defect diagnosis 
method based on Bayesian classification. Section V presents 
results obtained on two sets of benchmark circuits, as well as a 
comparison with a commercial tool. Section VI concludes the 
paper and discusses missing aspects as well as future work. 

II. STATE OF THE ART AND MOTIVATIONS 
Diagnosis is the first analysis step for a defective SoC. This 

is a software-based method that analyzes the applied tests, the 
tester responses, and the netlist (possibly with layout 
information) to produce a list of candidates that represent the 
possible locations and types of defects (or faults) within the 
defective SoC [5]. The key metrics that characterize diagnosis 
performance are resolution, i.e., the number of candidates 
reported by diagnosis for a given defective SoC, and accuracy, 
i.e., the physical defect is indeed in the list of candidates.  

In the case of a customer return, the first step is to re-use the 
original test program to check if the SoC fails again or not. If 
not, efforts have to be made to find new test patterns and test 
conditions (i.e. voltage and temperature) that will sensitize the 
defect and reveal the failure. Otherwise, if the SoC fails, a 
diagnosis program made of several routines is used to identify, 
step by step, the failing part and, finally, the suspected defects. 
Each routine corresponds to the application of a diagnosis 
algorithm at a given hierarchy level. SoC level diagnosis is the 
first routine used to identify the cores or interconnections in 
the system that can explain the failure. Core level diagnosis 
(inter-cell diagnosis) is then used to identify the possible 
failing cells within a core. Intra-cell diagnosis is finally used 
to pinpoint the possible defect candidates within a cell. 

Except industrial in-house SoC diagnosis tools, very few 
comprehensive diagnosis approach able to deal with a full SoC 
and providing reliable information about fault localization 
exist. To the best of our knowledge, the only work targeting 
SoC-level diagnosis is reported in [6]. The key concept is that 
diagnosis consists in a comparison between a set of pre-
computed SoC failures and the set of failures observed during 
test. This type of approach was formerly proposed in [7] and 
[8] but only for full-scan circuits. In [6], authors propose to 
extend it to the case of SoC. The main advantages of this 
approach w.r.t. the state-of-the-art are (i) the capability to 
manage both full-scan and sequential logic cores, (ii) to deal 
with several fault models at a time (both static and dynamic) 
and (iii) to address both single and multiple fault occurrences.  

Regarding core-level diagnosis, a considerable amount of 
work can be found in the literature. Dedicated techniques have 
been proposed to target specific cores: logic cores (logic 
diagnosis) [7]–[9], memory cores (memory diagnosis) [10–11] 
and analog cores (analog diagnosis) [12–13]. Considering 
logic diagnosis, the result is either an interconnection between 
gates or a suspected gate. Faults can hence occur either in the 

interconnection between gates (inter-cell faults) or inside the 
gate (intra-cell faults). When the observed failure is inside the 
gate, cell-aware diagnosis is applied to locate the cause of this 
failure at the transistor level [14]. An intra-cell diagnosis 
method used for mission mode failures in customer returns has 
been proposed in [15]. It uses a Critical Path Tracing (CPT) 
algorithm applied at transistor level and works as follows. 
First, the test determines which are the failing and passing test 
patterns for a given Circuit Under Test (CUT). Then, logic 
diagnosis exploits this information to determine a list of 
suspected gates (candidates). Any available logic diagnosis 
tool can be used. For each suspected gate, we have to know 
the logical values applied to it when failing and passing test 
patterns are applied to the CUT. This step amounts to 
determine the actual set of failing/passing test patterns at the 
cell level. Finally, intra-cell diagnosis is executed for each 
suspected gate and its related failing /passing test patterns. The 
result is a list of suspected nets at transistor level with a set of 
fault models able to explain the observed failures. More 
details about this flow and results obtained on industrial 
circuits from STMicroelectronics (STM) are in [15]. 

Unfortunately, for various reasons, diagnostic resolution is 
typically far from ideal due to the SoC complexity. As a result, 
a lot of efforts have been dedicated for improving diagnosis 
resolution. Among several types of solutions, it has been 
demonstrated recently that diagnosis resolution can be 
improved with Machine Learning (ML) techniques, primarily 
through the derivation of characteristics that enables correct 
candidates (candidates that correctly represent defect 
locations) to be distinguished from incorrect ones (candidates 
that do not) [16]–[21]. In [16], authors describe an approach to 
identify bridge defects from a population of diagnosed defects 
by using a combination of effective rules and a decision-tree-
based classifier. In [17], authors improve on-chip diagnosis 
resolution with a modified k-nearest neighbors classifier that 
is updated with real-time failure data. In [18], volume 
diagnosis resolution is improved with a Bayesian classifier 
that identifies the actual candidates based on their layout 
properties. In [19], authors present a novel yield optimization 
methodology based on establishing a strong correlation 
between a group of fails and   an adjustable process parameter. 
The core of the methodology comprises three advanced 
statistical correlation methods. In [20], authors use statistical 
learning methods to predict the termination of tester-data 
collection to ensure good resolution. In [21], a learning-based 
resolution improvement approach called PADRE (Physically-
Aware Diagnostic Resolution Enhancement) is proposed. 
PADRE uses a Support Vector Machine algorithm to analyze 
easily available tester and simulation characteristics about the 
candidates to identify those that correspond to the actual 
failure locations. The capabilities of this solution have been 
further extended with a novel Active Learning (AL) based 
PFA selection approach [2]. AL-PADRE selects the most 
useful defects for PFA so as to improve diagnostic resolution. 

Despite their efficiency, a common feature of these 
techniques is that they all address volume diagnosis for yield 
improvement which is a different problem than fault diagnosis 
of customer returns. During volume diagnosis, numerous data 
collected during manufacturing test and subsequent diagnosis 
phases are available, such as, e.g. hundreds of similar failed 
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chips with candidates correctly labeled (good or bad) obtained 
in a previous stage. It is therefore possible to use these data for 
failure diagnosis of a new failed chip. Conversely, during fault 
diagnosis of customer returns, only one failed chip is 
investigated, with no information about the defective behavior 
of some other similar chips used in the same conditions 
(application, environment, workload, etc.). For this reason, 
learning-guided approaches used for volume diagnosis cannot 
be used for fault diagnosis of customer returns. 

