
HAL Id: lirmm-03034264
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03034264v1

Submitted on 1 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Learning-Based Cell-Aware Diagnosis Flow for
Industrial Customer Returns

Safa Mhamdi, Patrick Girard, Arnaud Virazel, Alberto Bosio, Aymen Ladhar

To cite this version:
Safa Mhamdi, Patrick Girard, Arnaud Virazel, Alberto Bosio, Aymen Ladhar. A Learning-Based
Cell-Aware Diagnosis Flow for Industrial Customer Returns. ITC 2020 - IEEE International Test
Conference, Nov 2020, Washington DC, United States. pp.1-10, �10.1109/ITC44778.2020.9325246�.
�lirmm-03034264�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03034264v1
https://hal.archives-ouvertes.fr

 1

A Learning-Based Cell-Aware Diagnosis Flow
for Industrial Customer Returns

S. Mhamdi P. Girard A. Virazel
LIRMM, Univ. of Montpellier / CNRS

Montpellier, France
<lastname>@lirmm.fr

A. Bosio
INL, École Centrale de Lyon

France
alberto.bosio@ec-lyon.fr

A. Ladhar
STMicroelectronics

Crolles, France
aymen.ladhar@st.com

Abstract— Diagnosis is crucial in order to establish the root cause
of observed failures in Systems-on-Chip (SoC). In this paper, we
present a new framework based on supervised learning for cell-
aware defect diagnosis of customer returns. By using a Naive
Bayes classifier to accurately identify defect candidates, the
proposed flow indistinctly deals with static and dynamic defects
that may occur in actual circuits. Results achieved on benchmark
circuits, as well as comparison with a commercial cell-aware
diagnosis tool, show the effectiveness of the proposed framework
in terms of accuracy and resolution. Moreover, the proposed flow
has been experimented and validated on industrial circuits (two
test chips and one customer return from STMicroelectronics),
thus corroborating the results achieved on benchmark circuits.
Keywords—Diagnosis, Customer Returns, Machine Learning

I. INTRODUCTION
The ultimate goal when developing and providing high

quality (e.g. automotive) products is to have zero customer
returns. A customer return is a circuit that passed the entire
manufacturing test flow but failed on the customer’s side [1].
The two main causes of a customer return are test escape
during manufacturing test or latent defect mechanisms during
lifetime. When a customer return is identified, it is important to
reproduce the failure mechanism in the lab with the appropriate
test conditions (temperature and voltage) and original test set.
In case of test escape, efforts must be spent on finding new test
patterns that will exhibit the failure in the same test conditions.
In case of latent defect, the task will often succeed and a
diagnosis program made of several routines is used to identify,
step by step, the failing part and, finally, the suspected defects.
Each routine coincides with the application of a diagnosis
algorithm at a given hierarchy level. SoC level diagnosis is the
first routine used to identify the core(s) in the SoC that can
explain the failure [2-3]. Core level (inter-cell) diagnosis is
then used to identify the possible failing cells within the core(s)
[4-7]. Cell-Aware (CA) diagnosis is finally used to pinpoint the
possible defect candidates within the failing cell(s) [8-10]. Note
that in this case, the key metrics that characterize diagnosis
performance are accuracy, i.e., the physical defect is indeed in
the list of candidates, and resolution, i.e., the number of
candidates reported by diagnosis for a given defective SoC.

Physical Failure Analysis (PFA) usually follows diagnosis.
PFA is a time-consuming process for physically exposing the
defect, and hence characterize the failure mechanism. Due to
the high cost and destructive nature of PFA, diagnosis accuracy
and resolution are very critical. Unfortunately, diagnosis
resolution is typically far from ideal today due to SoC
complexity. Especially with the advent of very deep submicron

technologies (i.e., 7 nm), a high resolution (very few or one
candidate) is not always reachable by today’s intra-cell logic
diagnosis tools based on conventional methods (effect-cause /
cause-effect) [11]. For this reason, considerable effort has been
spent to improve resolution by using machine learning
techniques, initially through the extraction of features that
allow correct candidates (those that correctly represent defect
locations) to be distinguished from incorrect ones [12]–[16].
Even though they are efficient, these techniques address
volume diagnosis for yield improvement, which is a different
problem than fault diagnosis of customer returns. Actually,
numerous data gathered during manufacturing test and
subsequent diagnosis phases are available during volume
diagnosis, such as, e.g., hundreds of similar failed chips with
candidates correctly labeled (good, bad) obtained in a previous
stage. Hence, using these data for failure diagnosis of a new
failed chip is possible. On the other side, only one failed chip is
investigated during fault diagnosis of a customer return, with
no information about the defective behaviour of similar chips
used in the same conditions (environment, workload). For this
reason, learning-guided approaches used for volume diagnosis
cannot be reused for fault diagnosis of customer returns.

A learning-based solution for CA diagnosis of mission
mode failures in customer returns was proposed in [17].
Several supervised learning algorithms were evaluated and
compared to a traditional solution to diagnose CA defects.
Results obtained on benchmark circuits and compared with
those of a commercial CA diagnosis tool, showed the
feasibility and accuracy of this approach. However, only static
defects modeled by stuck-at faults were assumed in this work.
So, we proposed a new CA diagnosis method in [18]. We
assumed dynamic defects and used a Bayesian classification
method for predicting the nature (likelihood to be a good
candidate) of each new data instance (defect). Cell-aware delay
test sequences generated by a cell-aware ATPG assuming a
Launch-On-Capture (LOC) testing scheme were used in this
work. Once again, the effectiveness of the proposed learning-
based method for diagnosis of CA dynamic defects was
established, through comparison with a commercial tool.

Despite the respective efficacy of the above two methods, it
is not straightforward to combine them and deal with all types
of defects, i.e., static and dynamic, indifferently. This is the
consequence of two distinct processes initially employed in
[17] and [18] for generating new data instances that are further
used to identify suspected defects. So, in an attempt to deal
with all types of defect that may occur in customer returns, we
propose a new CA diagnosis flow in this paper. Constructing

Regular Paper INTERNATIONAL TEST CONFERENCE

Regular Paper INTERNATIONAL TEST CONFERENCE 2

such a comprehensive flow raised new problems and imposed
setting up a new framework with specific rules to achieve the
same level of effectiveness in terms of diagnosis accuracy and
resolution. The proposed method is based on a Gaussian Naive
Bayes (NB) trained model to predict good defect candidates. A
generic description of this method was introduced in [19], with
partial results obtained on benchmark circuits. In this paper, we
propose a comprehensive description of our approach to show
its superiority when compared to a commercial CA diagnosis
tool. The proposed flow has been experimented and validated
on industrial circuits (two test chips and one customer return),
thus corroborating the results achieved on benchmark circuits.

