
HAL Id: lirmm-03032856
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03032856

Submitted on 1 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Comparison of Different ATPG approaches for
Approximate Integrated Circuits

Marcello Traiola, Arnaud Virazel, Patrick Girard, Mario Barbareschi, Alberto
Bosio

To cite this version:
Marcello Traiola, Arnaud Virazel, Patrick Girard, Mario Barbareschi, Alberto Bosio. On the Com-
parison of Different ATPG approaches for Approximate Integrated Circuits. DDECS 2018 - 1st
International Symposium on Design and Diagnostics of Electronic Circuits and Systems, Apr 2018,
Budapest, Hungary. pp.85-90, �10.1109/DDECS.2018.00022�. �lirmm-03032856�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03032856
https://hal.archives-ouvertes.fr

1

On the Comparison of Different ATPG approaches
for Approximate Integrated Circuits

Marcello Traiola1, Arnaud Virazel1, Patrick Girard1, Mario Barbareschi2, Alberto Bosio1
1LIRMM - University of Montpellier / CNRS - France - Email: {firstname.lastname}@lirmm.fr

2DIETI - University of Naples Federico II - Italy - Email: mario.barbareschi@unina.it

Abstract—Approximate Computing (AxC) emerges more and
more as a new paradigm for the design of energy-efficient
Integrated Circuits (ICs) at the cost of accuracy reduction. The
latter has to be modeled and quantified by means of Error
Metrics. From the testing point of view, AxC Integrated Circuits
offer an opportunity. Instead of testing for all manufacturing
defects, the goal is to test only for those that will lead to an error
considered as not acceptable by the adopted Error Metrics.
The main advantages are the test cost reduction, since the
number of required test vectors will be reduced, and the yield
improvement. We developed three approaches for generating
test vectors targeting AxC Integrated Circuits. This paper aims
at comparing these approaches on a public benchmark suite.

keywords: Approximate Computing; Test; ATPG; Functional
Approximation; Integrated Circuits

I. INTRODUCTION

The Approximate Computing (AxC) paradigm is based on
the intuitive observation that rather than a perfect result, inner
operations of a computing system can be selectively inaccurate
for providing gains in efficiency (i.e., less power consumption,
less area, higher manufacturing yield) at the cost of a slightly
accuracy reduction. Moreover, many research works proved
that some computing domains are characterized by the so-
called error inherent-resilience property, that is the ability of
an application to produce good-enough results despite the
fact that some of the inner operations, or involved data, are
inexact [1]–[4]. This way, AxC techniques benefit from such a
property whenever inaccuracy implies performance gain. The
inaccuracy can involve every system layer from hardware to
software components [5].

In this paper we focus on Functional Approximation [1],
[6]–[15] applied to hardware components. Functional Approx-
imation aims at modifying the circuit structure so that an
original function F is replaced by the function G, whose
implementation leads to an area/energy reduction at the cost of
a reduced accuracy, meaning that some errors can be observed
at the outputs of G. The observed errors represent a variation
between the output values of F (precise) and G (approximate).
Such variation is the accuracy loss measured by means of
Error Metric(s). For instance, we can cite the Error Rate, i.e.
how many times an error is observed at circuit outputs, and
the Error Magnitude, measured as the difference between the
golden and erroneous outputs, both formally defined in [3].

During the manufacturing process, physical defects (either
random or systematic) can affect the IC and may be the cause
of faults leading to observable errors. Unfortunately, these

errors (due to faults) may further reduce the accuracy - already
reduced as result of the functional approximation - and may
affect outputs more than the acceptable error (i.e., the amount
of errors is greater than the threshold). In this context, the
role of testing is to ensure that the observed errors due to the
presence of defects is never greater than the acceptable error
threshold fixed by the final user.

In this paper, we present a comparison between three differ-
ent Automatic Test Pattern Generation (ATPG) approaches for
functional Approximate Integrated Circuits (AxIC). We per-
form experiments for all the techniques on a public benchmark
suite [16] composed of arithmetic circuits and we compare the
results. We use the Worst Case Error (WCE) as metric since it
is significant for such type of circuits [17]. The results show
that a unique technique cannot be adopted and, depending on
the type of circuit and error threshold, the test engineer has to
carefully select the most suitable one.