III. CELL-AWARE STATIC DEFECT DIAGNOSIS 
Despite the good resolution achievable with conventional 

intra-cell diagnosis technique, in some cases (e.g. complex 
cells, complex failure mechanisms) the number of candidates 
is too high to allow an efficient PFA. This problem will be 
exacerbated with the advent of very deep submicron (i.e., 7 
nm) technologies. Improving intra-cell diagnosis efficiency is 
therefore mandatory. A mean to achieve this goal is to use 
supervised learning algorithms to determine suspected defects. 
Supervised learning is now used in numerous classification 
problems where the knowledge on some data can be used to 
classify a new instance of such data. In this section, we present 
a new approach that uses supervised learning instead of 
traditional cause-effect and/or effect-cause analysis to identify 
static defect candidates within a cell with a high accuracy. 

A. Overall Diagnosis Flow 
Figure 1 shows the proposed diagnosis flow [4] based on 

supervised learning that takes a known set of input data and 
known responses (labeled data) used as training data, trains a 
model, and then implement a classifier based on this model to 
make predictions (inferences) for the response to new data. 

Training Data are generated for each type of cell existing in 
the Circuit Under Diagnosis (CUD) during an off-line 
characterization process done only once for a given cell 
library. It takes as input i) the cell-level test patterns, i.e., all 
possible static and dynamic combinations of values at the 
inputs of a cell, ii) the list of all possible types of cell (NAND, 
NOR, etc.) in the CUD, and iii) the cell netlists at transistor 
level. From these inputs, intra-cell transistor-level defect 
simulations using Spice are performed by iteratively injecting 
all possible defects into each cell type and then simulate the 
behavior of the cell. The output is a set of instances associated 
to each type of cell, and representing the training data. An 
example of partial training data with six instances for an 
arbitrary two-input cell is shown in Fig. 2. Each instance is 
associated to a static defect Di (last column), and a 1 (0) 
indicates that defect Di is detectable (not detectable) at the 
output of the cell when the cell test pattern Pj is applied at the 
inputs of the cell. Cell test patterns are static (one input vector) 
or dynamic (two input vectors). For an n-input cell, there exist 
2n static test patterns and 2n.(2n – 1) dynamic test patterns. In 
Fig. 2, P1 to P4 denote static patterns (00, 01, 10, 11), while 
P5 to P16 denote dynamic patterns. Dynamic patterns appear 
in the training dataset, as it is well known that static defects 
modeled by stuck-at faults can be detected by both static and 
dynamic patterns. In this later case, only the second vector of a 
dynamic test pattern is considered to determine whether or not 
a static defect is detectable by this pattern. Note that this way 

of representing training data looks like a Defect Detection 
Matrix used in cell-aware test pattern generation [22]. 

 
Fig. 1.  Learning-guided intra-cell diagnosis flow 

Besides training data, the Learning-Guided Intra-Cell 
Diagnosis (LGICD) module receives New Data. Each 
instance of the new dataset is associated to one suspected cell 
in the CUD (customer return) and represents a features vector 
that characterizes the real behavior of the cell during test 
application. From each features vector, we can further extract 
one or more defect candidates that have to be classified as 
good or bad candidate with a corresponding probability to be 
the root cause of failure. New data are generated after post-
processing of so-called instance tables describing the behavior 
(pass / fail) of each suspected cell in presence of an intra-cell 
defect (in one of the suspected cells) when a test pattern is 
applied to the cell. An example of a dynamic instance table is 
given in the next section. As shown in Fig. 1, these instance 
tables are obtained from i) the list of suspected cells provided 
by a logic diagnosis tool and ranked according to their score to 
be the source of failure (to contain the real defect), ii) the 
netlist of each suspected cell, and iii) the cell failing/passing 
test patterns. These patterns are obtained by performing a 
simple logic simulation of the CUD with the failing/passing 
test patterns identified by the tester. 

 
Fig. 2.  Example of partial training data for static defects in a two-input cell 

The format of a new data instance is quite similar to that of a 
training data instance, but has a different meaning. In each 
instance, the value 1 (respectively 0) is associated to a failing 
(respectively passing) cell test pattern Pi for a given defect 
candidate, meaning that the candidate is indeed detectable 
(respectively undetectable) by the cell test pattern Pi at the 
circuit output. In such instance, the value 0.5 is associated to a 
cell test pattern for a given defect candidate when this pattern 
does not exist in the list of cell failing/passing test patterns 
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(i.e., the cell test pattern cannot appear at the inputs of a 
suspected cell during test application). The median value 0.5 
has been chosen to avoid missing information in new data 
instances while not biasing the features of these data. An 
example of a new data instance for a two-input cell is given in 
Fig. 3. R stands for rising (0 to 1) transition on a cell input, 
and F stands for falling (1 to 0) transition on a cell input. 

 
Fig. 3.  Example of a new data instance for a two-input cell 

Finally, from the training and new dataset, LGICD provides 
a set of good transistor-level defect candidates with the 
corresponding probability to be the root cause of the failure. 