The rest of this paper is organized as follows. Section II
summarizes the works presented in [17] and [18]. Section III
details the new cell-aware diagnosis framework. Section IV
shows results obtained on benchmark circuits and compared to
those of a commercial tool. Experiments and results on
industrial circuits are also presented in this section. Section V
concludes the paper and discusses some aspects of the work.

II. PREVIOUS WORK
Figure 1 is a generic view of the learning and prediction

processes utilized in [17] and [18]. Both approaches are based
on supervised learning that takes a known set of input data and
known responses (labeled data) used as training data, trains a
model to classify those data, and then uses this model to predict
(infer) the class of new data.

Figure 1: Generic view of the diagnosis flows in [17] and [18]

For each type of cell existing in the Circuit Under
Diagnosis (CUD), training data are generated during an off-line
characterization process done only once for a given cell library.
Training data are extracted from cell-aware views provided by
a commercial CAD tool that contains characterization results
for a given cell type. These results are given in the form of a
fault dictionary containing, for each defect within a cell, the
cell input patterns that detect (or not) this defect. An example
of training data as used in [17] and containing six instances for
an arbitrary two-input cell is shown in Fig. 2. Each instance
corresponds to a static defect Di (last column), and a 1 (0)
indicates that defect Di is detectable (not detectable) at the
output of the cell when cell test pattern Pj is applied on its
inputs. Cell test patterns can be static (one input vector) or
dynamic (two input vectors). There exists 2n static test patterns
and 2n.(2n–1) dynamic test patterns for an n-input cell. In Fig.
2, P1 to P4 denote static patterns (00, 01, 10, 11), and P5 to

P16 denote dynamic patterns. This way of representing training
data looks like a Defect Detection Matrix used in CA test
pattern generation [20].

Figure 2: Example of training data for static defects in a two-input cell

New data are composed of various instances. Each of them
is associated to one suspected cell in the CUD (customer
return) and represents a features vector characterizing the real
behavior of the cell during test application. From each features
vector, one or more defect candidates can be further extracted
and classified as good or bad candidate with a corresponding
probability to be the root cause of failure. The format of a new
data instance is quite similar to the format of a training data
instance, but has a slightly different meaning. In each instance,
the value ‘1’ (resp. ‘0’) is associated to a failing (resp. passing)
cell test pattern Pi for a given defect candidate, meaning that
the candidate is indeed detectable (resp. undetectable) by cell
test pattern Pi at the output of the cell. The value ‘0.5’ is
associated to a cell test pattern for a given defect candidate
when this pattern cannot appear at the inputs of a suspected cell
during test application. This median value has been chosen to
avoid missing information in new data instances while not
biasing the features of these data.

Figure 3: Example of a dynamic instance table for a NAND cell

Regarding new data, they are generated after post-
processing of so-called instance tables, which describe the
behaviour (pass / fail) of each suspected cell in presence of an
actual intra-cell defect (in one of the suspected cells) when a
test pattern is applied to the cell. The format of a dynamic
instance table looks like the one illustrated in Fig. 3 for a given
two-input NAND cell and two dynamic cell-patterns [18]. In
this example, the first part of the file gives information on how
the cell is linked to other cells in the circuit, while the second
part represents, respectively, the pattern number, the pattern
status (failing, passing), and the cell output Z with the
associated fault model for which exercising conditions are
reported. These conditions shown right below each cell-pattern
represent the stimulus arriving at the cell inputs during the shift
phase (before ‘-’) and applied during launch & capture cycles
(after ‘-’). For example, cell-pattern 1 consists in applying a
falling transition on input B, A being equal to static 1, and
failing in detecting a rising transition on Z.

Regular Paper INTERNATIONAL TEST CONFERENCE 3

III. PROPOSED CELL-AWARE DIAGNOSIS FRAMEWORK
In this section, we detail the various steps of the new CA

diagnosis framework able to deal with all types of defect (i.e.,
static and dynamic) that may occur in customer returns.

A. Considered Test Protocol
With the advent of CMOS technologies, testing the scan-

based logic blocks of a system-on-chip is done in several
successive phases to target the various standard fault models
such as stuck-at, transition, path delay, bridging, etc. Moreover,
cell-aware testing is now used to increase the quality of
manufacturing test by catching transistor-level defects within
library cells (e.g. subtle shorts and opens intra-cell defects) that
would have gone undetected using conventional fault models.

In our work, we have considered that the following tests
have been applied after manufacturing. First, a static CA test
sequence generated by a commercial cell-aware ATPG tool is
applied to the circuit under test (CUT). This sequence targets
all cell-level stuck-at faults plus cell-internal static defects,
considering that these defects are not covered by a standard
stuck-at fault ATPG. A standard (low speed) scan-based testing
scheme is used to this purpose. Next, another option of the cell-
aware ATPG is used to generate tests for cell-level transition
faults plus cell-internal dynamic defects not covered by a
standard transition fault ATPG. In this case, an at-speed LOC
scheme has been used during test application. LOC requires
two-vector test patterns, the first one is used for initialization,
the second is used to generate transitions in the CUT.

As indicated, the first step of the diagnosis process is to re-
use the test sequences initially used for manufacturing test. The
goal is to mimic the process used during test for diagnosis
preparation. So, we consider that two successive test sequences
have been applied: a static CA test sequence and a dynamic CA
test sequence. Note that in case additional test sequences or test
schemes are used (e.g., a dynamic CA test sequence applied at
low speed), the process described below can easily be adapted.

Here, dynamic defects are defects that require two-vector
test patterns to be detected. These defects can be non-resistive
defects modeled by stuck-open faults. More generally, these
defects are mainly due to resistive opens or shorts that prevent
signals to propagate within a circuit at the normal speed, and
hence lead to IC failure. In this case, they are modeled by
(quantitative) delay faults or (qualitative) transition faults.

B. Generation of Training Data
As indicated earlier, training data are extracted from cell-

aware views provided by a commercial CAD tool containing
characterization results for a given cell type. In the example
shown in Fig. 2, dynamic patterns (from P5 to P16) appear in
the training dataset, as it is well know that static defects
modeled by stuck-at faults can be detected by both static and
dynamic patterns. In this case, only the second vector of a
dynamic test pattern is considered to determine whether or not
a static defect is detectable by this pattern.

However, in the general case where both static and dynamic
defects have to be considered, we need to take into account the
fact that dynamic defects can be detected not only by
dynamic patterns, but also by static patterns applied using a
conventional scan testing scheme, provided that i) at least one

transition has been generated at the cell inputs between the
next-to-last scan shift cycle and the launch cycle, and ii) the
delay induced by the defect is large enough to be detected (this
is always true, by definition, for a defect modeled by a
transition fault, also referred to as gross delay fault). For this
reason, the training dataset in this work has a slightly different
representation as shown in Fig. 4. In this case, the value ‘0.5’ is
assigned to each dynamic defect (D21 up to D23) for all related
static patterns, meaning that such a defect is detectable or not
depending on whether or not the above conditions are satisfied.

