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Abstract— Diagnosis is crucial in order to establish the root cause 
of observed failures in Systems-on-Chip (SoC). In this paper, we 
present a new framework based on supervised learning for cell-
aware defect diagnosis of customer returns. By using a Naive 
Bayes classifier to accurately identify defect candidates, the 
proposed flow indistinctly deals with static and dynamic defects 
that may occur in actual circuits. Results achieved on benchmark 
circuits, as well as comparison with a commercial cell-aware 
diagnosis tool, show the effectiveness of the proposed framework 
in terms of accuracy and resolution. Moreover, the proposed flow 
has been experimented and validated on industrial circuits (two 
test chips and one customer return from STMicroelectronics), 
thus corroborating the results achieved on benchmark circuits. 
Keywords—Diagnosis, Customer Returns, Machine Learning 

I. INTRODUCTION 
The ultimate goal when developing and providing high 

quality (e.g. automotive) products is to have zero customer 
returns. A customer return is a circuit that passed the entire 
manufacturing test flow but failed on the customer’s side [1]. 
The two main causes of a customer return are test escape 
during manufacturing test or latent defect mechanisms during 
lifetime. When a customer return is identified, it is important to 
reproduce the failure mechanism in the lab with the appropriate 
test conditions (temperature and voltage) and original test set. 
In case of test escape, efforts must be spent on finding new test 
patterns that will exhibit the failure in the same test conditions. 
In case of latent defect, the task will often succeed and a 
diagnosis program made of several routines is used to identify, 
step by step, the failing part and, finally, the suspected defects. 
Each routine coincides with the application of a diagnosis 
algorithm at a given hierarchy level. SoC level diagnosis is the 
first routine used to identify the core(s) in the SoC that can 
explain the failure [2-3]. Core level (inter-cell) diagnosis is 
then used to identify the possible failing cells within the core(s) 
[4-7]. Cell-Aware (CA) diagnosis is finally used to pinpoint the 
possible defect candidates within the failing cell(s) [8-10]. Note 
that in this case, the key metrics that characterize diagnosis 
performance are accuracy, i.e., the physical defect is indeed in 
the list of candidates, and resolution, i.e., the number of 
candidates reported by diagnosis for a given defective SoC. 

Physical Failure Analysis (PFA) usually follows diagnosis. 
PFA is a time-consuming process for physically exposing the 
defect, and hence characterize the failure mechanism. Due to 
the high cost and destructive nature of PFA, diagnosis accuracy 
and resolution are very critical. Unfortunately, diagnosis 
resolution is typically far from ideal today due to SoC 
complexity. Especially with the advent of very deep submicron 

technologies (i.e., 7 nm), a high resolution (very few or one 
candidate) is not always reachable by today’s intra-cell logic 
diagnosis tools based on conventional methods (effect-cause / 
cause-effect) [11]. For this reason, considerable effort has been 
spent to improve resolution by using machine learning 
techniques, initially through the extraction of features that 
allow correct candidates (those that correctly represent defect 
locations) to be distinguished from incorrect ones [12]–[16]. 
Even though they are efficient, these techniques address 
volume diagnosis for yield improvement, which is a different 
problem than fault diagnosis of customer returns. Actually, 
numerous data gathered during manufacturing test and 
subsequent diagnosis phases are available during volume 
diagnosis, such as, e.g., hundreds of similar failed chips with 
candidates correctly labeled (good, bad) obtained in a previous 
stage. Hence, using these data for failure diagnosis of a new 
failed chip is possible. On the other side, only one failed chip is 
investigated during fault diagnosis of a customer return, with 
no information about the defective behaviour of similar chips 
used in the same conditions (environment, workload). For this 
reason, learning-guided approaches used for volume diagnosis 
cannot be reused for fault diagnosis of customer returns. 

A learning-based solution for CA diagnosis of mission 
mode failures in customer returns was proposed in [17]. 
Several supervised learning algorithms were evaluated and 
compared to a traditional solution to diagnose CA defects. 
Results obtained on benchmark circuits and compared with 
those of a commercial CA diagnosis tool, showed the 
feasibility and accuracy of this approach. However, only static 
defects modeled by stuck-at faults were assumed in this work. 
So, we proposed a new CA diagnosis method in [18]. We 
assumed dynamic defects and used a Bayesian classification 
method for predicting the nature (likelihood to be a good 
candidate) of each new data instance (defect). Cell-aware delay 
test sequences generated by a cell-aware ATPG assuming a 
Launch-On-Capture (LOC) testing scheme were used in this 
work. Once again, the effectiveness of the proposed learning-
based method for diagnosis of CA dynamic defects was 
established, through comparison with a commercial tool. 

Despite the respective efficacy of the above two methods, it 
is not straightforward to combine them and deal with all types 
of defects, i.e., static and dynamic, indifferently. This is the 
consequence of two distinct processes initially employed in 
[17] and [18] for generating new data instances that are further 
used to identify suspected defects. So, in an attempt to deal 
with all types of defect that may occur in customer returns, we 
propose a new CA diagnosis flow in this paper. Constructing 
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such a comprehensive flow raised new problems and imposed 
setting up a new framework with specific rules to achieve the 
same level of effectiveness in terms of diagnosis accuracy and 
resolution. The proposed method is based on a Gaussian Naive 
Bayes (NB) trained model to predict good defect candidates. A 
generic description of this method was introduced in [19], with 
partial results obtained on benchmark circuits. In this paper, we 
propose a comprehensive description of our approach to show 
its superiority when compared to a commercial CA diagnosis 
tool. The proposed flow has been experimented and validated 
on industrial circuits (two test chips and one customer return), 
thus corroborating the results achieved on benchmark circuits. 

The rest of this paper is organized as follows. Section II 
summarizes the works presented in [17] and [18]. Section III 
details the new cell-aware diagnosis framework. Section IV 
shows results obtained on benchmark circuits and compared to 
those of a commercial tool. Experiments and results on 
industrial circuits are also presented in this section. Section V 
concludes the paper and discusses some aspects of the work.  