B. Details of the LGICD Module 
The first phase of the LGICD consists in data preparation. 

Since learning algorithms learn from data, it is essential to use 
data that perfectly match the problem to be solved. Data have 
to be in a useful format and include meaningful features. In 
our case, the process for getting data ready for machine 
learning algorithms can be summarized in three phases [23]: 
1) Data Selection. It consists in selecting the subset of all 
available data that will be used to build a model and classify 
new data. In our case, available data are the training data 
obtained from the off-line characterization process. Each 
instance of the training data is associated to a defect, and 
corresponds to the behavior of the cell (fault-free or faulty) in 
presence of such defect and for all possible combinations 
(static and dynamic) of the cell inputs. Some defects lead to 
the same cell behavior. These defects are called equivalent 
defects. Some others are undetectable by any cell test pattern. 
In our selection process, 70% to 90% of the available data 
were randomly selected and this operation was repeated 
several times to obtain training data with good randomness.  
2) Data Preprocessing. Once training data have been selected, 
we need to consider how they will be used. Training data are 
first stored in a CSV file. Then, they are sampled and grouped 
by considering equivalent defects. All equivalent defects are 
thus associated to a given Defect Class i (DCi). Training data 
instances of undetectable defects are removed.  
3) Data Transformation. The final phase is to transform the 
preprocessed data ready for learning in a format manageable 
by the classifiers (or models). In this format, each instance of a 
training data contains m+1 columns, where m = 2n + 2n.(2n – 
1) for an n-input cell (e.g. 16 for a 2-input cell). Columns 1 to 
m correspond to the exhaustive cell test patterns. Column m+1 
corresponds to each defect class. The names of each column 
are specified when transforming data. This will help to explore 
these data in a later stage of the process. 

In the second phase of the LGICD, we build models based 
on different classification algorithms (called classifiers). As 
we preliminary do not know which algorithm will be efficient 
for our problem, evaluating the performance of the selected 
algorithms is an important step. These evaluations are most 
often based on prediction accuracy (the percentage of correct 
prediction divided by the total number of predictions). There 
are many techniques used to calculate the accuracy of a 
classifier. The technique used in this work is known as cross-

validation. The training data is divided into mutually exclusive 
and equal subsets. For each subset, the classifier is trained on 
the union of all the other subsets [24]. 

Finally, once we have selected the models, we make 
predictions on new data instances with all of the available 
data. In our case, the expected results correspond to a defect’s 
class probability of being the root-cause of failure. Each 
model returns the best defect’s class candidate and the 
probability for each class has a value between 0 and 1. 

C. Selected Supervised Learning Algorithms 
In this work, suspected defects were classified using a 

publicly available machine learning software package called 
Scikit-learn [25]. Scikit-learn is an integrated development 
environment with a suite of ML tools. Various tools of Scikit-
learn with supervised learning algorithms for classification 
have been used in this work. The selected algorithms are the 
following: Logistic Regression (LR), K-Nearest-Neighbors 
(KNN), Naive Bayes (NB) Classifier, and Support Vector 
Machines (SVM). These algorithms represent a mixture of 
linear (LR) and nonlinear (KNN, NB, SVM) algorithms. 

IV. CELL-AWARE DYNAMIC DEFECT DIAGNOSIS 
As indicated at the beginning of the paper, we have extended 

the previous work by dealing with dynamic (open and short) 
defects. A new cell-aware dynamic defect diagnosis method is 
thus presented in this section. This time, we concentrated on a 
Bayesian classification method for predicting the nature 
(likelihood to be a good candidate) of each new data instance 
(defect) that has to be evaluated. This choice comes from the 
results obtained in [4] after experimenting several learning 
algorithms and observing their prediction accuracies. These 
results are partially reported again in Section VI.A. 

Except those that may lead to stuck-open faults, dynamic 
defects are mainly due to resistive opens or shorts that prevent 
signals to propagate within a circuit at the normal speed. 
Dynamic defects induce delayed signals that may prevent 
good logic values to be captured in flip-flops during functional 
mode of operation, and hence lead to circuit failure. With the 
advance of deep submicron technologies, the occurrence of 
dynamic defects is constantly increasing, not only during the 
manufacturing process of ICs, but also during the lifetime of 
the circuit where latent or wear-out defects may appear due to 
various stress conditions (functional, environmental, etc.). 

Dynamic defects can be modeled by delay or transition 
faults. Testing for delay faults is often done through at-speed 
scan testing for logic circuits. At-speed scan testing consists of 
using a rated system (nominal) clock period between launch 
and capture for each delay test pattern, while a longer clock 
period is normally used for scan shifting. In order to test for 
transition faults, two different testing schemes are used in 
practice during at-speed scan testing: Launch-off-Shift (LOS) 
and Launch-off-Capture (LOC). Although LOS and LOC have 
different but complementary delay fault coverage, LOC is the 
preferred scheme in industry due to its easier implementation. 
LOC requires two-pattern tests, where the first vector is used 
for initialization and the second is used to generate transitions. 

Here, we assume that a LOC scheme (also called “Fast 
Sequential”) has been used during test application. A cell-
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aware ATPG has been used to generate tests for gate-level 
transition faults plus cell-internal dynamic defects not covered 
by a conventional transition fault ATPG. Though (cell-aware) 
transition test patterns are used for delay faults, and hence 
detect dynamic defects, they can detect static defects as well. 
For this reason, both static and dynamic defects could be 
considered by our diagnosis method, although only dynamic 
defects have been investigated in this part of our work. 

 
Fig. 4.  Proposed intra-cell dynamic defect diagnosis flow 

Figure 4 shows the flow of the proposed cell-aware dynamic 
defect diagnosis method. Training data are generated as 
described in Section III.A and have the format shown in Fig. 
2. They are extracted from cell-aware views provided by a 
commercial Computer-Aided-Design (CAD) tool that contain 
all characterization results for a given cell type. These results 
are provided in the form of a fault dictionary containing, for 
each defect within a cell, the cell input patterns detecting (or 
not) this defect. New data are generated after post-processing 
of instance tables describing the behavior (pass / fail) of each 
suspected cell in presence of an intra-cell dynamic defect (in 
one of the suspected cells) when a transition test pattern is 
applied to the cell. The format of an instance table looks like 
the one illustrated in Fig. 5 for a given three-input AndOr cell 
and two test patterns. In this example, the first part of the file 
gives information on how the cell is linked to other gates in 
the circuit, while the second part represents, respectively, the 
pattern number, the pattern status (failing, passing), and the 
cell output with the associated fault model for which the 
exercising conditions are reported. Exercising conditions 
shown right below each pattern represent the stimulus arriving 
at the cell inputs during the shift phase (before ‘-’) and applied 
during launch & capture cycles (after ‘-’). For example, 
Pattern 1 consists in applying a falling transition on input A ; 
B and C be equal to static 1 and 0 respectively ; and failing in 
detecting a falling transition on output Z. 