Figure 4: Example of training data for all defect types in a two-input cell
Once training data have been generated, an important step

before starting to train the Gaussian NB model is data
preparation. It first consists in putting all data together and
randomize the ordering. Few other manipulations are also
done, such as grouping data by considering equivalent defects
or removing data instances of undetectable defects. Then, it
consists in splitting the data in two parts. The first part will be
further used to train the model and is made of the majority of
the dataset randomly selected (between 70-90%). The second
part will be used for evaluating the performance of the trained
model. All details about data preparation are given in [17].

C. Generation of Static and Dynamic Instance Tables
As indicated in Section II, new data are generated after post-

processing of instance tables. In order to deal with both static
and dynamic defects, we need to generate and use static as well
as dynamic instance tables to further produce a new data
instance for each suspected cell. The generation flow is
illustrated in Fig. 5. First, static CA test patterns are applied to
the failing CUD. We then obtain a “static” datalog containing
information on the failing static CA test patterns with the
corresponding failing primary outputs. From this information
and the circuit netlist, we perform a logic diagnosis (by using
the same commercial tool used for test generation) that gives
the list of suspected cells. Finally, datalog information are used
again to generate a static instance table for each suspected cell.
Next, a similar process is carried out by applying dynamic CA
test patterns to the failing CUD. We then obtain a “dynamic”
datalog containing information on the failing dynamic CA test
patterns. Datalog information are further used to generate a
dynamic instance table for each suspected cell.

An important comment is the following: an instance table is
generated for a given cell if and only if applying a test
sequence (static or dynamic) to the CUD has led to at least one
‘fail’ at the circuit outputs. In other words, an instance table is
generated for a given cell if the cell is a suspected cell after test
application and logic diagnosis. In this context, it may happen
that a cell is declared as suspect by:
• Case (1): a static CA test sequence only (in this case, the

failure is due to a static defect inside the CUD or a dynamic
defect modeled by a stuck-open fault or a transition fault and
not covered by the dynamic cell-aware test sequence),

Regular Paper INTERNATIONAL TEST CONFERENCE 4

• Case (2): a dynamic CA test sequence only (in this case, the
failure is due to a dynamic defect modeled by a delay fault or
a static defect not covered by the static CA test sequence),

• Case (3): both static and dynamic CA test sequences (in this
case, the failure is due to a static defect or a dynamic defect
modeled either by a stuck-open fault or by a transition fault).
In the first two cases, only a static or a dynamic instance

table will be generated for the suspected cell. In the last case,
two instance tables (static and dynamic) will be generated. This
will have an impact on the generation and utilization of new
data instances, as detailed below in Subsections D and E.

Figure 5: Generation flow of static and dynamic instance tables

Considering the above comment, we have made the
following realistic assumptions (Ass_1 and Ass_2):
• Ass_1: as we consider an at-speed LOC scheme during

application of the dynamic CA test sequence, it is unlikely to
have a dynamic defect modeled by a transition or stuck-open
fault that is detected by a static CA test sequence and not
covered / detected by a dynamic CA sequence. So, in case
(1), only static defects will be assumed.

• Ass_2: if a static defect is not covered / detectable by the
static CA test sequence, it is unlikely that it will be detectable
by a dynamic CA test sequence. So, in case (2), only dynamic
defects will be assumed.

D. Generation of New Data – Cases (1) and (2)
The first step in generating a new data instance for each

suspected cell consists in extracting information from each
instance table associated to the cell (cf. Fig. 6). In case (1)
discussed above, the new data will be directly extracted from
the static instance table, and given as input to the NB classifier.
Both static and dynamic parts of the new data will be filled
with ‘0’ and ‘1’ values (where appropriate) since i) a static
defect can be detected by a static or a dynamic pattern, and ii)
these information are contained in the static instance table.

Figure 6: Extraction of new data instances

Similarly, in case (2), the new data will be extracted from
the dynamic instance table. However, in this case, only the
dynamic part of the new data will be filled with ‘0’ and ‘1’
values (where appropriate) since a dynamic defect can only be
detected by a dynamic test pattern. This is in accordance with
the format of a training data for a dynamic defect in which the
static part is composed of ‘0.5’ values only.

E. Generation of New Data – Case (3)
1) Observations and Conflicts
In case (3), two provisional new data are extracted, one from

the static instance table (Static New Data - SND), one from the
dynamic instance table (Dynamic New Data - DND). These
static and dynamic new data have to be considered together to
form the final new data for the suspected cell. Two strategies
have been investigated initially to generate the final new data:
• Extract static (resp. dynamic) patterns information from the

static (resp. dynamic) instance table to create the static (resp.
dynamic) part of the static new data (resp. dynamic), and then
combine both parts (static part of the SND and dynamic part
of the DND) to create the final new data.

• Extract static and dynamic patterns information from both
static and dynamic instance tables to create the full static and
dynamic new data (cf. Fig. 6), and then mix these new data
by using simple intersection rules (0∩1=1 , 0∩0.5= 0 ,
1∩0.5=1, 0.5∩0.5= 0.5) to create the final new data.
Unfortunately, these simple and straightforward strategies

do not apply to our problem as several counterexamples have
been found. With the first strategy, we may loose some
information from the static part of the DND (stat_DND). For
example, let us consider a NAND cell with two inputs A and B
that contains a (static) short defect Di between the gate and the
drain of the NMOS transistor driven by A. The training data
instance for this defect in such a NAND cell will be as follows:

Let us assume that this defect has been only sensitized and

detected by the static pattern AB={01} during the static CA
test sequence application. In this case, the SND will be:

Now, assume that during the dynamic CA test sequence

application, the following dynamic patterns have appeared at
the inputs of the cell AB={0R, 0F, R0, FR, F1, 1F}, two of
them {R0, 1F} do not detecting the defect. This information
will appear in the dynamic part of the DND (dyn_DND), but
can also appear in its static part by applying an “inference”
process that considers the second vector of each dynamic test
pattern to re-construct (by implication) the static part. This
process will be detailed subsection III.E.2. Considering this re-
construction process, the DND will appear as follows:

By applying the first strategy, it can be seen that the static

part of the final new data (0.5, 1, 0.5, 0.5), which will be equal
to the static part of the SND, will be much farther away from to
the training data of the defect (shown above) than the static part
of the DND (1, 1, 0, 0.5), hence do not facilitating the task of
the NB classifier in identifying the defect as the source failure.