II. PREVIOUS WORK 
Figure 1 is a generic view of the learning and prediction 

processes utilized in [17] and [18]. Both approaches are based 
on supervised learning that takes a known set of input data and 
known responses (labeled data) used as training data, trains a 
model to classify those data, and then uses this model to predict 
(infer) the class of new data. 

 
Figure 1: Generic view of the diagnosis flows in [17] and [18] 

For each type of cell existing in the Circuit Under 
Diagnosis (CUD), training data are generated during an off-line 
characterization process done only once for a given cell library. 
Training data are extracted from cell-aware views provided by 
a commercial CAD tool that contains characterization results 
for a given cell type. These results are given in the form of a 
fault dictionary containing, for each defect within a cell, the 
cell input patterns that detect (or not) this defect. An example 
of training data as used in [17] and containing six instances for 
an arbitrary two-input cell is shown in Fig. 2. Each instance 
corresponds to a static defect Di (last column), and a 1 (0) 
indicates that defect Di is detectable (not detectable) at the 
output of the cell when cell test pattern Pj is applied on its 
inputs. Cell test patterns can be static (one input vector) or 
dynamic (two input vectors). There exists 2n static test patterns 
and 2n.(2n–1) dynamic test patterns for an n-input cell. In Fig. 
2, P1 to P4 denote static patterns (00, 01, 10, 11), and P5 to 

P16 denote dynamic patterns. This way of representing training 
data looks like a Defect Detection Matrix used in CA test 
pattern generation [20]. 

 
Figure 2: Example of training data for static defects in a two-input cell 

New data are composed of various instances. Each of them 
is associated to one suspected cell in the CUD (customer 
return) and represents a features vector characterizing the real 
behavior of the cell during test application. From each features 
vector, one or more defect candidates can be further extracted 
and classified as good or bad candidate with a corresponding 
probability to be the root cause of failure. The format of a new 
data instance is quite similar to the format of a training data 
instance, but has a slightly different meaning. In each instance, 
the value ‘1’ (resp. ‘0’) is associated to a failing (resp. passing) 
cell test pattern Pi for a given defect candidate, meaning that 
the candidate is indeed detectable (resp. undetectable) by cell 
test pattern Pi at the output of the cell. The value ‘0.5’ is 
associated to a cell test pattern for a given defect candidate 
when this pattern cannot appear at the inputs of a suspected cell 
during test application. This median value has been chosen to 
avoid missing information in new data instances while not 
biasing the features of these data. 

 
Figure 3: Example of a dynamic instance table for a NAND cell 

Regarding new data, they are generated after post-
processing of so-called instance tables, which describe the 
behaviour (pass / fail) of each suspected cell in presence of an 
actual intra-cell defect (in one of the suspected cells) when a 
test pattern is applied to the cell. The format of a dynamic 
instance table looks like the one illustrated in Fig. 3 for a given 
two-input NAND cell and two dynamic cell-patterns [18]. In 
this example, the first part of the file gives information on how 
the cell is linked to other cells in the circuit, while the second 
part represents, respectively, the pattern number, the pattern 
status (failing, passing), and the cell output Z with the 
associated fault model for which exercising conditions are 
reported. These conditions shown right below each cell-pattern 
represent the stimulus arriving at the cell inputs during the shift 
phase (before ‘-’) and applied during launch & capture cycles 
(after ‘-’). For example, cell-pattern 1 consists in applying a 
falling transition on input B, A being equal to static 1, and 
failing in detecting a rising transition on Z. 
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III. PROPOSED CELL-AWARE DIAGNOSIS FRAMEWORK 
In this section, we detail the various steps of the new CA 

diagnosis framework able to deal with all types of defect (i.e., 
static and dynamic) that may occur in customer returns. 

A. Considered Test Protocol 
With the advent of CMOS technologies, testing the scan-

based logic blocks of a system-on-chip is done in several 
successive phases to target the various standard fault models 
such as stuck-at, transition, path delay, bridging, etc. Moreover, 
cell-aware testing is now used to increase the quality of 
manufacturing test by catching transistor-level defects within 
library cells (e.g. subtle shorts and opens intra-cell defects) that 
would have gone undetected using conventional fault models. 

In our work, we have considered that the following tests 
have been applied after manufacturing. First, a static CA test 
sequence generated by a commercial cell-aware ATPG tool is 
applied to the circuit under test (CUT). This sequence targets 
all cell-level stuck-at faults plus cell-internal static defects, 
considering that these defects are not covered by a standard 
stuck-at fault ATPG. A standard (low speed) scan-based testing 
scheme is used to this purpose. Next, another option of the cell-
aware ATPG is used to generate tests for cell-level transition 
faults plus cell-internal dynamic defects not covered by a 
standard transition fault ATPG. In this case, an at-speed LOC 
scheme has been used during test application. LOC requires 
two-vector test patterns, the first one is used for initialization, 
the second is used to generate transitions in the CUT. 

As indicated, the first step of the diagnosis process is to re-
use the test sequences initially used for manufacturing test. The 
goal is to mimic the process used during test for diagnosis 
preparation. So, we consider that two successive test sequences 
have been applied: a static CA test sequence and a dynamic CA 
test sequence. Note that in case additional test sequences or test 
schemes are used (e.g., a dynamic CA test sequence applied at 
low speed), the process described below can easily be adapted. 

Here, dynamic defects are defects that require two-vector 
test patterns to be detected. These defects can be non-resistive 
defects modeled by stuck-open faults. More generally, these 
defects are mainly due to resistive opens or shorts that prevent 
signals to propagate within a circuit at the normal speed, and 
hence lead to IC failure. In this case, they are modeled by 
(quantitative) delay faults or (qualitative) transition faults. 

B. Generation of Training Data 
As indicated earlier, training data are extracted from cell-

aware views provided by a commercial CAD tool containing 
characterization results for a given cell type. In the example 
shown in Fig. 2, dynamic patterns (from P5 to P16) appear in 
the training dataset, as it is well know that static defects 
modeled by stuck-at faults can be detected by both static and 
dynamic patterns. In this case, only the second vector of a 
dynamic test pattern is considered to determine whether or not 
a static defect is detectable by this pattern. 