The way to generate instance tables in our diagnosis flow is 
illustrated in Fig. 6. First, cell-aware transition test patterns are 
applied to the failing CUD (customer return). Remember that 
in our method, each test sequence is obtained from a 
commercial cell-aware test pattern generation tool that targets 
intra-cell defects. We then obtain a datalog containing 
information on the failing test patterns and corresponding 
failing primary outputs. From this information and the circuit 
netlist, we perform a logic diagnosis (by using the same 
commercial tool used for test generation) that gives the list of 
suspected cells. By using datalog information, we can finally 
generate an instance table for each suspected cell. 

 
Fig. 5.  Example of a dynamic instance table for an AndOr cell 

As mentioned earlier, all instance tables are post-processed 
to provide a number of new data instances, each representing 
one or more defect candidates that have to be classified 
according to their likelihood to be the root cause of failure. 
The format of a new data instance has been described in the 
previous section. 

 
Fig. 6.  Generation flow of instance tables 

The core block in Fig. 4 depicts the two main steps of the 
supervised learning process used for intra-cell dynamic defect 
diagnosis. As indicated at the beginning of the paper, we use a 
Bayesian classification method for predicting the nature of 
each new data instance. So, the first main step consists in 
generating a NB model and to train it by using the training 
dataset. The second main step consists in constructing the NB 
classifier by using a Gaussian distribution to model the 
likelihood probability functions, and use this classifier to make 
probabilistic prediction (or inference) when a new data 
instance has to be evaluated. These two main steps are detailed 
in the next section. Note that an important preliminary step 
before the above two ones is training data preparation, already 
detailed in subsection III.B. 

V. PREDICTION MODEL BASED ON A BAYESIAN 
CLASSIFICATION METHOD 

The goal of classification is to classify an instance of a class 
based on the value of several attributes (or features). Many 
classification approaches attempt to explicitly construct a 
function from the joint set of values of the attributes to make 
classification. Examples of such classifiers include decision 
trees and neural networks. Bayesian classification takes a quite 
different approach to this problem, by approximating the joint 
probability distribution of the class and the attributes [26]. 
Therefore, learning in Bayesian classification amounts to 
estimate this joint probability distribution. After constructing 
such an estimate, we classify a new instance of a class by 
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examining the conditional probability given the particular 
attribute values, and return the class that is the most probable. 
Bayesian inference (prediction) has been successfully used in 
analog-circuit diagnosis and board-level diagnosis [27-28]. 
Here, it is used for cell-aware dynamic defect diagnosis. 

A. Naive Bayes Model Generation and Training 
Bayesian classification is the general term defining a type of 

classification algorithm based on Bayes’s theorem, which is an 
equation describing the relationship of conditional 
probabilities of statistical quantities. Bayesian classification 
aims at finding the probability of a class C given some 
observed features, which can be written as P(C|features). 
Bayes's theorem expresses this in terms of quantities that can 
be computed more directly: 

P(C|features) = P(features|C) . P(C) / P(features) 

To do that, we need a model by which we can compute 
P(features|C) for a given class. Such a model is called a 
generative model because it specifies the hypothetical random 
process that generates the data. Specifying this generative 
model is the main piece of the training of such a Bayesian 
classifier. The general version of such a training step is a very 
difficult task, but we can make it simpler through the use of 
some simplifying assumptions about the form of this model. 
Clearly, by making naive assumptions about the generative 
model, we can find a rough approximation and then proceed 
with the Bayesian classification. 

NB classifiers make the assumption of independence among 
predictors [29]. In simple terms, a NB classifier assumes that 
the presence of a particular feature in a class is unrelated to the 
presence of any other feature. Even if these features depend on 
each other or upon the existence of the other features, all of 
these properties independently contribute to the probability. 
Features are those characteristics (or attributes) that affect the 
results of a class label. In our training dataset, features are 
represented by the cell-level test patterns associated to a given 
class label, which itself represents a dynamic intra-cell defect. 
Training a model is done based on labeled training data and 
then can be used to assign a pre-defined class label to new 
objects. In this step, training data are used to incrementally 
improve the model’s ability to make inference. The training 
data is divided into mutually exclusive and equal subsets. For 
each subset, the model is trained on the union of all the other 
subsets. Once training is complete, the performance (accuracy) 
of the model is evaluated by using the part of the dataset 
initially set aside. 

B. Naive Bayes Classifier and Inference 
Bayesian theory provides an efficient intuitive approach for 

drawing inferences from observations and a priori beliefs. NB 
classifiers work based on the Bayes’ probability model that 
can be simply formulated as follows: 

 

The posterior probability, in the context of our classification 
problem, can be interpreted as: “What is the probability that a 
new data instance D corresponds to a defect Di in a suspected 
cell given its observed feature values?”. It can be expressed as: 

P(D=Di | features) => P(D=Di | T1,…,Tn) 
where T1,…,Tn represents the values of the cell-level test 
patterns associated to the new data instance D. 

The objective function in the NB probability is to maximize 
the posterior probability given the training data in order to 
formulate the decision rule. This decision rule can be 
formulated based on the posterior probabilities as follows: 

D = Di if P(D = Di | T1,…,Tn) ≥ P(D ≠ Di | T1,…,Tn) 
Otherwise, D ≠ Di 

An additional assumption of NB classifiers is the conditional 
independence of features. Under this naive assumption, the 
class conditional probabilities (or likelihoods) of the new data 
instances can be directly estimated from the training data 
instead of evaluating all possibilities of T. Thus, given a n-
dimensional feature vector T, the class conditional probability 
P(T|Di) can be calculated as follows: 

Here, P(T|Di) simply means: “How likely is to observe this 
particular pattern T given that it belongs to class Di?” The 
individual likelihoods for every feature in the feature vector T 
can be estimated via the maximum-likelihood estimate [29]. 