Regular Paper INTERNATIONAL TEST CONFERENCE 5

The second strategy investigated to generate the final new
data raises the same issue. In this case, mixing (intersecting)
the static parts of the SND and DND will provide the static part
of the SND (as the static part of the DND initially contains
only ‘0.5’ values), hence loosing information that could be
obtained by re-construction as described above.

To solve the above issue, an alternate strategy has been
investigated, which is based on the following key observations:
• In case of a static defect, exploiting information extracted

from the dynamic instance table is recommended, as it is
likely that this information will complement those extracted
from the static instance table. This was illustrated in the
example right above. In this case, the static part of the DND
originally composed of ‘0.5’ values must be always re-
constructed to “enrich” the DND, and hence the final new
data, once SND and DND are combined. A set of rules has to
be defined to this purpose (see III.E.2).

• In case of a dynamic defect modeled by a stuck-open or
transition (gross delay) fault, it is recommended to exploit
and combine only the dynamic parts of both SND and DND,
since additional information (‘0’ or ‘1’) taken from the static
part of the SND would deter the quality of the final new data
that would be no longer so close to the training data of the
defect (in which the static part only contains ‘0.5’).

• Distinguishing between a static defect and a dynamic defect
modeled by a stuck-open or transition (gross delay) fault,
though not always possible, can easily be done. Identifying a
static defect is possible by analyzing the static instance table
(that looks like the one in Fig. 3) and looking for a ‘fail’
induced by the application of two identical successive vectors
(no transition between them). Identifying a dynamic defect
modeled by a stuck-open or transition (gross delay) fault can
be done when there is occurrence of a conflict in SND or
DND. This situation is illustrated below.
Let us consider a NOR cell with two inputs A and B that

contains a full open defect between the source node of the
NMOS transistor driven by A and Ground. The training data
instance for this defect in such a NOR cell will be as follows:

Let us assume that this defect (a stuck-open) has been

sensitized by its unique detection pattern P7={R0} during the
static CA test sequence application. This is possible provided
that the scan shift process has brought the right initialization
values {00} at the inputs of the cell. Detection will occur when
applying V2 = {10}, hence leading to a ‘1’ on P3 and P7 in
SND. Let us also assume that pattern P16={1F} has appeared at
the inputs of the cell during test, of course not sensitizing the
defect (this is not possible as there is a ‘0’ on P16 in the training
data of the cell) and hence generating a “pass” (‘0’) when
applying V2 = {10} of P16. In this case, a conflict will occur as
application of V2 = {10} during test will lead to a ‘fail’ when
applying P7 and a ‘pass’ when applying P16. This conflict on
the SND is illustrated below, and will be used to indicate that
the defect is a dynamic defect modeled by a stuck-open or
transition fault (it can not be a static defect as, otherwise, both
P7 and P16 would have let to a ‘fail’ during test application).

 Such type of conflict can also appear when applying the

dynamic CA test sequence. Considering the same previous
(stuck-open) example, different test results when applying R0
and 1F would imply that the defect is dynamic. In the selected
strategy, the occurrence of a conflict will be used to identify a
dynamic defect (stuck-open or transition fault) and construct
the final new data by combining only the dynamic parts of both
SND and DND. However, it is important to note that a conflict
does not necessarily occurs, because two conflicting patterns
may not necessarily be generated by the same CA test
sequence. In this case, the final new data will be generated by
fully mixing SND and DND.

2) Rules for re-Constructing the Static Part of a DND
Let us consider a DND that contains values such as ‘0’, ‘1’

and/or ‘0.5’. Constructing stat_ DND that initially contains
only ‘0.5’ values cannot be done directly by simply considering
‘0’ and ‘1’ in dyn_DND, and applying direct implication rules
(i.e., a ‘1’ in dyn_DND for V1V2 implies a ‘1’ in stat_DND for
V2, the same for ‘0’). The reason is that any value in dyn_DND
is the consequence of the application of two successive vectors
V1 and V2 (LOC scheme) in which V1 may have sensitized the
defect and propagated its effect up to the outputs (flip-flops),
thus leading to a new V’2 that differs from V2. Instead, we need
to consider information stored in stat_SND to infer values in
stat_DND from values in dyn_DND. So, to re-construct
stat_DND, the following implications rules will be applied:
• Rule 1: For any two-vector pattern giving a ‘1’ in dyn_DND,

if the corresponding vector V1 is declared as fault-free during
application of the static CA test sequence (i.e., V1 has led to a
‘0’ in stat_SND), then a ‘1’ can be inferred in the stat_DND
for vector V2 since the defect detection can only be due to V2.

• Rule 2: For any two-vector pattern giving a ‘1’ in dyn_DND,
if the corresponding vector V2 is declared as fault-free during
application of the static CA test sequence (i.e., V2 has led to a
‘0’ in stat_SND), then a ‘1’ can be inferred in the stat_DND
for vector V1. In this case, as the defect is undetectable by V2,
the ‘1’ in dyn_DND can only be due to V1 (the defect has
been propagated during the two clock cycles launched by V1
and V2 before being captured).

• Rule 3: For any two-vector pattern giving a ‘0’ in dyn_DND,
if the corresponding vector V1 is declared as fault-free during
application of the static CA test sequence (i.e., V1 has led to a
‘0’ in stat_SND), then a ‘0’ can be inferred in the stat_DND
for vector V2.

• Rule 4: For any two-vector pattern giving a ‘0’ in dyn_DND,
if the corresponding vector V2 does not appear during
application of the static CA test sequence (i.e., V2 has led to a
‘0.5’ in stat_SND), then a ‘0’ can be inferred in the
stat_DND for vector V2.

F. Overall Flow for Generating New Data
From the above assumptions, observations, and rules, we

have finally set up a flow for generating a new data for a given
suspected cell. Fig. 7 gives the pseudo code of this flow. It has
been implemented and used in our CA diagnosis framework.