However, in the general case where both static and dynamic 
defects have to be considered, we need to take into account the 
fact that dynamic defects can be detected not only by 
dynamic patterns, but also by static patterns applied using a 
conventional scan testing scheme, provided that i) at least one 

transition has been generated at the cell inputs between the 
next-to-last scan shift cycle and the launch cycle, and ii) the 
delay induced by the defect is large enough to be detected (this 
is always true, by definition, for a defect modeled by a 
transition fault, also referred to as gross delay fault). For this 
reason, the training dataset in this work has a slightly different 
representation as shown in Fig. 4. In this case, the value ‘0.5’ is 
assigned to each dynamic defect (D21 up to D23) for all related 
static patterns, meaning that such a defect is detectable or not 
depending on whether or not the above conditions are satisfied. 

 
Figure 4: Example of training data for all defect types in a two-input cell 
Once training data have been generated, an important step 

before starting to train the Gaussian NB model is data 
preparation. It first consists in putting all data together and 
randomize the ordering. Few other manipulations are also 
done, such as grouping data by considering equivalent defects 
or removing data instances of undetectable defects. Then, it 
consists in splitting the data in two parts. The first part will be 
further used to train the model and is made of the majority of 
the dataset randomly selected (between 70-90%). The second 
part will be used for evaluating the performance of the trained 
model. All details about data preparation are given in [17]. 

C. Generation of Static and Dynamic Instance Tables 
As indicated in Section II, new data are generated after post-

processing of instance tables. In order to deal with both static 
and dynamic defects, we need to generate and use static as well 
as dynamic instance tables to further produce a new data 
instance for each suspected cell. The generation flow is 
illustrated in Fig. 5. First, static CA test patterns are applied to 
the failing CUD. We then obtain a “static” datalog containing 
information on the failing static CA test patterns with the 
corresponding failing primary outputs. From this information 
and the circuit netlist, we perform a logic diagnosis (by using 
the same commercial tool used for test generation) that gives 
the list of suspected cells. Finally, datalog information are used 
again to generate a static instance table for each suspected cell. 
Next, a similar process is carried out by applying dynamic CA 
test patterns to the failing CUD. We then obtain a “dynamic” 
datalog containing information on the failing dynamic CA test 
patterns. Datalog information are further used to generate a 
dynamic instance table for each suspected cell. 

An important comment is the following: an instance table is 
generated for a given cell if and only if applying a test 
sequence (static or dynamic) to the CUD has led to at least one 
‘fail’ at the circuit outputs. In other words, an instance table is 
generated for a given cell if the cell is a suspected cell after test 
application and logic diagnosis. In this context, it may happen 
that a cell is declared as suspect by: 
• Case (1): a static CA test sequence only (in this case, the 

failure is due to a static defect inside the CUD or a dynamic 
defect modeled by a stuck-open fault or a transition fault and 
not covered by the dynamic cell-aware test sequence), 
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• Case (2): a dynamic CA test sequence only (in this case, the 
failure is due to a dynamic defect modeled by a delay fault or 
a static defect not covered by the static CA test sequence), 

• Case (3): both static and dynamic CA test sequences (in this 
case, the failure is due to a static defect or a dynamic defect 
modeled either by a stuck-open fault or by a transition fault). 
In the first two cases, only a static or a dynamic instance 

table will be generated for the suspected cell. In the last case, 
two instance tables (static and dynamic) will be generated. This 
will have an impact on the generation and utilization of new 
data instances, as detailed below in Subsections D and E. 

 
Figure 5: Generation flow of static and dynamic instance tables 

Considering the above comment, we have made the 
following realistic assumptions (Ass_1 and Ass_2): 
• Ass_1: as we consider an at-speed LOC scheme during 

application of the dynamic CA test sequence, it is unlikely to 
have a dynamic defect modeled by a transition or stuck-open 
fault that is detected by a static CA test sequence and not 
covered / detected by a dynamic CA sequence. So, in case 
(1), only static defects will be assumed. 

• Ass_2: if a static defect is not covered / detectable by the 
static CA test sequence, it is unlikely that it will be detectable 
by a dynamic CA test sequence. So, in case (2), only dynamic 
defects will be assumed. 

D. Generation of New Data – Cases (1) and (2) 
The first step in generating a new data instance for each 

suspected cell consists in extracting information from each 
instance table associated to the cell (cf. Fig. 6). In case (1) 
discussed above, the new data will be directly extracted from 
the static instance table, and given as input to the NB classifier. 
Both static and dynamic parts of the new data will be filled 
with ‘0’ and ‘1’ values (where appropriate) since i) a static 
defect can be detected by a static or a dynamic pattern, and ii) 
these information are contained in the static instance table. 

 
Figure 6: Extraction of new data instances 

Similarly, in case (2), the new data will be extracted from 
the dynamic instance table. However, in this case, only the 
dynamic part of the new data will be filled with ‘0’ and ‘1’ 
values (where appropriate) since a dynamic defect can only be 
detected by a dynamic test pattern. This is in accordance with 
the format of a training data for a dynamic defect in which the 
static part is composed of ‘0.5’ values only. 

E. Generation of New Data – Case (3) 
1) Observations and Conflicts 
In case (3), two provisional new data are extracted, one from 

the static instance table (Static New Data - SND), one from the 
dynamic instance table (Dynamic New Data - DND). These 
static and dynamic new data have to be considered together to 
form the final new data for the suspected cell. Two strategies 
have been investigated initially to generate the final new data: 
• Extract static (resp. dynamic) patterns information from the 

static (resp. dynamic) instance table to create the static (resp. 
dynamic) part of the static new data (resp. dynamic), and then 
combine both parts (static part of the SND and dynamic part 
of the DND) to create the final new data. 