The third element in Expression (1) is the prior probability 
that can be interpreted as the prior belief or a priori 
knowledge. In the context of pattern classification (a pattern 
corresponds to a new data instance in our case), the prior 
probabilities are also called class priors, and describe “the 
general probability of encountering a particular class”. If the 
priors are following a uniform distribution, the posterior 
probabilities will be entirely determined by the class 
conditional probabilities and the evidence term. And since the 
evidence term is a constant, the decision rule will entirely 
depend on the class conditional probabilities. 

After defining the class conditional probability and prior 
probability, there is only one term missing in order to compute 
posterior probability, that is the evidence. The evidence P(T) 
can be understood as the probability of encountering a 
particular pattern T independent from the class label. Although 
the evidence term is required to accurately calculate posterior 
probabilities, it can be removed from the decision rule since it 
is merely a scaling factor. 

It is worthmentioning that in multi-class classification, each 
new data instance may be assigned multiple class labels 
(defect Di in our case). The NB algorithm is well known for 
multi class prediction feature. In this work, we can predict the 
probability of multiple classes of target variable. 

To implement the classifier and then make inferences, we 
need to use a model representing the way features are 
distributed in feature vectors that correspond to new data 
instances. When the probability distributions of the features 
follow a normal (Gaussian) distribution, the Gaussian NB 
model can be used. In this work, we use a Gaussian kernel to 
calculate the class conditional probabilities. 

In order to illustrate the distribution of features, and hence 
demonstrate the appropriateness of the Gaussian model used 
in our NB classifier, we plot in Fig. 7 the result obtained for an 
AND2 cell. Unimodal and bimodal Gaussian distributions 
were achieved depending on the type (static or dynamic) of 

Posterior Probability = Conditional Probability . Prior Probability 
Evidence

(1)

P(T|Di) = P(T1|Di) •P(T2|Di) •  ...•P(Tn|Di) =  P(Tk|Di)
k =1

n

∏ (2)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TDMR.2020.2992482



 
 

considered cell-level test patterns (P1 to P12). 

 
Fig. 7.  Gaussian distribution of features in an AND2 cell 

VI. EXPERIMENTAL RESULTS 
The two versions of the cell-aware defect diagnosis method 

presented in the previous sections, one for static defects, one 
for dynamic defects, have been implemented separately in a 
Python program. Results are presented and discussed below. 

A. Results of Cell-Aware Static Defect Diagnosis 
We conducted experiments on ISCAS’85 benchmarks 

circuits synthesized in a 28nm FDSOI technology from STM. 
A cell-aware commercial ATPG tool was used to generate test 
patterns for each circuit by targeting static cell-internal defects 
in addition to stuck-at faults. Test patterns were generated to 
achieve 100% stuck-at fault coverage. From each circuit and 
the corresponding test set, we simulated the behavior of the 
tester by performing a defect injection campaign (about 500 
injections per circuit) into a number of randomly selected gates 
and collecting test information to build the tester data log. For 
the defect injection campaign, we considered each transistor of 
the selected gates and targeted all possible static defects 
affecting that transistor. These defects are shown in Fig. 8 and 
are as follows: 
� ROi: full open defect at node i (i = [Gate, Drain, Source, 
Bulk]) 
� RSij: full short defect between nodes i and j (i/j = [Gate, 
Drain, Source, Bulk]) 

 
Fig. 8.  Considered transistor defects 

For example, the number of defects for a NAND2 gate is 
equal to 36 defects (9 defects per transistor). However, several 
defects have the same impact on the logic behavior of the gate. 
So, these defects are logical-equivalent defects and hence are 
grouped in defect classes. Table I shows the equivalent defects 
with the corresponding defect classes for such a gate. In this 
table, Dtk refers to a defect in transistor t (t ranges from 1 to 
4), and k indicates the type (RO or RS) and source node (Gate, 
Drain, Source, Bulk) of the defect. Labels from 1 to 4 for k 
refer to open defects. Labels from 5 to 9 refer to short defects. 

TABLE I.  NAND2 DEFECT CLASSES 
Defect Class Equivalent Defects 

DC1 D11, D12, D13, D16, D21, D22, D23, D26, D38, D39, D48, 
D49 

DC2 D14, D24, D28, D34, D37, D44, D47 
DC3 D15, D36 
DC4 D17 
DC5 D18, D27, D29 
DC6 D19 
DC7 D25 
DC8 D31, D32, D33, D35 
DC9 D41, D42, D43, D45 
DC10 D46 

 

From the list of failing/passing test patterns with the 
corresponding failing/passing CUD outputs (datalog), a logic 
diagnosis tool based on fault simulation was used to determine 
a list of suspected cells ranked according to their score to be 
the source of failure. We used a commercial diagnosis tool to 
this purpose. For most of experiments, the list of suspected 
cells contained the cell in which the defect was injected. In 
very few cases, the commercial tool was unable to identify the 
faulty cell as suspect. Learning-guided cell-aware diagnosis 
was not done in such cases. The average number of Suspected 
Cells (#aSC) for each circuit is listed in Table II, together with 
information about each circuit (number of primary inputs, 
primary outputs, cells, and test patterns). 

TABLE II.  RESULTS OF INTER-CELL LOGIC DIAGNOSIS 
Circuit #PIs #POs #Cells #TP #aSC 

c880 60 26 383 34 2 
c1355 41 32 938 85 3 
c2670 233 140 945 60 3 
c3540 50 22 1504 131 2 
c5315 178 123 2228 75 2 
c7552 207 108 3417 83 4 

 

For generating training data, we used the flow shown in Fig. 
1. This characterization phase of the flow was done using a 
commercial tool and STM libraries. For generating new data 
instances, we performed post-processing of instance tables 
obtained as shown in Fig. 6. From the training data and each 
classifier, we make predictions on new data instances. Results 
obtained are a list of defect candidates with the highest 
probability to be the root cause of failure. 