Regular Paper INTERNATIONAL TEST CONFERENCE 6

Figure 7: Generation of a new data for a given suspected cell

G. Cell-Aware Diagnosis Flow
The two main steps of the supervised learning process

used for CA defect diagnosis are depicted in Figure 1. As
mentioned, we use a Bayesian classification method for
predicting the nature (likelihood to be a good candidate) of
each new data instance. This choice was motivated by the
result obtained in [17] after experimenting various learning
algorithms and observing their inference accuracies. A cross-
validation algorithm was also used to primarily calculate the
prediction accuracy of these learning algorithms. So, the first
step of our CA diagnosis flow is to generate a Naive Bayes
(NB) model and to train it by using the training dataset.
Training a model is done based on labeled training data and
then can be used to assign a pre-defined class label to new
objects. In this step, training data are used to incrementally
improve the model’s ability to make inference. The training
data is divided into mutually exclusive and equal subsets. For
each subset, the model is trained on the union of all the other
subsets. Once training is complete, the performance (accuracy)
of the model is evaluated by using a part of the dataset initially
set aside [21]. The second step is to construct the NB
classifier using a Gaussian distribution to model the likelihood
probability functions, and use it to make probabilistic
prediction (or inference) when a new data instance has to be
evaluated. Naive Bayes classifiers work based on the Bayes’
probability model that can be simply formulated as follows:

The posterior probability, in the context of our classification
problem, can be interpreted as: “What is the probability that a
new data instance D corresponds to a defect Di in a suspected
cell given its observed feature values?”. It can be expressed as:

P(D=Di | features) => P(D=Di | T1,…,Tn)

where T1,…,Tn represent the values of the cell-level test
patterns associated to the new data instance D. The objective
function in the Naive Bayes probability is to maximize the
posterior probability given the training dataset in order to
formulate the decision rule which is as follows:

D = Di if P(D = Di | T1,…,Tn) ≥ P(D ≠ Di | T1,…,Tn)
Otherwise, D ≠ Di
More details about the Naive Bayes’s theorem and bayesian

network classifiers, and about the way we implemented our NB
classifier can be found in [22]-[24] and [18] respectively.

An important preliminary step before the above two ones is
training data preparation, which is carried out in three phases:
Data Selection, Data Preprocessing, and Data Transformation.
It first consists in selecting the subset of all training data that
will be used to build the model and classify new data. Then, it
consists in putting all data together and randomize the ordering.
In our selection process, 70% to 90% of the available data were
randomly selected and this operation was repeated several
times to obtain training data with good randomness. Few other
manipulations are also done, such as grouping data by
considering equivalent defects or removing data instances of
undetectable defects. Then, it consists in splitting the data in
two parts. The first part is further used to train the model and is
made of the majority of the dataset randomly selected. The
second part is used for evaluating the trained model’s
performance. More details can be found in [17].

IV. EXPERIMENTAL RESULTS
Our framework has been implemented in a Python

program. For validation purpose, we have experimented the
proposed cell-aware diagnosis flow in four different ways:
• First, we conducted experiments on a set of ITC’99

benchmark circuits synthesized using a 28 nm FDSOI
technology from STMicroelectronics.

• Next, we considered a test chip developed by
STMicroelectronics and designed using a 28 nm FDSOI
technology, and we performed a simulated case study with a
defect injection campaign to corroborate the results achieved
on the ITC’99 circuits.

• Finally, we considered two test chips (the previous one and
another one designed using a 32 nm CMOS technology) and
one automotive customer return from STMicroelectronics
(designed with a 90 nm technology), and for each of them,
we performed a silicon case study with a real defect
subsequently analyzed and identified during PFA.

A. Experiments on ITC’99 Circuits
Experiments have been first conducted on benchmark

circuits synthesized in a full scan manner using a 28 nm
FDSOI technology from STMicroelectronics. A commercial
CA ATPG tool was used to generate static and dynamic CA
test sequences targeting maximum fault coverage for each
circuit. For each circuit and their corresponding test set, the
behavior of the tester was simulated by performing a defect
injection campaign (about 2000 injections per circuit) into a
number of randomly selected cells and collecting test
information to build the tester data log. For the defect injection
campaign, we considered each transistor of the selected cells

Posterior Probability = Conditional Probability . Prior Probability
Evidence

(1)

(2)

(3)

Regular Paper INTERNATIONAL TEST CONFERENCE 7

and we targeted all possible static and dynamic defects
affecting that transistor. As several defects have the same
impact on the logic behavior of the cell, and hence are logical-
equivalent defects, they were grouped in defect classes. We
used a commercial logic diagnosis tool to determine the list(s)
of Suspected Cells (SC) after static and dynamic test sequences
application. The average number (#aSC) for each circuit is
listed in Table I, together with information about each circuit:
number of cells, scan flip-flops, static and dynamic test
patterns, stuck-at (including static CA) fault coverage and
transition (including dynamic CA) fault coverage in %.

TABLE I. CIRCUIT FEATURES AND RESULTS OF LOGIC DIAGNOSIS
Circuit #Cells #SFF #sTP #dTP SaFC TrFC #aSC

b15 2465 416 1607 2665 98.55 88.38 1.91
b17 7960 1314 2241 4423 98.83 91.10 2.39
b18 3238 215 3371 4436 99.61 93.46 2.51
b19 6337 430 3288 5583 99.57 93.79 1.64
b20 6733 430 3347 5460 99.52 93.76 1.60
b22 3218 215 3385 4670 99.64 93.78 1.64

For generating training data, we used characterization data
provided by a commercial tool and ST libraries. For generating
new data instances, we performed post-processing of instance
tables obtained as shown in Fig. 5. From the training data and
the Gaussian NB model, we make predictions on new data
instances. Results obtained are a list of defect candidates with
the highest probability to be the root cause of failure.

TABLE II. CELL-AWARE DIAGNOSIS RESULTS – B19
Defect #SC Proposed CA Diagnosis Commercial Tool

D1 2 (A&B) A=D1 B=D7 A=D1 B=D7
D2 1 (A) A=D2 A=D2/D81
D3 2 (A&B) A=D3 B=D15 A=D3/D62 B=D9/D52
: : : :

D43 2 (A&B) A=D43 B=D2/D44=0.5 A=D43 B=D52/D55
D44 1 (A) A=D44/D63=0.5 A=D44/D63
D62 2 (A&B) A=D62 B=D2 0
D63 2 (A&B) A=D63 B=D3/D48=0.5 D63

D64 2 (A&B) A=D64/D43=0.5
B=D3/D48=0.5

A=D64/D63/D27/D72
B=D50

: : : :
D140 2 (A&B) A=D140 B=D3 A=D140/D81=0.5 B=D50

Table II shows partial results obtained for a defect injection
campaign in a three-input AndOr cell of circuit b19, with 145
potential defects including resistive and non-resistive opens
and shorts. The first column lists the various injected static and
dynamic defects. The second column shows the number of
suspected cells obtained after logic diagnosis. Note that in this
case study, the defect is always injected in the cell called A
irrespective of the number of suspected cells. The next column
lists the best defect candidates reported by the Gaussian NB
classifier with the corresponding probability of being the root
cause of failure, and provided after applying the proposed
method successively on each suspected cell A and B (when two
suspected cells exist). The last column reports candidates
provided by a commercial CA diagnosis tool using the same
characterization data and test protocol. This tool is non-
probabilistic and provides the list of all suspects obtained after
CA diagnosis with a ranking and a matching score. As this tool
deals with static and dynamic patterns separately, two
diagnostic reports are provided for each diagnosed failure file.
Therefore, two options are possible to get the final set of
suspects. The first one consists in making the intersection
between the two diagnostic reports. This solution gives better

resolution but can lead to wrong prediction (the actual defect is
not reported). The second solution consists in considering the
union between the two diagnostic reports. This solution is less
accurate but is safer, especially in our case as the commercial
tool behaves like a black box. In Table II, we have reported
results obtained from the union of diagnostic reports.