• Extract static and dynamic patterns information from both 
static and dynamic instance tables to create the full static and 
dynamic new data (cf. Fig. 6), and then mix these new data 
by using simple intersection rules (0∩1=1 , 0∩0.5= 0 , 
1∩0.5=1, 0.5∩0.5= 0.5 ) to create the final new data.  
Unfortunately, these simple and straightforward strategies 

do not apply to our problem as several counterexamples have 
been found. With the first strategy, we may loose some 
information from the static part of the DND (stat_DND). For 
example, let us consider a NAND cell with two inputs A and B 
that contains a (static) short defect Di between the gate and the 
drain of the NMOS transistor driven by A. The training data 
instance for this defect in such a NAND cell will be as follows: 

 
Let us assume that this defect has been only sensitized and 

detected by the static pattern AB={01} during the static CA 
test sequence application. In this case, the SND will be: 

 
Now, assume that during the dynamic CA test sequence 

application, the following dynamic patterns have appeared at 
the inputs of the cell AB={0R, 0F, R0, FR, F1, 1F}, two of 
them {R0, 1F} do not detecting the defect. This information 
will appear in the dynamic part of the DND (dyn_DND), but 
can also appear in its static part by applying an “inference” 
process that considers the second vector of each dynamic test 
pattern to re-construct (by implication) the static part. This 
process will be detailed subsection III.E.2. Considering this re-
construction process, the DND will appear as follows: 

 
By applying the first strategy, it can be seen that the static 

part of the final new data (0.5, 1, 0.5, 0.5), which will be equal 
to the static part of the SND, will be much farther away from to 
the training data of the defect (shown above) than the static part 
of the DND (1, 1, 0, 0.5), hence do not facilitating the task of 
the NB classifier in identifying the defect as the source failure. 
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The second strategy investigated to generate the final new 
data raises the same issue. In this case, mixing (intersecting) 
the static parts of the SND and DND will provide the static part 
of the SND (as the static part of the DND initially contains 
only ‘0.5’ values), hence loosing information that could be 
obtained by re-construction as described above. 

To solve the above issue, an alternate strategy has been 
investigated, which is based on the following key observations: 
• In case of a static defect, exploiting information extracted 

from the dynamic instance table is recommended, as it is 
likely that this information will complement those extracted 
from the static instance table. This was illustrated in the 
example right above. In this case, the static part of the DND 
originally composed of ‘0.5’ values must be always re-
constructed to “enrich” the DND, and hence the final new 
data, once SND and DND are combined. A set of rules has to 
be defined to this purpose (see III.E.2). 

• In case of a dynamic defect modeled by a stuck-open or 
transition (gross delay) fault, it is recommended to exploit 
and combine only the dynamic parts of both SND and DND, 
since additional information (‘0’ or ‘1’) taken from the static 
part of the SND would deter the quality of the final new data 
that would be no longer so close to the training data of the 
defect (in which the static part only contains ‘0.5’). 

• Distinguishing between a static defect and a dynamic defect 
modeled by a stuck-open or transition (gross delay) fault, 
though not always possible, can easily be done. Identifying a 
static defect is possible by analyzing the static instance table 
(that looks like the one in Fig. 3) and looking for a ‘fail’ 
induced by the application of two identical successive vectors 
(no transition between them). Identifying a dynamic defect 
modeled by a stuck-open or transition (gross delay) fault can 
be done when there is occurrence of a conflict in SND or 
DND. This situation is illustrated below. 
Let us consider a NOR cell with two inputs A and B that 

contains a full open defect between the source node of the 
NMOS transistor driven by A and Ground. The training data 
instance for this defect in such a NOR cell will be as follows:  

 
Let us assume that this defect (a stuck-open) has been 

sensitized by its unique detection pattern P7={R0} during the 
static CA test sequence application. This is possible provided 
that the scan shift process has brought the right initialization 
values {00} at the inputs of the cell. Detection will occur when 
applying V2 = {10}, hence leading to a ‘1’ on P3 and P7 in 
SND. Let us also assume that pattern P16={1F} has appeared at 
the inputs of the cell during test, of course not sensitizing the 
defect (this is not possible as there is a ‘0’ on P16 in the training 
data of the cell) and hence generating a “pass” (‘0’) when 
applying V2 = {10} of P16. In this case, a conflict will occur as 
application of V2 = {10} during test will lead to a ‘fail’ when 
applying P7 and a ‘pass’ when applying P16. This conflict on 
the SND is illustrated below, and will be used to indicate that 
the defect is a dynamic defect modeled by a stuck-open or 
transition fault (it can not be a static defect as, otherwise, both 
P7 and P16 would have let to a ‘fail’ during test application). 

 
 Such type of conflict can also appear when applying the 

dynamic CA test sequence. Considering the same previous 
(stuck-open) example, different test results when applying R0 
and 1F would imply that the defect is dynamic. In the selected 
strategy, the occurrence of a conflict will be used to identify a 
dynamic defect (stuck-open or transition fault) and construct 
the final new data by combining only the dynamic parts of both 
SND and DND. However, it is important to note that a conflict 
does not necessarily occurs, because two conflicting patterns 
may not necessarily be generated by the same CA test 
sequence. In this case, the final new data will be generated by 
fully mixing SND and DND. 

2) Rules for re-Constructing the Static Part of a DND 
Let us consider a DND that contains values such as ‘0’, ‘1’ 

and/or ‘0.5’. Constructing stat_ DND that initially contains 
only ‘0.5’ values cannot be done directly by simply considering 
‘0’ and ‘1’ in dyn_DND, and applying direct implication rules 
(i.e., a ‘1’ in dyn_DND for V1V2 implies a ‘1’ in stat_DND for 
V2, the same for ‘0’). The reason is that any value in dyn_DND 
is the consequence of the application of two successive vectors 
V1 and V2 (LOC scheme) in which V1 may have sensitized the 
defect and propagated its effect up to the outputs (flip-flops), 
thus leading to a new V’2 that differs from V2. Instead, we need 
to consider information stored in stat_SND to infer values in 
stat_DND from values in dyn_DND. So, to re-construct 
stat_DND, the following implications rules will be applied: 
• Rule 1: For any two-vector pattern giving a ‘1’ in dyn_DND, 

if the corresponding vector V1 is declared as fault-free during 
application of the static CA test sequence (i.e., V1 has led to a 
‘0’ in stat_SND), then a ‘1’ can be inferred in the stat_DND 
for vector V2 since the defect detection can only be due to V2. 