The paper is organized as follows. Section II describes the
issue related to the AxIC testing. Section III describes two
existing AxIC aware ATPG techniques and introduces a third
one. Experimental results are discussed in Section IV. Finally,
conclusions are given in Section V.

II. PROBLEM STATEMENT

As described in Section I, functional approximation mod-
ifies/simplifies the circuit structure by introducing a certain
amount of errors. The main issue is to ensure that, during the
manufacturing process, physical defects do not cause an error
greater than the acceptable one. In a more formal way, each
detectable fault Fi leads to an observable error Ei; the goal
is, therefore, to identify the whole set of detectable faults Fs

such that the induced error Es is non-acceptable (i.e., greater
than the given error threshold). Finally, testing only for the set
of detectable faults Fs guarantees to have an error that does
not exceed the acceptable one.

Figure 1 represents the above concept. The set of all possible
faults which can affect an AxIC is composed of different
subsets, each of those leads the circuit to have an error. As
an example, Figure 1 depicts the case where, for each fault
of the subset Fs, it exists at least one input vector x able to
sensitize and propagate the fault to the circuit outputs such that
the observed error Es is greater than the acceptable threshold.
Conversely, it exists a set of faults Ft for which the observed
errors Et are always equal or lower than the acceptable
threshold. This property has to be valid for all the possible

2

No faultsNo faults

AxIC

AxIC

AxIC

ES (>Thr)

Et (≤Thr)
 ∀ inputs

E (≤Thr)
 ∀ inputs

 ∃ x inputs∈

Fig. 1: AxIC Fault impact

combinations of inputs. The goal of the test is, therefore, to
detect all the faults belonging to Fs. The composition of the
set Fs depends on the user-defined acceptable error threshold.

The advantage of applying such approaches is, above all,
to increment the yield (i.e., fewer circuits will be rejected).
Moreover, by reducing the test set dimension, the test cost
is reduced. The test time reduction turns out to be very
important especially in the perspective of online testing. In
the next sections, we present three different approaches for
the Automatic Test Pattern Generation targeting AxICs.

III. AXIC AWARE ATPG TECHNIQUES

As introduced in the previous section, the goal of this paper
is to compare different techniques for generating test sets
for a given approximate circuit, knowing its error metric and
error threshold. This section presents three different ATPG
approaches for AxIC circuits.

A. First Approach: AUT

Figure 2 sketches the overall flow of the first proposed
approach called AUT. It is composed of two main steps: (i) the
Architecture Under Test (AUT) Generator and (ii) the ATPG.
The AUT generator requires as inputs the AxIC netlist, the
original precise circuit netlist, the error metric and the error
threshold.

Precise
Circuit Netlist

Precise
Circuit Netlist

Approximate
Circuit Netlist
Approximate
Circuit Netlist

AUT
Generator

AUT
Generator

Fault ListFault List

ATPGATPGAUTAUT

Error Metrics/Error Metrics/
ThresholdsThresholds

Test SetTest Set

Fig. 2: Test pattern generation for AxIC with AUT generation

As pointed out in the previous section, we have to detect
faults leading to an error greater than the acceptable threshold.
This approach let the ATPG deal with the problem of com-
paring the outputs of the precise and the approximate circuits.
Figure 3 reports a schematic view of an AUT. The basic idea
is to create a new circuit that embeds both the precise and
the approximate circuit, which receive the same inputs. The
outputs of the precise and the approximate circuit are then used

to compute the error metric (Error Metric Comp. in the figure).
Finally, the computed error E is evaluated w.r.t the given error
threshold (Thr in the figure). If E is lower than Thr, then
the output O will be set to “Acceptable”, otherwise it will
be set to “Non-acceptable”. As a consequence, by targeting
all the possible faults affecting the AxIC within the AUT, the
ATPG will find patterns for testing only faults leading to an
observable output (i.e., leading to a non-tolerable error).

Error
Metric
Comp.

Error
Metric
Comp.AxICAxIC

Precise
IC

Precise
IC

≤ Thr≤ Thr Acceptable/
Non-acceptable

Acceptable/
Non-acceptable

InputsInputs

EE OO

Fig. 3: Architecture Under Test (AUT)

Analysis: We applied this approach on 430 non-dominated
8-bit approximate adders (created from 13 conventional
adders) and 471 non-dominated 8-bit approximate multipliers
(created from 6 conventional multipliers) downloaded from the
EvoApprox8b [16]. We target a single error metric that is the
Worst Case Error (WCE). WCE is the maximum arithmetic
difference between precise and approximate outputs. It is
formally defined in Equation 1.