TABLE III.  CELL-AWARE STATIC DIAGNOSIS RESULTS – C2670 
Class Det #SC LR SVM KNN NB 
DC1 Yes 2 DC1=0.11 DC1 DC1=0.5 DC1=1 
DC2 Yes 3 DC6=0.11 / DC2=0.09 DC6 DC2=0.5 DC2=0.5 
DC3 Yes 2 DC5=0.11 / DC3=0.10 DC3 DC3=0.5 DC3=1 
DC4 Yes 7 DC9=0.14 / DC4=0.12 DC9 DC4=0.5 DC4=0.5 
DC5 Yes 1 DC5=0.14 DC5 DC5=0.5 DC5=1 
DC6 Yes 3 DC6=0.11 DC6 DC6=0.5 DC6=0.5 
DC7 Yes 6 DC7=0.16 DC7 DC7=0.5 DC7=1 
DC8 Yes 2 DC8=0.16 DC8 DC8=0.5 DC8=1 
DC9 Yes 7 DC9=0.14 DC9 DC9=0.5 DC9=0.5 

 

Table III illustrates the results obtained by the proposed 
approach for a defect injection campaign in a two-input AND 
gate of circuit c2670 (with 54 open and short defects grouped 
into 9 defect classes). The first column lists the various defect 
classes. The second column indicates if the defects of the 
corresponding class has been detected or not by the initial 
circuit-level test set. In the case such defects cannot be 
detected, this means that they have no impact on the gate 
output and hence cannot be the source of failure. So, they will 
no longer be considered in our diagnosis process. The third 
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column shows the number of suspected cells obtained after 
logic diagnosis. The next four columns list the best defect’s 
class candidate for each learning algorithm with the 
corresponding probability of being the root cause of failure. 

From these results, the first comment is that KNN and NB 
identify as best candidate the real (injected) defect. This is true 
for all defect classes. For LR, the real defect is always 
identified as a candidate, but sometimes (for DC2, DC3 and 
DC4) in the second or third position. The second comment 
refers to the probability given to each best candidate. For 
example, for DC1, the probability given by LR to DC1 to be 
the best candidate is 0.11. KNN gives a probability of 0.5 
(with n-neighbors=2), which is even better. NB gives a 
probability of 1 to DC1 to be the best candidate, hence do not 
providing any other candidates with lower probabilities 
(unlike what is done by LR and KNN). SVM is a non-
probabilistic algorithm and gives the right defect class in 7 
(over 9) cases. It does not provide any other candidate 
(inherent property). All these results clearly demonstrate the 
feasibility, the effectiveness (in terms of resolution) and 
accuracy of the proposed diagnosis flow.  

Using the same characterization data, a comparison with a 
commercial cell-aware diagnosis tool has been performed. 
This tool is non-probabilistic and provides the list of all 
suspects obtained after diagnosis with a ranking and a 
matching score. Results achieved with the same defect 
injection campaign in the same gate of circuit c2670 are 
reported in Table IV. The first three columns are identical to 
those in Table III. The fourth column gives the number of 
identified defect candidates. The fifth column shows the 
ranking of the injected defect (when it is in the list of 
candidates – NA otherwise) and the matching score. The last 
column reports the accuracy, i.e. the injected defect is or is not 
in the list of candidates. From these results, the first comment 
is that the commercial tool was often unable to provide a 
ranking among the candidates, thus complicating the decision 
before PFA. The second (more important) comment is that, in 
two out nine cases, the injected defect is not in the list of 
candidates provided by the commercial cell-aware tool (i.e. 
results are not accurate). Conversely, our technique with LR, 
KNN and NB always provides the right candidate. This 
proves the superiority of our approach. 

TABLE IV.  DIAGNOSIS RESULTS WITH A COMMERCIAL TOOL – C2670 
Class Det #SC #candidates Ranking / Matching  Accuracy 
DC1 Yes 2 4 No ranking / 100% Yes 
DC2 Yes 3 3 No ranking / 100% Yes 
DC3 Yes 2 4 No ranking / 100% Yes 
DC4 Yes 7 0 NA / 100% No 
DC5 Yes 1 3 No ranking / 100% Yes 
DC6 Yes 3 3 No ranking / 100% Yes 
DC7 Yes 6 1 1 / 100% Yes 
DC8 Yes 2 1 1 / 100% Yes 
DC9 Yes 7 0 NA / 100% No 

 

Tables V and VI summarize the results obtained on a set of 
ISCAS’85 benchmark circuits. Table V is about accuracy and 
reports, for each learning algorithm, the percentage of cases in 
which the injected defect was reported in the list of suspects 
provided by the algorithm. As can be seen, the diagnosis 
accuracy achieved with our technique when using LR, 
KNN and NB algorithms is always 100%. Results obtained 
with SVM are less accurate as this is a non-probabilistic 

algorithm that gives only one suspect, which is sometimes not 
the right one. The last column in Table V shows the accuracy 
obtained for each circuit with the commercial cell-aware 
diagnosis tool. As can be seen, for 4 out of 6 circuits, the 
commercial tool is unable to achieve 100% accuracy. 

TABLE V.  OVERALL DIAGNOSIS RESULTS - ACCURACY 

Circuit ACCURACY 
LR SVM KNN NB Com. Tool 

c880 100% 100% 100% 100% 100% 
c1355 100% 77% 100% 100% 96% 
c2670 100% 77% 100% 100% 84% 
c3540 100% 62% 100% 100% 100% 
c5315 100% 88.8% 100% 100% 97%  
c7552 100% 77% 100% 100% 90% 

 

Table VI is about resolution and gives, for each learning 
algorithm and for each circuit considering all injection 
campaigns, the average number of suspects reported by the 
proposed method and the commercial tool respectively. Note 
that in this case, only the cell in which the defect was injected 
has been considered, the objective being to select the best 
algorithm for further development of the proposed approach. 
The same assumption has been done for the resolution given 
by the commercial tool. We can see that LR always gives 9 
candidates (with various probabilities), which corresponds to 
the number of defect classes of each suspected cell. Similarly, 
KNN always gives two candidates since n-neighbors is 
initially set to 2. Note that in these experiments, n-
neighbors=2 was enough to get a 100% accuracy in all cases. 
Increasing the value of n-neighbors would just increase 
(uselessly) the number of defect candidates provided by the 
learning algorithm. Decreasing n-neighbors (to 1) would no 
longer lead to 100% accuracy in all experiments. Determining 
the value of n-neighbors a-priori is therefore the main difficult 
task when using KNN. Finally, only NB is able to provide the 
best resolution with the highest accuracy, thus definitively 
surpassing the commercial tool. NB was therefore selected for 
further development of the cell-aware diagnosis approach. 