These representative results first show that the real
(injected) defect is always identified by the proposed flow.
Sometimes, it is the only candidate and has a probability of 1
(e.g., D2) to be the best candidate. Sometimes, it is reported
with another candidate in suspected cell A (e.g., D63), hence
with a probability of 0.5. When two cells are suspected (e.g.,
D1), some defect candidates in suspected cell B are also
reported, but the injected defect belongs to the whole set of
candidates. Conversely, we can observe that the commercial
CA diagnosis tool is not always able to report the injected
defect as candidate (e.g., D62). This proves the superiority of
our proposed framework in terms of accuracy (always 100%),
which is not the case of the commercial CA diagnosis tool that
sometimes can provide inaccurate results.

The reason of these cases of misdiagnosis with the
commercial tool can be explained as follows. In such a tool, the
logic diagnosis phase is embedded in the whole CA diagnosis
flow, and no intermediate result about logic diagnosis can be
observed (conversely to what is done in our learning-based
flow). In such configuration, it may happen that the cell in
which the real defect has been injected is found with a much
lower probability to be the source of failure compared to the
other identified suspected cells. In such a case, the tool may
possibly ignore this cell in the next phases of the process, and
finally arrive at a situation where either wrong defects or no
defect will be identified as suspected candidates. Being unable
to go deeper inside the functioning of the commercial tool, this
is the most likely explanation about such cases of misdiagnosis.

The second comment about the results shown in Table II
relates to resolution. In this example, we can observe that in all
cases, our method provides results with a better resolution than
what can be obtained with the commercial CA diagnosis tool.

TABLE III. OVERALL CELL-AWARE DIAGNOSIS RESULTS

Circuit
Accuracy Resolution

Proposed Com. Tool Proposed Com. Tool
Inter Union

b15 100% 100% 2.047 3.79 4.68
b17 100% 100% 7.20 11.146 13.05
b18 100% 97.70% 4.129 5.733 7.56
b19 100% 98.90% 1.818 2.857 3.88
b20 100% 99.11% 2.299 2.947 3.90
b22 100% 99.12% 3.746 4.823 5.64

Results obtained on the biggest ITC’99 benchmark circuits
are summarized in Table III. The second and third columns are
about accuracy and give, for each circuit, the percentage of
cases in which the injected defect was reported in the list of
suspects provided by the proposed CA diagnosis and the
commercial CA diagnosis tool respectively. As can be seen, the
commercial tool is unable to achieve 100% (achieved with our
technique) for 4 out of 6 circuits. The remaining columns are
about resolution and give, for each circuit and considering all
injection campaigns, the average number of suspects reported
by the proposed method and the commercial tool respectively.
The column labeled ‘Inter’ reports the resolution achieved

Regular Paper INTERNATIONAL TEST CONFERENCE 8

when performing the intersection between defect candidates
obtained by applying static CA test sequences and those
obtained by applying dynamic CA test sequences. The column
labeled ‘Union’ reports the resolution achieved when
performing the union between these two sets of candidates.
Both types of resolution are reported since, again, we do not
know how the commercial tool operates internally. As can be
seen, the resolution achieved with our method is always better.
So, overall, these results confirm the superiority of our
approach in terms of accuracy and resolution. Note that the
accuracy of the commercial tool was the same with either the
union or intersection strategy, which explains why we have
only one column in Table III for the commercial tool accuracy.

In our experiments, suspected defects were classified using a
publicly available machine learning software package called
Scikit-learn, which is an integrated development environment
with a suite of ML tools [25]. The single defect assumption
was considered, although the proposed framework is able to
manage situations where multiple defects have occurred,
provided that those defects are not in the same cell. This
significant feature comes from the fact that our diagnosis flow
considers all suspected cells one at a time, and then
incrementally constructs a list of suspected defects identified in
each of these cells. Finally, in-field failure mechanisms related
to premature aging, such as NBTI or HCI, essentially lead to
resistive opens and shorts. These mechanisms, that need to be
considered in the context of customer returns, can be
appropriately taken into account in our CA diagnosis flow.

The CPU time taken by the proposed flow to provide a list
of defect candidates is always very low (few seconds) and does
not depend on the circuit size. Only the number of suspected
cells obtained after logic diagnosis may have an impact on the
CPU time (for the generation of instances tables) but in a very
light way (as this number is always very low as demonstrated
in the results shown in Table I). The most time-consuming part
of the flow (few hours) is the characterization phase, but it is
done only once and is not correlated with the circuit size.

B. Simulated Test Case Study
We then conducted experiments on a test chip developed by

STMicroelectronics and designed with a 28 nm FDSOI
technology. The circuit is only composed of digital and
memory blocks, except one PLL. The digital blocks are made
of 1.385.864 cells. Other features are given in Table IV.

TABLE IV. MAIN FEATURES OF THE SILICON TEST CHIP #1
#cells #PIs #POs #SFF #sTP SaFC #dTP TrFC
1.3M 91 33 88K 421 99.91 1238 99.93

We performed a first simulated case study with a static
defect injection campaign to corroborate the results achieved
on the ITC’99 circuits. We randomly and successively injected
2300 static defects in the description of the circuit. All defects
were injected in a single full scan digital block composed of
203K cells, and tested with a static CA test sequence composed
of 421 test patterns and achieving a stuck-at + static CA fault
coverage of 99.91 %. The results obtained after executing our
CA diagnosis flow and averaged over all defect injections have
shown an accuracy of 100% (the injected defect was always
reported in the list of suspects) and a resolution of 1.91. The
resolution ranges between 1 and 7, and Fig. 8 shows the

distribution of this resolution with respect to the total number
of simulated cases (i.e., 2300 defect injections). As can be seen,
in most of the cases, the number of suspects is less than 3.

We then performed a second simulated case study with a
more extensive defect injection campaign. We randomly and
successively injected 4800 defects (the same 2300 static
defects plus 2500 new dynamic defects) in the description of
the circuit. As previously, all defects were injected in a single
full scan digital block composed of 203K cells. This time, as
described in Section III.A, we successively applied the static
and dynamic CA test sequences generated by the commercial
CA ATPG tool. Details about the static CA test sequence are
those given above. The dynamic CA test sequence was
composed of 1238 test patterns achieving a transition +
dynamic CA fault coverage of 99.93 %.