WCE = max
∀i

∣∣∣O(i)
approx −O(i)

prec

∣∣∣ (1)

Where Oapprox and Oprec are the outputs of the AxIC and
Precise circuit respectively.

We instrumented the ATPG using the classical options
(static and dynamic compaction) targeting Stuck-at-Faults.
First, we ran the ATPG for each approximate circuit in order
to test for all the possible faults independently on the induced
error. We refer to this step as classical test approach. Then, for
each of them, we built the AUT and we apply the proposed
approach. The goal is to show the reduction of test length
between the AUT approach against the classical one. We got
the results of Figure 4a and 4b.

For each chart, the horizontal axis plots the % of reduction
and the vertical axis the distribution associated with the
achieved reduction. This means that for a given reduction (i.e.,
a given X value) we plot the percentage of circuits achieving
that reduction w.r.t. to the total amount of circuits.

First of all, we can note that a significant test reduction
can be achieved (i.e. up to 80% for the multipliers). On the
other hand, for some cases the number of test vectors increases
instead of decreasing. The worst case is -166% meaning that
we increase the number of vectors of about 166% (for this
specific case we increase from three test vectors to 8).

To explain the reason behind this result, we can resort to a
simple example. Let us consider that three faults (f1, f2 and
f3) are targeted in the classical approach while only f2 and
f3 are targeted in our approach. Now, in the former case, it is
possible that the test vector targeting f1 can also detect f2 and
f3 leading to having only 1 test vector. On the other hand, in
the latter case, it is possible that the test vector generated for

3

(a) Test Reduction add8 1st technique (b) Test Reduction mul8 1st technique

(c) Test Reduction add8 2nd technique (d) Test Reduction mul8 2nd technique

(e) Test Reduction add8 3rd technique (f) Test Reduction mul8 3rd technique

Fig. 4: Obtained Results for the Approximate 8-bit Adders and Multipliers

f2 does not cover f3 and thus the ATPG has to generate two
test vectors.

This problem led us to adopt a different approach detailed
in the next subsection.

B. Second Approach: FS

After analyzing the results of the AUT approach, we applied
a different method: we executed the ATPG on the AxIC circuit
only (i.e., without the AUT) and we tried to extract a test
vectors subset able to detect all the faults leading to a Non-
Acceptable error. The technique is implemented in two steps:
(i) the classic ATPG phase and (ii) the fault simulation phase.
For this reason we refer to this approach as Fault Simulation
(FS) approach. Figure 5 describes the second technique. The
key point is fault simulation of the test set generated by the
ATPG. The generated test set detect all the possible faults
affecting the AxIC. Thus, the fault simulation is used to
determine what are the faults leading to non-acceptable errors
(i.e., the faults that must be detected). To do this, we need
to determine the errors due to the presence of faults w.r.t. to
the precise circuit. Figure 6 depicts how Fault Simulation is
exploited to select the test patterns for detecting the faults
leading to unacceptable errors (i.e., greater than the given
threshold). Test patterns are applied in input to both precise
and approximate circuits. For each pattern, the corresponding
precise and approximate outputs are compared and, if the

difference results greater than the error threshold, the pattern
is kept. Otherwise, it is discarded since the error induced by
the fault is acceptable.

Test
Set

Fault
List

Precise
Circuit Netlist

Approximate
Circuit Netlist

Reduced
Fault List

Fault
Simulaton

Reduced
Test Set

Error Metrics/
Thresholds

ATPG

Fig. 5: Test pattern generation for AxIC with fault simulation

Error
Metric
Comp.

IC

AxICTest Paterns

Fault
List

≤ Thr

Keep
Patern

Discard
Patern

Yes

No

Threshold

out

out’

Error

Fig. 6: Fault simulation phase

In the above mentioned case the Error Metric Comp. block
calculates the WCE using Equation 1. The fault simulation is
performed applying the test patterns generated in the ATPG

4

phase to the netlists of both circuits. In this way, the patterns
that are not necessary (i.e., they test only for fault already
tested by other patterns and for those which are tolerable) are
discarded leading to a pattern reduction. Let us now present
some experimental results.