TABLE VI.  OVERALL DIAGNOSIS RESULTS - RESOLUTION 

Circuit RESOLUTION 
LR SVM KNN NB Com. Tool 

c880 9 1 2 1.15 2.01 
c1355 9 1 2 1.1 2.68 
c2670 9 1 2 1.2 2.57 
c3540 9 1 2 2.45 2.23 
c5315 9 1 2 1.08 2.04 
c7552 9 1 2 1.25 2.6 

 

The CPU time taken by the proposed diagnosis flow to 
provide a list of good defect candidates is always very low 
(few seconds) and does not depend on the circuit size. Only 
the number of suspected cells obtained after logic diagnosis 
may have an impact on the CPU time (for the generation of 
instances tables) but in a slight manner. In fact, the most time-
consuming part of the flow (few hours) is the characterization 
phase, but it is done only once and is not correlated with the 
circuit size. 

B. Results of Cell-Aware Dynamic Defect Diagnosis 
We conducted experiments on ITC’99 benchmarks circuits 

synthesized using a 28nm FDSOI technology from STM. 
Circuits were synthesized in a full scan manner by using a 
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commercial tool. A cell-aware commercial ATPG tool was 
used to generate transition test patterns for each circuit by 
targeting dynamic cell-internal defects in addition to gate-level 
transition faults. Test patterns were generated to reach 
maximum transition fault coverage. From each circuit and the 
corresponding test set, we simulated the behavior of the tester 
by performing a defect injection campaign (about 600 random 
injections per circuit) into a number of randomly selected cells 
and collecting test information to build the tester datalog. For 
the defect injection campaign, we considered each transistor of 
the selected cells and we targeted all possible dynamic (i.e. 
resistive open and short) defects affecting that transistor. As 
several defects have the same impact on the logic behavior of 
the cell, and hence are logical-equivalent defects, they were 
grouped in defect classes. 

We used a commercial logic diagnosis tool to determine a 
list of suspected cells ranked according to their score to be the 
source of failure. For all experiments, the list of suspected 
cells contained the cell in which the defect was injected. The 
average number of suspected cells (#aSC) for each circuit is 
listed in Table VII, together with information about each 
circuit (number of primary inputs, primary outputs, cells, scan 
flip-flops, transition test patterns, and transition fault coverage 
in %). 

TABLE VII.  RESULTS OF LOGIC DIAGNOSIS 
Circuit #PIs #POs #Cells #SFF #TP TFC #aSC 

b15 41 37 2465 416 2546 88.38 1.26 
b17 42 38 7960 1314 840 91.10 1.83 
b18 37 35 3238 215 4155 93.46 1.5 
b19 37 23 6337 430 929 93.79 1.34 
b20 37 23 6733 430 5133 93.76 1.55 
b22 37 23 3218 215 4031 93.78 1.73 

 

For generating training data, we used the flow shown in Fig. 
1. This characterization phase of the flow was done using a 
commercial tool and STM libraries. For generating new data 
instances, we performed post-processing of instance tables 
obtained as shown in Fig. 6. From the training data and the 
Bayesian inference model, we make predictions on new data 
instances. Results obtained are a list of defect candidates with 
the highest probability to be the root cause of failure. 

TABLE VIII.  CELL-AWARE DYNAMIC DIAGNOSIS RESULTS – B19 

Defect #SC Proposed (SG=A) Proposed (SG=B) Cell-aware 
tool 

D61 1 (A) D64/D61=0.5  A=D61 
D62 2 (A&B) D81/D62=0.5 D55/D53=0.5 0 
D63 1 (A) D63/D82=0.5  A=D63 
D64 2 (A&B) D61/D64=0.5 D55 A=D82/D64 

B=D50 
D66 2 (A&B) D66 D51/D50=0.5 A=D66 B=D52 
D67 1 (A) D67  A=D67 
D69 2 (A&B) D69 D55 A=D69 B=D55 
D81 1 (A) D81/D63=0.5  0 
D82 2 (A&B) D82/D64=0.5 D55 A=D82/D64 

B=D50 
 

Table VIII illustrates results obtained for a defect injection 
campaign in an AndOr cell of circuit b19 that contains 90 
potential defects including resistive and non-resistive opens 
and shorts. Equivalent defects are grouped into 24 defect 
classes, among which 9 of them are dynamic, with defect size 
(in Ω) set to default values provided by HSpice. The first 
column lists the various injected dynamic defects. The second 
column shows the number of suspected cells (#SC) obtained 

after logic diagnosis. Note that in this case study, the defect is 
always injected in the cell called A. The next two columns list 
the best defect candidates reported by the Bayesian 
classification with the corresponding probability of being the 
root cause of failure. Each column reports the defect 
candidates provided after applying the proposed method 
successively on each suspected cell A and B (when two 
suspected cells exist). The last column reports the defect 
candidates provided by a commercial cell-aware diagnosis tool 
using the same characterization data. This tool is non-
probabilistic and provides the list of all suspects obtained after 
diagnosis with a ranking and a matching score. 