• Rule 2: For any two-vector pattern giving a ‘1’ in dyn_DND, 
if the corresponding vector V2 is declared as fault-free during 
application of the static CA test sequence (i.e., V2 has led to a 
‘0’ in stat_SND), then a ‘1’ can be inferred in the stat_DND 
for vector V1. In this case, as the defect is undetectable by V2, 
the ‘1’ in dyn_DND can only be due to V1 (the defect has 
been propagated during the two clock cycles launched by V1 
and V2 before being captured). 

• Rule 3: For any two-vector pattern giving a ‘0’ in dyn_DND, 
if the corresponding vector V1 is declared as fault-free during 
application of the static CA test sequence (i.e., V1 has led to a 
‘0’ in stat_SND), then a ‘0’ can be inferred in the stat_DND 
for vector V2. 

• Rule 4: For any two-vector pattern giving a ‘0’ in dyn_DND, 
if the corresponding vector V2 does not appear during 
application of the static CA test sequence (i.e., V2 has led to a 
‘0.5’ in stat_SND), then a ‘0’ can be inferred in the 
stat_DND for vector V2. 

F. Overall Flow for Generating New Data 
From the above assumptions, observations, and rules, we 

have finally set up a flow for generating a new data for a given 
suspected cell. Fig. 7 gives the pseudo code of this flow. It has 
been implemented and used in our CA diagnosis framework. 
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Figure 7: Generation of a new data for a given suspected cell  

G. Cell-Aware Diagnosis Flow 
The two main steps of the supervised learning process 

used for CA defect diagnosis are depicted in Figure 1. As 
mentioned, we use a Bayesian classification method for 
predicting the nature (likelihood to be a good candidate) of 
each new data instance. This choice was motivated by the 
result obtained in [17] after experimenting various learning 
algorithms and observing their inference accuracies. A cross-
validation algorithm was also used to primarily calculate the 
prediction accuracy of these learning algorithms. So, the first 
step of our CA diagnosis flow is to generate a Naive Bayes 
(NB) model and to train it by using the training dataset. 
Training a model is done based on labeled training data and 
then can be used to assign a pre-defined class label to new 
objects. In this step, training data are used to incrementally 
improve the model’s ability to make inference. The training 
data is divided into mutually exclusive and equal subsets. For 
each subset, the model is trained on the union of all the other 
subsets. Once training is complete, the performance (accuracy) 
of the model is evaluated by using a part of the dataset initially 
set aside [21]. The second step is to construct the NB 
classifier using a Gaussian distribution to model the likelihood 
probability functions, and use it to make probabilistic 
prediction (or inference) when a new data instance has to be 
evaluated. Naive Bayes classifiers work based on the Bayes’ 
probability model that can be simply formulated as follows: 

 

The posterior probability, in the context of our classification 
problem, can be interpreted as: “What is the probability that a 
new data instance D corresponds to a defect Di in a suspected 
cell given its observed feature values?”. It can be expressed as: 

P(D=Di | features) => P(D=Di | T1,…,Tn)  

where T1,…,Tn represent the values of the cell-level test 
patterns associated to the new data instance D. The objective 
function in the Naive Bayes probability is to maximize the 
posterior probability given the training dataset in order to 
formulate the decision rule which is as follows: 

D = Di if P(D = Di | T1,…,Tn) ≥ P(D ≠ Di | T1,…,Tn) 
Otherwise, D ≠ Di 
More details about the Naive Bayes’s theorem and bayesian 

network classifiers, and about the way we implemented our NB 
classifier can be found in [22]-[24] and [18] respectively. 

An important preliminary step before the above two ones is 
training data preparation, which is carried out in three phases: 
Data Selection, Data Preprocessing, and Data Transformation. 
It first consists in selecting the subset of all training data that 
will be used to build the model and classify new data. Then, it 
consists in putting all data together and randomize the ordering. 
In our selection process, 70% to 90% of the available data were 
randomly selected and this operation was repeated several 
times to obtain training data with good randomness. Few other 
manipulations are also done, such as grouping data by 
considering equivalent defects or removing data instances of 
undetectable defects. Then, it consists in splitting the data in 
two parts. The first part is further used to train the model and is 
made of the majority of the dataset randomly selected. The 
second part is used for evaluating the trained model’s 
performance. More details can be found in [17]. 

IV. EXPERIMENTAL RESULTS 
Our framework has been implemented in a Python 

program. For validation purpose, we have experimented the 
proposed cell-aware diagnosis flow in four different ways: 
• First, we conducted experiments on a set of ITC’99 

benchmark circuits synthesized using a 28 nm FDSOI 
technology from STMicroelectronics. 

• Next, we considered a test chip developed by 
STMicroelectronics and designed using a 28 nm FDSOI 
technology, and we performed a simulated case study with a 
defect injection campaign to corroborate the results achieved 
on the ITC’99 circuits. 

• Finally, we considered two test chips (the previous one and 
another one designed using a 32 nm CMOS technology) and 
one automotive customer return from STMicroelectronics 
(designed with a 90 nm technology), and for each of them, 
we performed a silicon case study with a real defect 
subsequently analyzed and identified during PFA. 

A. Experiments on ITC’99 Circuits 
Experiments have been first conducted on benchmark 

circuits synthesized in a full scan manner using a 28 nm 
FDSOI technology from STMicroelectronics. A commercial 
CA ATPG tool was used to generate static and dynamic CA 
test sequences targeting maximum fault coverage for each 
circuit. For each circuit and their corresponding test set, the 
behavior of the tester was simulated by performing a defect 
injection campaign (about 2000 injections per circuit) into a 
number of randomly selected cells and collecting test 
information to build the tester data log. For the defect injection 
campaign, we considered each transistor of the selected cells 

Posterior Probability = Conditional Probability . Prior Probability 
Evidence

(1)

(2)

(3)
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and we targeted all possible static and dynamic defects 
affecting that transistor. As several defects have the same 
impact on the logic behavior of the cell, and hence are logical-
equivalent defects, they were grouped in defect classes. We 
used a commercial logic diagnosis tool to determine the list(s) 
of Suspected Cells (SC) after static and dynamic test sequences 
application. The average number (#aSC) for each circuit is 
listed in Table I, together with information about each circuit: 
number of cells, scan flip-flops, static and dynamic test 
patterns, stuck-at (including static CA) fault coverage and 
transition (including dynamic CA) fault coverage in %. 