Figure 8: Distribution of the resolution wrt the simulated cases

Again, the results obtained after executing our learning-
based CA diagnosis flow and averaged over all defect
injections have shown an accuracy of 100%. Regarding the
resolution, we separated results obtained after injection of static
defects and those obtained after injection of dynamic defects.
Owing to the use of additional information provided by the
dynamic CA test sequence, the average resolution obtained for
the static defect injection experiments was slightly improved.
The average resolution obtained for the dynamic defect
injection experiments was of 1.97. Again, the resolution ranges
between 1 and 7, and the number of suspects is less than 3.

C. Silicon Test Case Studies
1) Silicon Test Chip #1
We performed a first silicon case study on the test chip

considered and presented in the previous subsection, with the
main features given in Table IV. The test conditions used to
run the experiments were the following: a nominal supply
voltage of 0.54 V, a scan test frequency of 10 MHz, a launch-
to-capture clock speed (for the dynamic CA test sequence
application) adjusted with respect to the nominal clock
frequency of the circuit, and a temperature of 30°C. The
process was considered as typical. We experimented our CA
diagnosis flow, and we obtained the following results:
• The circuit failed on the tester after application of the static

CA test sequence (only) when applied at the nominal voltage.
This information was stored in a “static” datalog.

• A logic diagnosis gave a short list of suspected cells
containing one cell of type NAND2. A static instance table
was then generated for this suspected cell, and contained one
failing and two passing cell level test patterns.

• From the new data generated after post-processing of this
instance table, the Gaussian NB classifier identified defect
D32: a short between the source and the gate of the B-input
NMOS transistor of the NAND2 cell.

Regular Paper INTERNATIONAL TEST CONFERENCE 9

The above diagnosis results were provided to the Failure
Analysis team and traditional techniques (laser voltage
probing, static nanoprobing, EMMI, etc.) have been used to
determine the correlation with the results obtained from our
automated diagnosis flow. Figure 9 shows the layout view of
the test chip and the incriminated transistor. As a final step, a
physical defect was indeed found on the corresponding NMOS
transistor after using the Planar Transmission Electron
Microscope (PTEM) technique. The defect location along with
the short connection observed on the failure analysis cross-
sectional view is shown in Fig. 10.

Figure 9: Layout view of the test chip and the incriminated transistor

Figure 10: Physical defect found by the Failure Analysis cross-section

Note that we have also experimented the commercial CA
diagnosis flow used in Section IV on this silicon case study. It
was unable to identify the right defect candidate.

2) Silicon Test Chip #2
We performed a second silicon case study on another test

chip developed by STMicroelectronics, designed with a 32 nm
CMOS technology, and with a complexity similar to that of the
first silicon test chip. We experimented our diagnosis flow and
we obtained the following results:
• The circuit failed on the tester after application of the static

CA test sequence (only) when applied at the nominal voltage.
This information was stored in a “static” datalog.

• A logic diagnosis gave a short list of suspected cells
containing a four-input AOI cell (made of 48 transistors)
representing the two-level logic function AND-OR-Invert.
The cell contains 431 potential short or open defects. A static
instance table was then generated for this suspected cell, and
contained 2 failing and 14 passing cell level test patterns.

• From the new data generated after post-processing of this
instance table, the NB classifier identified defect D200: a full
bridge between input A and internal net #89 of the cell.
The above diagnosis results were provided to the Failure

Analysis team of STMicroelectronics, who already made a
PFA on this silicon test case based on the results formerly
found by their in-house intra-cell diagnosis tool. The result

obtained with our CA diagnosis flow (a bridge between input A
and internal net #89 of the cell) was validated at this stage, as it
correlates with the former result found after analyzing the
failure analysis cross-sectional view as shown in Fig. 11.

Figure 11: Physical defect found by the Failure Analysis cross-section

3) Automotive Customer Return
We performed a third silicon case study on a customer

return coming from an automotive application and designed
with a 90 nm CMOS technology from STMicroelectronics. The
circuit contains 4.629.910 cells. Some features are given in
Table V. The test conditions used to run the experiments were
the following: a nominal supply voltage of 1.1 V, a scan test
frequency of 10 MHz, a launch-to-capture clock speed of 1.79
GHz, adjusted with respect to the nominal clock frequency of
the circuit, and a temperature of 105°C.

TABLE V. MAIN FEATURES OF THE CUSTOMER RETURN
#cells #PIs #POs #SFF #sTP SaFC
4.6M 57 94 289K 7132 98.67

We experimented our CA diagnosis flow, and we obtained
the following results:
• The circuit failed on the tester after application of the static

CA test sequence (only) when applied at the nominal voltage.
This information was stored in a “static” datalog.

• A logic diagnosis gave a short list of suspected cells
containing a four-input AndOr cell (made of 10 transistors).
The cell contains 523 potential short or open defects. A static
instance table was then generated for this suspected cell, and
contained 95 failing and 7 passing cell level test patterns.

• From the new data generated after post-processing of this
instance table, the NB classifier identified defect D17: a short
between input C and internal node #105 in the cell.

Figure 12: Physical defect found by the Failure Analysis cross-section

The above diagnosis results were provided to the Failure
Analysis team of STMicroelectronics, who made a PFA in the
past on this customer return based on the results found by their
in-house diagnosis tool. The result obtained with our learning-
based diagnosis flow was validated as it correlates with the

Regular Paper INTERNATIONAL TEST CONFERENCE 10

former result found after performing a polysilicon level
inspection on the layout of the customer return and observing
the failure analysis cross-sectional view as shown in Fig. 12.

V. CONCLUSION, DISCUSSION AND FUTURE WORK
In this paper, we have presented a new framework for cell-

aware defect diagnosis of customer returns based on supervised
learning. The proposed flow indistinctly deals with static and
dynamic defects that may occur in real circuits. A Naive Bayes
classifier was used to precisely identify defect candidates. A
large set of experiments on both benchmark circuits and silicon
test cases has been done to validate the proposed flow and
demonstrate its efficacy in terms of accuracy and resolution.

Results of these experiments prove the appropriateness of a
learning-based method to solve our problem, despite the small
size of the training dataset used (only one sample for one defect
class). When multiple defect sizes and test conditions will be
used, this will be even truer. Indeed, multiple samples (one for
each defect size or defect size range, one for each PVT test
condition) will be associated to a given defect class, simply
because the behavior of the defect will differ when applying
the same set of test patterns. In terms of timing and complexity,
this will just slightly impact our method, since training dataset
is extracted from characterized cell libraries that are generated
anyway for test and diagnosis purpose. So, even with large cell
libraries with a huge number of defects to be simulated (e.g.,
631 cells in a library, each with 4 to 6 inputs, 951 shorts and
749 opens on average – typical example of an ST library), our
framework will still be easily and time-efficiently applicable.