Analysis: We applied the FS approach on the same set
of circuits and conditions exploited in the III-A. Results are
shown in Figure 4c and 4d. The histograms clearly show
the efficiency of using the FS approach. Indeed, there is
not anymore an increase of test vectors as for the AUT
approach. On the other hand, the reader can notice that for
the majority of circuits (especially for the adders), there is no
test length reduction. And the number of circuits for which
the test reduction is greater than 0 is lower than the AUT. To
summarize, compared to the AUT approach, we really avoid
the increase of the test vectors (this is a good point) but the
efficiency is lower since AUT achieved higher test reduction.

We thus deeply investigated the approach and we found
out that the achieved test reduction of the FS approach
depends on the order of fault-simulation of the test patterns.
Indeed, changing the order, a different pattern reduction can
be obtained. This is the basic insight for the third approach
described in the next section.

C. Third technique: PS

As shown in the previous section, by using the FS approach
we are able to avoid any increase of test patterns but the
maximum amount of test reduction is lower compared to
the AUT approach. While performing experiments with FS
approach, we remarked that the order of the fault simulated
test vectors affects the results in terms of test reduction. In
Figure 7 we report an example from a tiny circuit and we refer
to that figure for better depicting the issue and to introduce
the third approach.

By fault-simulating test patterns in the same order as
provided by the ATPG, we noticed that they were not sorted
by the non-tolerable-fault coverage of each pattern (AF in the
figure). The Error Metric Comparator makes the decision of

SortingSorting

* NF: New faults detected (w.r.t. previous patterns) – AF: All faults detected

1111..00 0 26(26)
0101..10 1 9(22)
1000..01 2 9(25)
1011..10 3 3(23)
0110..00 4 0(23)
0101..01 5 1(24)
0110..10 6 3(29)
1001..11 7 0(24)
1010..00 8 0(24)
0001..11 9 1(24)
1000..00 10 1(28)

Pattern ID NF(AF)*

0110..10 6 29(29)
1000..00 10 13(28)
1111..00 0 6(26)
1000..01 2 4(25)
0101..01 5 1(24)
1001..11 7 0(24)
1010..00 8 0(24)
0001..11 9 0(24)
1011..10 3 0(23)
0110..00 4 0(23)
0101..10 1 0(22)

Pattern ID NF(AF)*

a) Fault simulation technique b) Enhancement

Fig. 7: Pattern Sorting

discarding the pattern xi if it does not increase non-tolerable-
fault coverage compared to the subset [x1, ..., xi−1] already
fault-simulated (NF = 0, in the figure). Thus, the insight
is that fault-simulating patterns, sorted by their non-tolerable-
fault coverage (AF), allows detecting more faults with the first

patterns, so that subsequent ones result as superfluous (i.e.,
they test only already covered or tolerable faults), producing a
further pattern reduction. We call this approach Pattern Sorting
(PS) approach. As we can remark in Figure 7, sorting patterns
by their non-tolerable-fault coverage allows to increase the
pattern reduction from 27.27% of the FS technique to 54.55%.
The extra cost is an additional fault simulation of the sorted
patterns.

Analysis: We apply the PS approach on the same set of
circuits and conditions exploited in the III-A. Results are
shown in Figure 4e and 4f. The histograms clearly show the
efficiency of using the PS approach compared to FS. It can
be noticed that the percentage of achieved test reduction is
higher than FS approach. The next section will present a more
extensive set of experimental results to further compare the
proposed approaches.

IV. EXPERIMENTAL RESULTS

In this section, we report pattern reduction statistics for the
third technique (i.e., PS) and we compare the three described
techniques. By exploiting the public library of approximate
components called EvoApprox8b [16], we carried out exper-
iments. More than 1100 different approximate circuits are
available within this library, including 8-bit adders, 8-bit, 16-
bit and 32-bit multipliers. As for the previous experiments, we
focused on the WCE as error metric. Two fault models have
been used: Stuck-at-Fault (SaF) and Transition Fault (TF).
All the circuits have been synthesized using Synopsys Design
Compiler and a 65-nm industrial CMOS technological library.