TABLE I.  CIRCUIT FEATURES AND RESULTS OF LOGIC DIAGNOSIS 
Circuit #Cells #SFF #sTP #dTP SaFC TrFC #aSC 

b15 2465 416 1607 2665 98.55 88.38 1.91 
b17 7960 1314 2241 4423 98.83 91.10 2.39 
b18 3238 215 3371 4436 99.61 93.46 2.51 
b19 6337 430 3288 5583 99.57 93.79 1.64 
b20 6733 430 3347 5460 99.52 93.76 1.60 
b22 3218 215 3385 4670 99.64 93.78 1.64 

 

For generating training data, we used characterization data 
provided by a commercial tool and ST libraries. For generating 
new data instances, we performed post-processing of instance 
tables obtained as shown in Fig. 5. From the training data and 
the Gaussian NB model, we make predictions on new data 
instances. Results obtained are a list of defect candidates with 
the highest probability to be the root cause of failure. 

TABLE II.  CELL-AWARE DIAGNOSIS RESULTS – B19 
Defect #SC Proposed CA Diagnosis Commercial Tool 

D1 2 (A&B) A=D1 B=D7 A=D1 B=D7 
D2 1 (A) A=D2 A=D2/D81 
D3 2 (A&B) A=D3 B=D15 A=D3/D62 B=D9/D52 
: : : : 

D43 2 (A&B) A=D43 B=D2/D44=0.5 A=D43 B=D52/D55 
D44 1 (A) A=D44/D63=0.5 A=D44/D63 
D62 2 (A&B) A=D62 B=D2 0 
D63 2 (A&B) A=D63 B=D3/D48=0.5 D63 

D64 2 (A&B) A=D64/D43=0.5 
B=D3/D48=0.5 

A=D64/D63/D27/D72 
B=D50 

: : : : 
D140 2 (A&B) A=D140 B=D3 A=D140/D81=0.5 B=D50 

 

Table II shows partial results obtained for a defect injection 
campaign in a three-input AndOr cell of circuit b19, with 145 
potential defects including resistive and non-resistive opens 
and shorts. The first column lists the various injected static and 
dynamic defects. The second column shows the number of 
suspected cells obtained after logic diagnosis. Note that in this 
case study, the defect is always injected in the cell called A 
irrespective of the number of suspected cells. The next column 
lists the best defect candidates reported by the Gaussian NB 
classifier with the corresponding probability of being the root 
cause of failure, and provided after applying the proposed 
method successively on each suspected cell A and B (when two 
suspected cells exist). The last column reports candidates 
provided by a commercial CA diagnosis tool using the same 
characterization data and test protocol. This tool is non-
probabilistic and provides the list of all suspects obtained after 
CA diagnosis with a ranking and a matching score. As this tool 
deals with static and dynamic patterns separately, two 
diagnostic reports are provided for each diagnosed failure file. 
Therefore, two options are possible to get the final set of 
suspects. The first one consists in making the intersection 
between the two diagnostic reports. This solution gives better 

resolution but can lead to wrong prediction (the actual defect is 
not reported). The second solution consists in considering the 
union between the two diagnostic reports. This solution is less 
accurate but is safer, especially in our case as the commercial 
tool behaves like a black box. In Table II, we have reported 
results obtained from the union of diagnostic reports. 

These representative results first show that the real 
(injected) defect is always identified by the proposed flow. 
Sometimes, it is the only candidate and has a probability of 1 
(e.g., D2) to be the best candidate. Sometimes, it is reported 
with another candidate in suspected cell A (e.g., D63), hence 
with a probability of 0.5. When two cells are suspected (e.g., 
D1), some defect candidates in suspected cell B are also 
reported, but the injected defect belongs to the whole set of 
candidates. Conversely, we can observe that the commercial 
CA diagnosis tool is not always able to report the injected 
defect as candidate (e.g., D62). This proves the superiority of 
our proposed framework in terms of accuracy (always 100%), 
which is not the case of the commercial CA diagnosis tool that 
sometimes can provide inaccurate results. 

The reason of these cases of misdiagnosis with the 
commercial tool can be explained as follows. In such a tool, the 
logic diagnosis phase is embedded in the whole CA diagnosis 
flow, and no intermediate result about logic diagnosis can be 
observed (conversely to what is done in our learning-based 
flow). In such configuration, it may happen that the cell in 
which the real defect has been injected is found with a much 
lower probability to be the source of failure compared to the 
other identified suspected cells. In such a case, the tool may 
possibly ignore this cell in the next phases of the process, and 
finally arrive at a situation where either wrong defects or no 
defect will be identified as suspected candidates. Being unable 
to go deeper inside the functioning of the commercial tool, this 
is the most likely explanation about such cases of misdiagnosis. 

The second comment about the results shown in Table II 
relates to resolution. In this example, we can observe that in all 
cases, our method provides results with a better resolution than 
what can be obtained with the commercial CA diagnosis tool. 