From these results, the first comment is that the real 
(injected) defect is always identified by the proposed 
diagnosis approach. Sometimes, it is the only candidate and 
has a probability of 1 (e.g. D67) to be the best candidate. 
Sometimes, it is reported with another candidate in suspected 
cell A (e.g. D61), hence with a probability of 0.5. When two 
cells are suspected (e.g. D66), some defect candidates in 
suspected cell B are also reported, but the injected defect 
belongs to the whole set of candidates. Conversely, we can 
observe that the commercial cell-aware diagnosis tool is not 
always able to report the injected defect as candidate. This is 
the case for D62 and D81, for which the number of reported 
candidates is 0. This is the most important observation 
from these results, which demonstrates that in terms of 
accuracy, our proposed solution is 100% efficient, which is 
not the case of the commercial cell-aware diagnosis tool that 
sometimes can provide inaccurate results. The second 
comment is about resolution. In this example, not fully 
representative, we can observe that in some cases (e.g. D66, 
D67, D69, D82), our method provides results with the same 
resolution than what can be obtained with the cell-aware 
diagnosis tool. In some other (e.g. D61, D63), the resolution is 
a bit lower with our solution, but the difference is really small 
(3 instead of 2 candidates). 

TABLE IX.  OVERALL DIAGNOSIS RESULTS 

Circuit Accuracy Resolution 
Bayesian Com. Tool Bayesian Com. Tool 

b15 100% 100% 2.220 2.454 
b17 100% 100% 5.636 5.242 
b18 100% 97.89% 4.842 4.882 
b19 100% 95.89% 2.405 1.807 
b20 100% 95.83% 2.603 2.373 
b22 100% 100% 5.280 5.114 

 

Table IX summarizes the results obtained on a set of ITC’99 
benchmark circuits. The first part of the table is about 
accuracy and gives, for each circuit, the percentage of cases in 
which the injected defect was reported in the list of suspects 
provided by the Bayesian diagnosis technique and the 
commercial cell-aware diagnosis tool respectively. As can be 
seen, for 3 out of 6 circuits, the commercial tool is unable to 
achieve 100% (achieved with our technique). The second part 
of the table is about resolution and gives, for each circuit and 
considering all injection campaigns, the average number of 
suspects reported by the proposed method and the commercial 
tool respectively. As can be seen, the resolutions achieved 
with both methods are very close. So, overall, these results 
confirm the superiority of our approach in terms of accuracy. 
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VII. CONCLUSION, DISCUSSION AND FUTURE WORK 
In this paper, we have proposed a new learning-guided 

approach for diagnosis of intra-cell defects that may occur in 
customer returns. In the first part of the paper, we have 
considered several supervised learning algorithms and dealt 
with static defects modeled by stuck-at faults. In the second 
part of the paper, we have extended the previous work by 
dealing with more sophisticated (i.e. dynamic) defects. This 
time, we used a Gaussian NB classifier for predicting the 
nature (likelihood to be a good candidate) of each new data 
instance that has to be evaluated during the diagnosis process. 
In both case, we have compared our results with those 
obtained with a commercial cell-aware diagnosis tool to 
demonstrate the efficiency of the proposed approach in terms 
of accuracy and resolution. 

The above results show the appropriateness of a learning- 
based method to solve our problem, despite the small size of 
the training dataset used (only one sample for one defect 
class). This will be even truer when multiple defect sizes and 
test conditions will be used. In these cases, multiple samples 
(one for each defect size or defect size range, one for each 
PVT test condition) will be associated to a given defect class, 
simply because the behavior of the defect will differ when 
applying the same set of test patterns. In terms of timing and 
complexity, this will just slightly impact our method, since 
training dataset is extracted from characterized cell libraries 
that are generated anyway for test and diagnosis purpose. So, 
even with large cell libraries with a huge number of defects to 
be simulated (e.g. 631 cells in a library, each with 4 to 6 
inputs, 951 shorts and 749 opens on average – typical example 
of an STM library), our framework will still be easily and 
time-efficiently applicable. 

In this work, the single defect assumption has been 
considered in our experiments. However, this assumption is 
not necessary as the proposed approach is able to manage 
situations where multiple defects have occurred, provided that 
those defects are not in the same cell. This significant feature 
(also valid for commercial tools) comes from the fact that our 
diagnosis flow considers all suspected cells one at a time, and 
then incrementally constructs a list of suspects identified in 
each of these cells. Similarly, no ranking among the suspected 
cells provided after logic diagnosis has been considered in our 
experiments. As a consequence, our flow has reported all 
defect candidates coming from all suspected cells without any 
ranking. In case a ranking of suspected cells is done after logic 
diagnosis (usually the case with commercial tools), a similar 
ranking among defect candidates can be done in our flow. In-
field failure mechanisms related to premature aging, such as 
NBTI or HCI, essentially lead to resistive opens and shorts. 
These mechanisms, that have to be considered in the context 
of customer returns, can now be appropriately taken into 
account in our cell-aware dynamic diagnosis flow. 

The next step of this work will be to fully combine the two 
proposed approaches described in this paper in order to get a 
comprehensive diagnosis method able to deal with all types of 
defects, i.e. static and dynamic, that may occur in customer 
returns. Thought it may look simple, as just a combination of 
the two previous methods, proposing such a comprehensive 
method raised new problems and imposed setting up a new 

framework with specific rules to achieve the same level of 
efficiency in terms of diagnosis accuracy and resolution. 
Further developments have also to be done to address several 
missing aspects. In our study, all injected defects for 
evaluation purposes were present in the training dataset. In 
real silicon, especially for customer returns, actual defect 
behavior may not perfectly match the fault models that are 
used to train the classifier. Further work will be dedicated to 
see how well the proposed method works in that scenario. 
Moreover, layout information has to be used to refine the list 
of defects that are considered during training data preparation. 
By this way, only realistic defects will be assumed during the 
whole process, thus increasing diagnosis efficiency. Then, we 
need to consider multiple sensitization conditions that may 
occur due to i) the fact that most of industrial designs are not 
100% full scan and hence require multiple capture cycles 
during test, ii) the presence of a mix of leading and trailing 
edge triggered flops in a design, and ii) the fact that the clock 
signal feeds into the system logic under test [30]. Another 
point is that unique test conditions have been assumed in our 
experiments. In the context of mission mode failure diagnosis, 
multiple test conditions with various PVT corners also need to 
be considered. Finally, we need to compare our results with 
those obtained with an industrial in-house tool [15], and 
perform experiments on customer returns provided by STM. 
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