TABLE I: EvoApprox8b Statistics

Faults WCECircuits Qty Min Max Min Max
8bit Adders 448 30 410 1 168

8bit Multipliers 471 464 1662 1 3204
16bit Multipliers 60 128 128 38804 8.5 · 108
32bit Multipliers 153 256 256 7.3 · 1010 1.8 · 1018

In Table I we report the main statistics on the circuits. We
report the number of circuits for each group, the Minimum/-
Maximum number of faults (SaFs and TFs) and the Mini-
mum/Maximum WCE. Please note that there is no relation
between the latter two parameters (i.e., the maximum number
of faults is not related to the circuit having the minimum WCE
and vice versa). Moreover, the number of SaFs is equal to the
number of TFs. For further details, please refer to [16].

The experimental flow that we adopted is the following.
Firstly, we set a the ATPG tool [18] using classical options
(static and dynamic compaction) targeting SaFs as well as TFs,
following the classical test approach already used for obtaining
results shown in Figure 4. Then, for each circuit, we applied
the three described approaches, i.e., test pattern generation
with AUT (AUT, henceforth), test pattern generation with
fault simulation (FS, henceforth), and test pattern generation
with fault simulation and pattern sorting (PS, henceforth).
In Table II, we show firstly the pattern reduction statistics
considering the proposed method (PS) compared to the classic
testing approach (i.e., testing all the faults). As shown in

5

(a) Results for SaFs (b) Results for TFs

Fig. 8: Test reduction comparison by WCE

TABLE II: Pattern Reduction Statistics for PS

(a) Pattern Reduction SaFs (%)

Circ Add8 Mul8 Mul16 Mul32
Min. 0.00 0.00 0.00 0.00
Q1 0.00 16.67 25.00 28.57

Med. 11.11 31.82 33.33 38.46
Q3 33.33 40.00 38.85 50.00

Max. 87.50 63.16 50.00 66.67
Avg. 20.32 29.13 30.53 38.84

(b) Pattern Reduction TFs (%)

Circ Add8 Mul8 Mul16 Mul32
Min. 0.00 10.53 27.27 30.77
Q1 8.33 37.50 40.00 55.00

Med. 16.67 45.83 50.00 60.00
Q3 27.27 54.23 56.25 66.67

Max. 93.94 73.17 68.18 77.42
Avg. 19.37 45.60 48.95 59.26

the table, test reduction is slightly better when considering
TFs. On average, we obtained reductions from 20% to 38%
for SaFs and from 19% to 59% for TFs. The maximum
achieved reduction is 87% for SaFs and 93% for TFs, both
with 8-bit Adders. Better results are achieved with Multipliers,
in general. Indeed, in the range Q1-Q3 (i.e., 50% of the
circuits) we can observe better reductions for multipliers. 8-
bit adders show a test reduction for SaFs (TFs) between
0% and 33% (8%-27%), while in the same range we find
a test reduction between 14% and 40% (37%-54%) for 8-
bit multipliers, between 25% and 38% (40%-56%) for 16-bit
multipliers and between 28% and 50% (55%-66%) for 32-bit
multipliers.

Then, in Figure 8 and Table III, we report the comparison
between the three discussed techniques from two different
points of view.

a) : As showed in Figure 8, we sorted the circuits by
their WCE value and made 10 groups composed by the same
number of circuits. Each group is composed by about 113
circuits. For each group, we reported the percentage of circuits
for which each method shows better performance in pattern
reduction. Taking as an example the Figure 8a which shows the
SaF case, regarding the group of 113 circuits having a WCE
between 3 and 7 the PS method shows better test reduction
in 60% of the cases (about 66 circuits), the FS method in
30% of the cases (about 33 circuits) and the AUT method
in 10% of the cases (about 11 circuits). We can remark that,
concerning SaF faults, the PS method acts better than the FS
in the majority of the cases. Morover, when the WCE of the

target circuits is not high (up to 40), the PS acts often better
than the AUT method. Starting from that point, the trend is
inverted showing the AUT method achieving better results.
Regarding the TF faults, up to a WCE of 16 the FS methods
frequently behaves better that the others, from WCE values
of 16 to 3075 the PS method acts better than the others and,
finally, the AUT method gains a lot for very high WCE values
(from 3075 to 1.8 ∗ 1018).

b) : On the other hand, in Table III we report the same
comparison by considering the different types of circuits (8-
bit adders and 8-16-32 bit multipliers). The first two rows of