TABLE III.  OVERALL CELL-AWARE DIAGNOSIS RESULTS 

Circuit 
Accuracy Resolution 

Proposed Com. Tool Proposed Com. Tool 
Inter Union 

b15 100% 100% 2.047 3.79 4.68 
b17 100% 100% 7.20 11.146 13.05 
b18 100% 97.70% 4.129 5.733 7.56 
b19 100% 98.90% 1.818 2.857 3.88 
b20 100% 99.11% 2.299 2.947 3.90 
b22 100% 99.12% 3.746 4.823 5.64 

 

Results obtained on the biggest ITC’99 benchmark circuits 
are summarized in Table III. The second and third columns are 
about accuracy and give, for each circuit, the percentage of 
cases in which the injected defect was reported in the list of 
suspects provided by the proposed CA diagnosis and the 
commercial CA diagnosis tool respectively. As can be seen, the 
commercial tool is unable to achieve 100% (achieved with our 
technique) for 4 out of 6 circuits. The remaining columns are 
about resolution and give, for each circuit and considering all 
injection campaigns, the average number of suspects reported 
by the proposed method and the commercial tool respectively. 
The column labeled ‘Inter’ reports the resolution achieved 
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when performing the intersection between defect candidates 
obtained by applying static CA test sequences and those 
obtained by applying dynamic CA test sequences. The column 
labeled ‘Union’ reports the resolution achieved when 
performing the union between these two sets of candidates. 
Both types of resolution are reported since, again, we do not 
know how the commercial tool operates internally. As can be 
seen, the resolution achieved with our method is always better. 
So, overall, these results confirm the superiority of our 
approach in terms of accuracy and resolution. Note that the 
accuracy of the commercial tool was the same with either the 
union or intersection strategy, which explains why we have 
only one column in Table III for the commercial tool accuracy. 

In our experiments, suspected defects were classified using a 
publicly available machine learning software package called 
Scikit-learn, which is an integrated development environment 
with a suite of ML tools [25]. The single defect assumption 
was considered, although the proposed framework is able to 
manage situations where multiple defects have occurred, 
provided that those defects are not in the same cell. This 
significant feature comes from the fact that our diagnosis flow 
considers all suspected cells one at a time, and then 
incrementally constructs a list of suspected defects identified in 
each of these cells. Finally, in-field failure mechanisms related 
to premature aging, such as NBTI or HCI, essentially lead to 
resistive opens and shorts. These mechanisms, that need to be 
considered in the context of customer returns, can be 
appropriately taken into account in our CA diagnosis flow. 

The CPU time taken by the proposed flow to provide a list 
of defect candidates is always very low (few seconds) and does 
not depend on the circuit size. Only the number of suspected 
cells obtained after logic diagnosis may have an impact on the 
CPU time (for the generation of instances tables) but in a very 
light way (as this number is always very low as demonstrated 
in the results shown in Table I). The most time-consuming part 
of the flow (few hours) is the characterization phase, but it is 
done only once and is not correlated with the circuit size. 

B. Simulated Test Case Study 
We then conducted experiments on a test chip developed by 

STMicroelectronics and designed with a 28 nm FDSOI 
technology. The circuit is only composed of digital and 
memory blocks, except one PLL. The digital blocks are made 
of 1.385.864 cells. Other features are given in Table IV. 

TABLE IV.  MAIN FEATURES OF THE SILICON TEST CHIP #1 
#cells #PIs #POs #SFF #sTP SaFC #dTP TrFC 
1.3M 91 33 88K 421 99.91 1238 99.93 

We performed a first simulated case study with a static 
defect injection campaign to corroborate the results achieved 
on the ITC’99 circuits. We randomly and successively injected 
2300 static defects in the description of the circuit. All defects 
were injected in a single full scan digital block composed of 
203K cells, and tested with a static CA test sequence composed 
of 421 test patterns and achieving a stuck-at + static CA fault 
coverage of 99.91 %. The results obtained after executing our 
CA diagnosis flow and averaged over all defect injections have 
shown an accuracy of 100% (the injected defect was always 
reported in the list of suspects) and a resolution of 1.91. The 
resolution ranges between 1 and 7, and Fig. 8 shows the 

distribution of this resolution with respect to the total number 
of simulated cases (i.e., 2300 defect injections). As can be seen, 
in most of the cases, the number of suspects is less than 3. 

We then performed a second simulated case study with a 
more extensive defect injection campaign. We randomly and 
successively injected 4800 defects (the same 2300 static 
defects plus 2500 new dynamic defects) in the description of 
the circuit. As previously, all defects were injected in a single 
full scan digital block composed of 203K cells. This time, as 
described in Section III.A, we successively applied the static 
and dynamic CA test sequences generated by the commercial 
CA ATPG tool. Details about the static CA test sequence are 
those given above. The dynamic CA test sequence was 
composed of 1238 test patterns achieving a transition + 
dynamic CA fault coverage of 99.93 %. 

 
Figure 8: Distribution of the resolution wrt the simulated cases 

Again, the results obtained after executing our learning-
based CA diagnosis flow and averaged over all defect 
injections have shown an accuracy of 100%. Regarding the 
resolution, we separated results obtained after injection of static 
defects and those obtained after injection of dynamic defects. 
Owing to the use of additional information provided by the 
dynamic CA test sequence, the average resolution obtained for 
the static defect injection experiments was slightly improved. 
The average resolution obtained for the dynamic defect 
injection experiments was of 1.97. Again, the resolution ranges 
between 1 and 7, and the number of suspects is less than 3. 

C. Silicon Test Case Studies 
1) Silicon Test Chip #1 
We performed a first silicon case study on the test chip 

considered and presented in the previous subsection, with the 
main features given in Table IV. The test conditions used to 
run the experiments were the following: a nominal supply 
voltage of 0.54 V, a scan test frequency of 10 MHz, a launch-
to-capture clock speed (for the dynamic CA test sequence 
application) adjusted with respect to the nominal clock 
frequency of the circuit, and a temperature of 30°C. The 
process was considered as typical. We experimented our CA 
diagnosis flow, and we obtained the following results:  
• The circuit failed on the tester after application of the static 

CA test sequence (only) when applied at the nominal voltage. 
This information was stored in a “static” datalog. 

• A logic diagnosis gave a short list of suspected cells 
containing one cell of type NAND2. A static instance table 
was then generated for this suspected cell, and contained one 
failing and two passing cell level test patterns. 

• From the new data generated after post-processing of this 
instance table, the Gaussian NB classifier identified defect 
D32: a short between the source and the gate of the B-input 
NMOS transistor of the NAND2 cell.  
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The above diagnosis results were provided to the Failure 
Analysis team and traditional techniques (laser voltage 
probing, static nanoprobing, EMMI, etc.) have been used to 
determine the correlation with the results obtained from our 
automated diagnosis flow. Figure 9 shows the layout view of 
the test chip and the incriminated transistor. As a final step, a 
physical defect was indeed found on the corresponding NMOS 
transistor after using the Planar Transmission Electron 
Microscope (PTEM) technique. The defect location along with 
the short connection observed on the failure analysis cross-
sectional view is shown in Fig. 10. 