It is worthnoting that among other factors, the effectiveness
of our framework can be explained by the fact that an NB
algorithm usually works well with small training dataset
containing a lot of features, as in our case (e.g., for a 5-input
cell, we have 1024 cell-level test patterns).

In our simulated case studies, all injected defects for
evaluation purposes were present in the training dataset.
Similarly, in our three silicon case studies, the actual defects
were also present in the training dataset. However, in customer
returns, actual defect behavior may not perfectly match the
fault models that are used to train the NB classifier. Further
work will be done to see how well the proposed method works
in that scenario. Moreover, layout information will be used to
consider only realistic defects during training data preparation,
thus eliminating unrealistic defects during the learning process
and possibly improving the performance of our inference
engine. Finally, by exploiting the ranking of suspected cells
usually provided after logic diagnosis by commercial tools,
which was not done in the current work, our flow will be able
to provide a similar ranking among defect candidates, thus
giving additional useful information to be used during PFA.

ACKNOWLEDGEMENTS
This work has been funded by the French National Research
Agency (ANR) under the framework of the ANR-17-CE24-
0014-01 EDITSoC (Electrical Diagnosis for IoT SoCs in
automotive) project.

REFERENCES
[1] N. Sumikawa, D. Drmanac, Li-C. Wang, and M.S. Abadir,

“Understanding Customer Returns From A Test Perspective,” in Proc.
IEEE VLSI Test Symposium, pp. 2-7, 2011.

[2] Y. Benabboud, A. Bosio, L. Dilillo, P. Girard, A. Virazel, and O.
Riewer, “A Comprehensive System-on-Chip Logic Diagnosis,” in Proc.
IEEE Asian Test Symposium, 2010.

[3] Li-C. Wang, “Data Learning Based Diagnosis,” in Proc. ACM/IEEE
Asia and South Pacific Design Automation Conference, pp. 247-254,
2010.

[4] L. M. Huisman, “Diagnosing Arbitrary Defects in Logic Designs Using
the Single Location At a Time (SLAT),” IEEE Transactions on
Computer-Aided Design, vol. 23, no. 1, pp. 91, 2004.

[5] S. Holst and H-J. Wunderlich, “Adaptative Debug and Diagnosis
Without Fault Dictionaries,” in Proc. IEEE European Test Symposium,
pp. 7-12, 2007.

[6] D. Appello, V. Tancorre, P. Bernardi, M. Grosso, M. Rebaudengo, and
M. Sonza Reorda, “Embedded Memory Diagnosis: An Industrial
Workflow,” in Proc. IEEE International Test Conference, pp.1-9, 2006.

[7] C. Zhang, Y. He, L. Yuan, and S. Xiang, “Analog Circuit Incipient Fault
Diagnosis Method Using DBN Based Features Extraction,” IEEE
Access, vol. 6, April 2018.

[8] A. Ladhar, M. Masmoudi, and L. Bouzaida, “Efficient and Accurate
�Method for Intra-gate Defect Diagnoses in Nanometer Technology and
Volume Data,” in Proc. IEEE/ACM Design Automation and Test in
Europe, 2009.

[9] Z. Sun, A. Bosio, L. Dilillo, P. Girard, A. Virazel, and E. Auvray,
“Effect-Cause Intra-cell Diagnosis at Transistor Level,” in Proc. IEEE
International Symposium on Quality Electronic Design, 2013.

[10] T.P. Ho, E. Faehn, A. Virazel, A. Bosio, and P. Girard, “An Effective
Intra-Cell Diagnosis Flow for Industrial SRAMs,” in Proc. IEEE
International Test Conference, 2018

[11] A. Bosio, P. Girard, S. Pravossoudovitch, and A. Virazel, “A
Comprehensive Framework for Logic Diagnosis of Arbitrary Defects,”
IEEE Transactions on Computers, vol. 59, no. 3, pp. 289-300, 2010.

[12] Y. Xue, X. Li, R. D. Blanton, and C. Lim, “Diagnosis Resolution
Improvement through Learning-Guided Physical Failure Analysis,” in
Proc. IEEE International Test Conference, 2016.

[13] X. Ren, M. Martin, and R. D. Blanton, “Improving Accuracy of On-
Chip Diagnosis via Incremental Learning,” in Proc. IEEE VLSI Test
Symposium, pp. 1–6, 2015.

[14] Y. Huang, W. Yang, and W. Cheng, “Advancements in Diagnosis
Driven Yield Analysis (DDYA): A Survey of State-of-the-Art Scan
Diagnosis and Yield Analysis Technologies,” in Proc. IEEE European
Test Symposium, pp. 1–10, 2015.

[15] R.J. Tikkanen, S. Siatkowski, Li-C. Wang, and M.S. Abadir, “Yield
Optimization Using Advanced Statistical Correlation Methods,” in Proc.
IEEE International Test Conference, 2014.

[16] Y. Xue, O. Poku, X. Li, and R. D. Blanton, “PADRE: Physically- Aware
Diagnostic Resolution Enhancement,” in Proc. IEEE International Test
Conference, 2013.

[17] S. Mhandi, A. Virazel, P. Girard, A. Bosio, E. Auvray, E. Faehn, and A.
Ladhar, “Towards Improvement of Mission Mode Failure Diagnosis for
System-on-Chip,” in Proc. IEEE International On-Line Testing
Symposium, 2019.

[18] S. Mhandi, P. Girard, A. Virazel, A. Bosio, E. Faehn and A. Ladhar,
“Cell-Aware Defect Diagnosis of Customer Returns Based on
Supervised Learning,” IEEE Transactions on Device and Material
Reliability, vol. 20, no. 2, pp. 329-340, June 2020.

[19] S. Mhandi, P. Girard, A. Virazel, A. Bosio, E. Faehn and A. Ladhar,
“Learning-Based Cell-Aware Defect Diagnosis of Customer Returns,” in
Proc. IEEE European Test Symposium, 2020.

[20] Z. Gao, S. Malagi, E.J. Marinissen, J. Swenton, J. Huisken, and K.
Goossens, “Defect-Location Identification for Cell-Aware Test,” in
Proc. IEEE Latin-American Test Symposium, 2019.

[21] S. B. Kotsiantis, “Supervised Machine Learning: A Review of
Classification Techniques,” Informatica, vol. 31, no. 3, pp. 249, 2007.

[22] I. Rish, “An Empirical Study of the Naive Bayes Classifier,” in Proc.
International Joint Conference on Artificial Intelligence, pp. 41–46,
2001.

[23] T. Mitchell, Generative and Discriminative Classifiers: Naive Bayes and
Logistic Regression, Chapter 3 - Machine Learning, McGraw-Hill
Higher Education, 1997.

[24] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian Network
Classifiers,” in Machine Learning, vol. 29, pp.131–163, 1997.

[25] http://scikit-learn.org/stable/user_guide.html