TABLE III: Test reduction comparison by type of circuit
(a) Test Reduction SaFs

SaF
Circ. Best

PS
Best
FS

Best
AUT

Add8 60.38% 28.13% 11.50%
Mul8 22.26% 6.76% 70.98%

Mul16 2.78% 1.94% 95.28%
Mul32 0.00% 0.00% 100.00%

(b) Test Reduction TFs

TF
Circ. Best

PS
Best
FS

Best
AUT

Add8 44.35% 48.03% 7.63%
Mul8 71.59% 19.89% 8.53%

Mul16 11.11% 25.28% 63.61%
Mul32 0.98% 1.63% 97.39%

Table IIIa can be compared with graphs in Figure 4. Indeed,
the graphs show not very good performances of the AUT
method with 8-bit adders (often it produces an increase of the
test patterns), while FS and PS get better results in the majority
of the cases. Only in 11% of the cases AUT acts better. For 8-
bit Multipliers, FS and PS fix the AUT problem of increasing
the test patterns but, in a lot of cases, the latter shows better
results. For TFs, in the first two rows of Table IIIb, we can
observe a similar trend for both 8-bit adders and multipliers.
Indeed, PS and FS achieve better results than AUT in the
majority of the cases. In particular, PS obtains better results
over others for 8-bit multipliers (71%). Finally, concerning 16
and 32 bit multipliers, the AUT method shows almost always
better results than the other techniques.

Lastly, in Table IV we report execution time statistics (i.e.,
minimum, maximum and average) for all the discussed tech-
niques applied to the four groups of AxICs (i.e., 8-bit Adders
and 8-16-32-bit Multipliers). The column labeled as classic

6

TABLE IV: Execution time comparison (seconds)

(a) Execution time SaFs (seconds)

SaF
Classic AUT FS PS

Min 0.56 0.57 0.55 0.56
Max 1.14 1.07 1.06 1.00Add8
Avg 0.62 0.64 0.63 0.63
Min 0.56 0.69 0.58 0.58
Max 1.05 1.54 1.09 1.14Mul8
Avg 0.64 0.91 0.66 0.66
Min 0.59 0.70 0.62 0.62
Max 1.05 1.59 1.44 1.53Mul16
Avg 0.64 0.96 0.82 0.82
Min 0.57 1.20 0.77 0.77
Max 1.01 8.28 7.02 7.01Mul32
Avg 0.64 2.60 1.91 1.91

(b) Execution time TFs (seconds)

TF
Classic AUT FS PS

Min 0.56 0.57 0.57 0.56
Max 1.03 1.06 1.00 0.99Add8
Avg 0.62 0.64 0.63 0.63
Min 0.56 0.74 0.59 0.58
Max 1.03 1.80 1.14 1.18Mul8
Avg 0.64 1.01 0.68 0.68
Min 0.58 0.73 0.62 0.63
Max 0.83 1.68 1.40 1.43Mul16
Avg 0.62 1.04 0.84 0.83
Min 0.58 1.23 0.80 0.78
Max 1.00 8.89 7.18 7.05Mul32
Avg 0.64 2.78 1.94 1.94

reports execution time statistics (in seconds) for producing
test patterns for all the faults (i.e., tolerable and non-tolerable)
of an AxIC. AUT, FS and PS columns report execution time
statistics (in seconds) for the respective techniques. More in
details, AUT column reports absolute execution times (i.e., the
technique can be used independently from the others). On the
other hand, FS and PS execution times are intended as over-
head. Specifically, FS column reports the overhead comparing
to the classic technique as we have to fault simulate vectors
obtained in the ATPG phase (i.e., classic technique) to discard
the superfluous ones. Finally, PS column reports the overhead
comparing to FS as we have to know the non-tolerable-fault
coverage for sorting patterns accordingly. Looking at the big
picture, execution times are fairly acceptable as, on average,
the overhead results to be always in the order of few seconds.