 
Figure 9: Layout view of the test chip and the incriminated transistor 

 
Figure 10: Physical defect found by the Failure Analysis cross-section 

Note that we have also experimented the commercial CA 
diagnosis flow used in Section IV on this silicon case study. It 
was unable to identify the right defect candidate. 

2) Silicon Test Chip #2 
We performed a second silicon case study on another test 

chip developed by STMicroelectronics, designed with a 32 nm 
CMOS technology, and with a complexity similar to that of the 
first silicon test chip. We experimented our diagnosis flow and 
we obtained the following results: 
• The circuit failed on the tester after application of the static 

CA test sequence (only) when applied at the nominal voltage. 
This information was stored in a “static” datalog. 

• A logic diagnosis gave a short list of suspected cells 
containing a four-input AOI cell (made of 48 transistors) 
representing the two-level logic function AND-OR-Invert. 
The cell contains 431 potential short or open defects. A static 
instance table was then generated for this suspected cell, and 
contained 2 failing and 14 passing cell level test patterns. 

• From the new data generated after post-processing of this 
instance table, the NB classifier identified defect D200: a full 
bridge between input A and internal net #89 of the cell.  
The above diagnosis results were provided to the Failure 

Analysis team of STMicroelectronics, who already made a 
PFA on this silicon test case based on the results formerly 
found by their in-house intra-cell diagnosis tool. The result 

obtained with our CA diagnosis flow (a bridge between input A 
and internal net #89 of the cell) was validated at this stage, as it 
correlates with the former result found after analyzing the 
failure analysis cross-sectional view as shown in Fig. 11. 

 
Figure 11: Physical defect found by the Failure Analysis cross-section 

3) Automotive Customer Return 
We performed a third silicon case study on a customer 

return coming from an automotive application and designed 
with a 90 nm CMOS technology from STMicroelectronics. The 
circuit contains 4.629.910 cells. Some features are given in 
Table V. The test conditions used to run the experiments were 
the following: a nominal supply voltage of 1.1 V, a scan test 
frequency of 10 MHz, a launch-to-capture clock speed of 1.79 
GHz, adjusted with respect to the nominal clock frequency of 
the circuit, and a temperature of 105°C.   

TABLE V.  MAIN FEATURES OF THE CUSTOMER RETURN 
#cells #PIs #POs #SFF #sTP SaFC 
4.6M 57 94 289K 7132 98.67 

We experimented our CA diagnosis flow, and we obtained 
the following results:  
• The circuit failed on the tester after application of the static 

CA test sequence (only) when applied at the nominal voltage. 
This information was stored in a “static” datalog. 

• A logic diagnosis gave a short list of suspected cells 
containing a four-input AndOr cell (made of 10 transistors). 
The cell contains 523 potential short or open defects. A static 
instance table was then generated for this suspected cell, and 
contained 95 failing and 7 passing cell level test patterns. 

• From the new data generated after post-processing of this 
instance table, the NB classifier identified defect D17: a short 
between input C and internal node #105 in the cell.  

 
Figure 12: Physical defect found by the Failure Analysis cross-section 

The above diagnosis results were provided to the Failure 
Analysis team of STMicroelectronics, who made a PFA in the 
past on this customer return based on the results found by their 
in-house diagnosis tool. The result obtained with our learning-
based diagnosis flow was validated as it correlates with the 
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former result found after performing a polysilicon level 
inspection on the layout of the customer return and observing 
the failure analysis cross-sectional view as shown in Fig. 12. 

V. CONCLUSION, DISCUSSION AND FUTURE WORK 
In this paper, we have presented a new framework for cell-

aware defect diagnosis of customer returns based on supervised 
learning. The proposed flow indistinctly deals with static and 
dynamic defects that may occur in real circuits. A Naive Bayes 
classifier was used to precisely identify defect candidates. A 
large set of experiments on both benchmark circuits and silicon 
test cases has been done to validate the proposed flow and 
demonstrate its efficacy in terms of accuracy and resolution. 

Results of these experiments prove the appropriateness of a 
learning-based method to solve our problem, despite the small 
size of the training dataset used (only one sample for one defect 
class). When multiple defect sizes and test conditions will be 
used, this will be even truer. Indeed, multiple samples (one for 
each defect size or defect size range, one for each PVT test 
condition) will be associated to a given defect class, simply 
because the behavior of the defect will differ when applying 
the same set of test patterns. In terms of timing and complexity, 
this will just slightly impact our method, since training dataset 
is extracted from characterized cell libraries that are generated 
anyway for test and diagnosis purpose. So, even with large cell 
libraries with a huge number of defects to be simulated (e.g., 
631 cells in a library, each with 4 to 6 inputs, 951 shorts and 
749 opens on average – typical example of an ST library), our 
framework will still be easily and time-efficiently applicable. 

It is worthnoting that among other factors, the effectiveness 
of our framework can be explained by the fact that an NB 
algorithm usually works well with small training dataset 
containing a lot of features, as in our case (e.g., for a 5-input 
cell, we have 1024 cell-level test patterns). 

In our simulated case studies, all injected defects for 
evaluation purposes were present in the training dataset. 
Similarly, in our three silicon case studies, the actual defects 
were also present in the training dataset. However, in customer 
returns, actual defect behavior may not perfectly match the 
fault models that are used to train the NB classifier. Further 
work will be done to see how well the proposed method works 
in that scenario. Moreover, layout information will be used to 
consider only realistic defects during training data preparation, 
thus eliminating unrealistic defects during the learning process 
and possibly improving the performance of our inference 
engine. Finally, by exploiting the ranking of suspected cells 
usually provided after logic diagnosis by commercial tools, 
which was not done in the current work, our flow will be able 
to provide a similar ranking among defect candidates, thus 
giving additional useful information to be used during PFA. 
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