V. CONCLUSIONS

In this paper, we presented and faced problems related to
the test of approximate digital circuits. The core problem is
to ensure that faults introduced in the manufacturing phase do
not introduce errors greater than the acceptable error threshold.
From this perspective, we are allowed leave tolerable faults
un-tested. The proposed techniques aim to produce sets of
test vectors capable of covering only non-tolerable faults. The
main advantages are (i) the yield increase, as we accept circuits
that would have been declared faulty due to faults which are
indeed acceptable w.r.t. the error threshold and (ii) the test
cost reduction, as we aim to reduce the number of test pat-
terns. Experimental results compared the three techniques and
showed a significant reduction of test length. Moreover, results
showed that each technique works differently depending on
diverse aspect as the metric threshold (e.g., Worst Case Error),
the type of circuits under test (e.g., adders, multipliers) and
the considered fault model (e.g., Stuck-at-faults, Transition-
Faults). Finally, the presented techniques introduce a fairly
acceptable time overhead compared to the advantages (i.e.,
yield and cost). In the future, we aim to focus on considering
multiple error metrics in order to investigate how to correctly
model them in order to exploit classical testing tools.

REFERENCES

[1] S. Mittal, “A survey of techniques for approximate computing,” ACM
Comput. Surv., vol. 48, no. 4, pp. 62:1–62:33, Mar. 2016. [Online].
Available: http://doi.acm.org/10.1145/2893356

[2] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design Test, vol. 33, no. 1, pp. 8–22, Feb 2016.

[3] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in 2013 18th IEEE European Test
Symposium (ETS), May 2013, pp. 1–6.

[4] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application resilience for approximate
computing,” in Proceedings of the 50th Annual Design Automation
Conference. ACM, 2013, p. 113.

[5] V. K. Chippa, S. Venkataramani, S. T. Chakradhar, K. Roy, and
A. Raghunathan, “Approximate computing: An integrated hardware
approach,” in Asilomar Conference on Signals, Systems and Computers.
IEEE, 2013, pp. 111–117.

[6] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, “Design and anal-
ysis of approximate compressors for multiplication,” IEEE Transactions
on Computers, vol. 64, no. 4, pp. 984–994, April 2015.

[7] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power
with an underdesigned multiplier architecture,” in 2011 24th Internatioal
Conference on VLSI Design, Jan 2011, pp. 346–351.

[8] D. Shin and S. K. Gupta, “Approximate logic synthesis for error tolerant
applications,” in 2010 Design, Automation Test in Europe Conference
Exhibition (DATE 2010), March 2010, pp. 957–960.

[9] S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, and A. Raghu-
nathan, “Salsa: Systematic logic synthesis of approximate circuits,” in
DAC Design Automation Conference 2012, June 2012, pp. 796–801.

[10] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-
simplify: A unified design paradigm for approximate and quality config-
urable circuits,” in 2013 Design, Automation Test in Europe Conference
Exhibition (DATE), March 2013, pp. 1367–1372.

[11] J. Miao, A. Gerstlauer, and M. Orshansky, “Multi-level approximate
logic synthesis under general error constraints,” in 2014 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Nov
2014, pp. 504–510.

[12] Y. Wu and W. Qian, “An efficient method for multi-level approx-
imate logic synthesis under error rate constraint,” in 2016 53nd
ACM/EDAC/IEEE Design Automation Conference (DAC), June 2016,
pp. 1–6.

[13] D. Shin and S. K. Gupta, “A new circuit simplification method for error
tolerant applications,” in 2011 Design, Automation Test in Europe, March
2011, pp. 1–6.

[14] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan,
“Aslan: Synthesis of approximate sequential circuits,” in 2014 Design,
Automation Test in Europe Conference Exhibition (DATE), March 2014.

[15] L. Holik, O. Lengal, A. Rogalewicz, L. Sekanina, Z. Vasicek,
and T. Vojnar, “Towards formal relaxed equivalence checking in
approximate computing methodology,” 2nd Workshop On Approximate
Computing (WAPCO), 2016. [Online]. Available: https://wapco.e-
ce.uth.gr/2016/papers/SESSION2/wapco2016_2_1.pdf

7

[16] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoapprox8b:
Library of approx adders and multipliers for circuit design and bench-
marking of approximation methods,” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2017, March 2017, pp. 258–261.

[17] B. Barrois, O. Sentieys, and D. Menard, “The Hidden Cost of
Functional Approximation Against Careful Data Sizing – A Case
Study,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE 2017), Lausanne, France, 2017. [Online]. Available:
https://hal.inria.fr/hal-01423147

[18] (2017) Tetramax. [Online]. Available: https://www.synopsys.com/

